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Geometria differenziale. — On Aolomorphically subprojective Kih-
lerian manifolds, 11. Nota di SericHr Yamacucui e Tyuzi ADATi,
presentata ) dal Socio B. SEGRE.

RIASSUNTO. — La nozione di varietd olomorficamente sottoproiettiva & stata intro-
dotta dagli Autori in un altro lavoro [6]. Qui si definiscono e studiano quelle fra tali varieta
che risultano kihleriane di 1 o di 2% specie.

1. INTRODUCTION

An 7-dimensional affinely connected manifold A, is said to be subpro-
Jective if there exists a coordinate system such that every geodesic is given with
respect to this system by # — 2 homogeneous linear equations and one further
equation that need not be linear.

The present authors have introduced in a previous paper [6] the notion
of holomorphically subprojective Kéhlerian manifold as folloWs. Let us consider
an 7 complex dimensional Kihlerian manifold M. If there exists a complex
coordinate system such that every holomorphically planar curve is given with
respect to this system by z-—2 homogeneous linear equations and one
further equation that need not be linear, then M is called @ /kolomorphically
subprojective Kdéhlerian manifold.

In this paper, we investigate the differential geometric properties of the
holomorphically subprojective Kihlerian manifolds of the first and second
kind. In § 2 we shall recall the identities and theorems in a Kihlerian manifold
with vanishing Bochner curvature tensor and, in § 3, we give a short summary
of holomorphically subprojective Kéhlerian manifolds which are necessary
for what follows. Moreover the holomorphically subprojective Kihlerian
manifolds of the first and second kind are defined. The holomorphically
subprojective Kéhlerian manifold of the first kind is studied in § 4.

2. KAHLERIAN MANIFOLDS WITH VANISHING BOCHNER CURVATURE TENSOR

Let us consider a 2 # real dimensional Kéhlerian manifold M with complex
structure J and Riemannian metric g which satisfy the following relations

i [} h :
1 ==8" , &i=1"1'8s , V;]l=0,
’(ﬁ,’lf,j,“',?’,s,t,"'=I,2,3,"',27’£>

V being the operator of covariant derivation with respect to the Riemannian
connection defined by g. Denote by Ry;/”, R;; and R the Riemannian curva-
ture tensor, the Ricci tensor and the scalar curvature respectively.

(*) Nella seduta del 10 aprile 1976.
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The tensor field defined by

(2.1) Ky = Ry + Ly 88 — Ly 8"+ g1 L) —g; Ly
+ My J— My T T M, — J;i M+ 2 My ]+ 2] MP/[2 (n + 2)]

is called the Bochner curvature tensor, where we have put
(2.2) Lji = Rji—Rygji/[4 (¢ + 1)]My; = J;" Ly,

In a Kéhlerian manifold M with vanishing Bochenr curvature tensor,
the following equation
(2.3) 4+ Vi Ry =81 ViR +£1,;V;R+ 24,V R
—Ju Ji Ve R—TJu ]V, R

has been obtained by M. Matsumoto [3]. Furthermore M. Matsumoto and
S. Tanno [4] have proved

THEOREM A. If a Kihlerian manifold Ml with vanishing Bockner curvature
tensor has constant scalar curvature, then M is one of the following manifolds:

(1) M is a manifold of constant holomorphic sectional curvature.

(2) M és a locally product manifold of two manifolds of constant holo-
morphic sectional curvature H (= o) and — H.

3. HOLOMORPHICALLY SUBPROJECTIVE KAHLERIAN MANIFOLDS ‘

Now, in what follows, we always agree to adopt the following convention:
(¢7) (resp. [/]) for indices 7 and j means the symmetric (resp. shew-symmetric)
part with respect to indices 7 and j, for example

Uiy = g+ wj; (resp. wupij = wy;— wy).

As fdr a holomorphically subprojective Kihlerian manifold, we have obtained
the following in [6]:

THEOREM B. 7n order that a 2n(n = 3) real dimensional Kihlerian
manifold be holomorphically subprojective, it is necessary and swfficient that
there exists a local real coordinate system (x') such that the Christoffel symbol
of M may take the form - '

(3.1) { z]} = 06 85+ Bu In+fud —Fa I &

(3-2) Jua=o0 , fiy M =0,
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where p, and fﬂ are covariant vector and tensor fields respectively, and we have
?utx _Jr x" and Ph__Jh Pr-

Now we put

o s a (]
(3-3) Quji = 3 i+ 2" fo fini — X" ot Fins 11, % S = 3ka ,

(3{4) A |2= Qi 2%, ¢ | x l4= Qrji i i, | x |2:gjixj x',

(35 Hy=080;—pip;+8:8;+Fu , Fji=— (F+p 2" Jiitor 1]
(36 alxf=Hyai,

As for these quantities, the following relations have been introduced in [6]:
(3.7) 3 pi =9 pj,

(3-8) F,/=o,

(39) 2(:—DH;i={2(r— D atOt o) |2 [hg— Ot o) (i)~ 5 7,

(3.10) 20— 1) |2 P Qui+ 4o | Juw ¥y + 2 %; T
+gmxn) F2{2A+ 4+ 1) e} x; Xy =0,

2 (n

A
(3.11)  Rpyy = {“‘}“—‘]:_81—) | x |2} (& &nn—Jitx T+ 2 Jas Tua)

Ate - -
— ml—) [T %0+ 2 T %i— gy o) 20— a2+ 2 T

+ &y Fn) Tn+ 2 (G gan— Fue ) + %o G g -+ 7 Jam) —2 T X ]

27\+(%+I)8 S -
- W Xie X XXy -

Next we give the identities of 'hdl_omorphically subprojective Kihlerian
manifolds which are necessary for what follows.
From (3.11) we can find

— I

. , :
(3.12) Rpy=— :2(n—}—1)a—l— n(7\—|—8)|x[ }gkh+ f\_—_‘—s (w2 + % %),

(3.13) R=—-4%(%—}—'1)4—.2{nk—l—(n—i—l)s}]xf,
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from which, with the aid of these, it follows from (2.2) that

n(m+3)N+ (+1)e
2(n—1)(n—1)

(xp 20 + Xy %p) .

(3.14) L};k:—{(n+2)a+

nh -+ €
n——

| x 12} g

+
Making use of (3.1), we have
(B15)  Vimi =+ e, 2 gii— 0, ¥ T+ (o5 + firxD) i (B4 fir X1 i
or, equivalently
(-15) Vixi= (1 + e, x") Jji o & gji (o5 +fir 20 Bi— (B, — 5 ¥) i
Also, (3.5) and (3.9) yield the following
(316) Vipi=—p;pi+ Bipitfut+ {2(r—1a+0+e)|x[} g

— () (g + X %)) [2 (n—1)]

by virtue of (3.1).

We try to express the curvature tensor of a holomorphically subprojective
Kéahlerian manifold M by means of the Ricci tensor.

We set M' = {PeM : #A + e = o at P}. Then in M — M’ the followmg
relation is obtained by straightforward computations:

(3.17) Rijin = (A + 2BDJE) (grrigan — Juti Jan + 2T Tan)
— B (guti Rjn + Retagin + Jaa Sjin -+ Swei Jin + 2 Jis Sin + 2S5 Ja)[E
+ C [SkjSin—D (Sgj Jan + JasSn) + D? Ji; Jul/E?,

where we put

=17 CRIDIED . At e
=l . A 2(”— —1) B 2(n—1) ’
‘27\+(%+I>8 . . /,‘717\ c

C*W,D— {2(ﬂ+1)d+2nle|},E=n+I

Thus we have

THEOREM 3.1. [n M — M/', the curvature tensor of the holomorphically
subprojective Méhlerian manifold M has the form (3.17).

In order to get further results on holomorphically subprojective Kih-
lerian manifolds, we consider the holomorphically subprojective Kihlerian
manifolds specified by the functions A and e.

In the following we shall call a holomorphically subprojective Kihlerian
manifold with

22 + 4+ 1)e=0 (resp. nh + &= 0)

holomorphically subprojective Kihlerian manifold of the first (resp. second)
for brevity, we denore by M, (resp. M,) the first (resp. second) kind.
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In [6] we have derived the following

THEOREM C. M, (% = 3) is a Kéihlerian manifold with vamshmg Bochner
curvature tensor whickh has the Ricci tensor of the form
(3.18) Rjz' =—{@+Da—ne|x 2} gi— (n+2) e (v 2+ % &2

As for M,, from (3.12) we have

THEOREM 3.2. [n order that a 2n (n = 3) dimensional holomor phically
subprojective Kihlerian manifold M be M, it is recessary and sufficient that
M is an Einstein manifold.

4. HOLOMORPHICALLX SUBPROJECTIVE KAHLERIAN MANIFOLDS
OF THE FIRST KIND

In the first place, let us seek the necessary and sufficient condition that
a holomorphically subprojective Kéhlerian manifold M be M, .

Let us derive the following

"THEOREM 4.1. In order that a 2n (n = 3) dimensional holomorphically
subprojective Kihlerian manifold M be the holomorphically subprojective Kih-
lerian manifold of the first kind, it is necessary and sufficient that M has a vani-
shing Bochner curvature tensor.

Proof. Transvectmg (2.1) with # 2/ x* %, and according to our assump-
tion, that is, K,m = o, it follows that

(4.1) Ryp A2 — g |2 P Lyt (- 2) =0
By contraction (3.11) with # 27 x* " we get
Ry #2126 2 — — (4at |2 P) | x|

and in the same way we obtain from (3.14)

L’ijkxf=~<n+‘z>alxi2+%@:Tm“ E3e

Consequently we can see that (4.1) denotes 2\ -+ (724 1)e = 0 by means
of these. This concludes the proof.

THEOREM ;4.2. M, (n = 3) is a Kéhlerian manifold with vanishing Bochner
curvature tensor which has the Ricci tensor of the form

(4.2) Rij = agr; + B (or 05 + & &),

27. — RENDICONTI 1976, vol. LX, fasc. 4.
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where o; is a gradient vector, and o and P are functions such that
(4-3) a=—2m+1)a—n]|c B/(n +2).

Proof. For some functions » and p we set
(4-4) o; = wx;— p&, ,

which yields that

o

- o
_ %0; 15 o %0 [0y

2 __
WE e ST are o W= aras
and substituting these into (3.18), it follows that
nelo (n+2)¢ o =
Rjy=—\2(®+1) “—m}gﬁ* 2R+ ) (6joi+ 6,64,
or, equivalently,
Ry = agji + B (505 + 5, 8) ,
where we have put B = — (% + 2) ¢/2 (x® + u?) and « is given by (4.3): In

what follows, we show that the covariant vector o, is gradient. In order to
try this, we differentiate (4.4) covariantly. Then

ViGi=%; % + wV; %, — p; & — pV; X5,
which means that
Vi on = % %y + %1V ¥ — g B — Vi T
where we have put x; =V, x and p; =V, u. With the aid of (3.15) and (3.15)’,

the equation above can be rewritten as follows:

~

(4-5) Vij o = % Fa — iy Fa — 2 {xp, &+ (1 + 0, 2} i
+ e (e + 27 fp) + 1 Bri— # )} 4
+ e B — # foy) — e (ory + #"forp)} Far -
Hereafter we may take » and p such that
(4.6) o =1+ x" , po=—p &
for certain function ®, because of x and y are any functions. Differentiating
(4.6) covariantly and recalting (3.15), (3.15)", (3.16), (4.4) and (4.6), equation

(4.5) can be reduced to

Vi, 65 = 0; [2 (pj + S #7) — 3;log ©] — o; [2 (p; + fir 27) — 3;l0g ]
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and therefore we have Jo if there exists a function @ such that 3;log & =
2(pj +fppx"). In fact, there exists such a function w. Let us prove this fact.
Contracting # and 7 in (3.1), it follows that

3 log Vg =2 (7 + 1) p; + 2/ 27,

where g = det (g;;). Since our discussions are local, by virtue of (3.7) we can
know that there exists a function p such that p; = 3; p. So if we choose a func-
tion  such that & = exp (log |'g — 2 #p), then we find 3, log w=2 (ps+ fir ),
which means that the proof is completed.

Let us prove the following

THEOREM 4.3. In order that a 2n (n=3) dimensional holomorphically
subprojective Kdihlerian manifold M be a manifold of constant holomorphic
sectional curvature, it is necessary and sufficient that M s of the first and of the
second kind at the same time.

Proof. If M is M, and M,;, then we have A = ¢ = o. Thus by making
use of the Corollary in [6], we can see that M is a manifold of constant holo-
morphic sectional curvature. Conversely, we assume that M be a manifold
of constant holomorphic sectional curvature. Then M has a vanishing Bochner.
curvature tensor and M is an Einstein manifold. Therefore by virtue of Theo-
rem 3.2 and 4.1, we find that M is M; and M, at the same time.

In the next place, we try to show the following

THEOREM 4.4. The holomorphically subprojective Kihlerian manifold of
the first kind with 1 + o, X" =0 and o, & = 0 is one of following manifolds:

(1) M és '@ manifold of constant holomorphic sectional curvature.

(2) M zs a locally product manifold of two manifolds of constant holomorphic
sectional curvature H (= o) and — H.

Proof. By assumption we have
4-7) I +p2"=0,
(4-8) ’ | o, ¥ =o.

We differentiate (4.7) covariantly and take account (3.15), (3.16), (4.7)
and (4.8). Then we get @ = o and hence equation (3.18) can be rewritten as
follows:

(4-9) Rji=c[n|x Pgs—(n+2) (’_Cj x; + %5 %;)]/2.
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which implies that
(4.10) R=@+1)@m—1)|x e,

and differentiating (4.9) and (4.10) covariantly and recalling (3.13), (3.15)’,
(4.7) and (4.8), we have

(4.11) Vk Rj,,; = O [7’2 ]x ‘23';@_‘ (% + 2) (x,xz —]— 9’5] ﬁi)]’
(4.12) ViR=2@+1){n—2)|x[ o,
where we have put

op = Vi &/2 + € (pr -+ frr 27).

Since our manifold has a vanishing Bochner curvature tensor by Theorem

4.3, we may use equation (2.3). By substitution of (4.11) and (4.12) into (2.3),
we obtain ‘

2ay [ | [ gyi— (n + 2) (x5 25 + %5 2))]
= (m—2) |x [ (0gri + oigns + 2 gy + Jag & + Jui5y) s
from which we have by transvection with 7 x¢ |
(4-13) n|x oy =—(n—2) (2" x, + a, X %).

Furthermore, contracting this with ¥ and %* respecvtiely, we can see that
o, x"=o, #’= 0. Therefore from (4.13) we have a; =0 together with these,
which means that the scalar curvature R is constant. At last, the proof is
completed by Theorem A. ‘

Summing up the above discussions we can state the following

THEOREM 4.5. A 2% (n = 3) dimensional holomorphically subprojective
Kihlerian manifold of the first kind has the following properties (I)~ (I11):

(A) The manifold is a Kéhlerian manifold with vanishing Bochner cur-
vature tensor which has the Ricci tensor of the form

Rjy = ags + B (oj 01 + &; 54),
where o; is a gradient vector, and o and B are some functions.
(IT) 7%e vector x* in (3.1) is contravariant analytic, that is, x* satisfies

‘ . g;; J ih: o,
or, equivalently

iji = er Jisvrxs)

where L, denotes the operator of Lie derivation with respect to x.
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(II) There exist a gradient vector p; and a symmetric tensor fy, such that
JSor some functions ® and o.
JriJa =0

and
Viei=—rpjei+ 8;0i + /i + Pgji+ ¢ (o0, + ;5.
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