ATTI ACCADEMIA NAZIONALE DEI LINCEI

CLASSE SCIENZE FISICHE MATEMATICHE NATURALI

Rendiconti

PHILLIP RATNER

An Isomorphism of Infinite Galois Theory

Atti della Accademia Nazionale dei Lincei. Classe di Scienze Fisiche, Matematiche e Naturali. Rendiconti, Serie 8, Vol. **60** (1976), n.4, p. 385–387.

Accademia Nazionale dei Lincei

<http://www.bdim.eu/item?id=RLINA_1976_8_60_4_385_0>

L'utilizzo e la stampa di questo documento digitale è consentito liberamente per motivi di ricerca e studio. Non è consentito l'utilizzo dello stesso per motivi commerciali. Tutte le copie di questo documento devono riportare questo avvertimento.

Articolo digitalizzato nel quadro del programma bdim (Biblioteca Digitale Italiana di Matematica) SIMAI & UMI http://www.bdim.eu/

Atti della Accademia Nazionale dei Lincei. Classe di Scienze Fisiche, Matematiche e Naturali. Rendiconti, Accademia Nazionale dei Lincei, 1976.

Algebra. — An Isomorphism of Infinite Galois Theory. Nota di Phillip Ratner, presentata ^(*) dal Corrisp. G. ZAPPA.

RIASSUNTO. — Viene costruito un esplicito isomorfismo tra due diverse descrizioni del gruppo di Galois relativo ad un ampliamento infinito di Galois di un campo finito.

Let k be a finite field with q elements, Ω an infinite Galois extension of k, $G = G(\Omega/k)$, and $\rho: x \to x^q$ the automorphism which generates a dense subgroup of G. For a given integer n, there is at most one extension of k of degree n in Ω , which we denote by K_n ; $G(K_n/k)$ is then C_n , the cyclic group of order n generated by ρ . G may be thought of as the totality of (non-equivalent) Cauchy sequences of powers of ρ , where a sequence $\{\rho^{a_{\nu}}\}$ is Cauchy with respect to the Krull topology on G iff for any n for which $k \subset K_n \subset \Omega$, there is an integer N (n) such that $\nu, \mu \geq N \Rightarrow \rho^{a_{\nu}-a_{\mu}}$ is in G (Ω/K_n) ; equivalently $n \mid a_{\nu} - a_{\mu}$.

If I is the set of integers *n* for which $k \subset K_n \subset \Omega$, then G may also be described as the inverse limit of the system (I, {C_n}, φ_{mn}), where $\varphi_{mn}: C_m \to C_n$ is the natural map for *n* dividing *m*. In this paper we construct an explicit isomorphism which relates the seemingly two disparate descriptions of the group G. The idea is to use instead of a lattice of subgroups G (Ω/K_n) and an inverse lattice of fixed fields K_n , a totally ordered set of subgroups of G to describe the topologies.

Let the degrees of the extension fields of k in Ω be (in natural order) i_1, i_2, i_3, \cdots . Define the integers $j_n, n = 1, 2, \cdots$, inductively as follows: $j_1 = i_1; j_n = \text{LCM}(j_{n-1}, i_n)$. Let $F_n = K_{j_n}, C_n = G(\Omega/F_n)$, and $G_n = G(F_n/k)$, so G_n is cyclic of order j_n . Then

- (i) $F_n \subset \Omega$ for each *n*.
- (ii) $F_n \subset F_{n+1}$.
- (iii) For each n, $K_{i_n} \subset F_n$.

The fundamental system $\{C_n\}$ of neighborhoods of the identity yields the Krull topology on G; with respect to this neighborhood system, a sequence $\{\rho^{a\nu}\}$ is Cauchy iff given any $n, j_n \mid a_\nu - a_\mu$ for $\nu, \mu \ge N(n)$, Also, we observe that in obtaining G as an inverse limit, we can take the family of groups $G_n \cong G/C_n$. Thus $G \cong G$, the inverse limit, which is that subgroup of ΠG_n ,

(*) Nella seduta del 10 aprile 1976.

consisting of all elements $\{\rho_n\}$ (with $\rho_n \in G_n$) such that for any pair of integers $s \ge t$, the *t*-coordinate ρ_t is the image of the *s*-coordinate ρ_s under the homomorphism $\varphi_{st}: G_s \to G_t$.

Given any such element $\{\rho_n\}$, it will consist of a sequence, each of whose terms is a power ρ^{a_n} of ρ , where $0 \le a_n < j_n$. We claim this sequence is Cauchy. For, given any integer s, let $y \ge x \ge s$, and let ρ^a , ρ^b , ρ^c be the powers of ρ appearing as the s, x and y coordinates respectively. Then $\varphi_{xs}: \rho^b \to \rho^a$, and $\varphi_{ys}: \rho^c \to \rho^a$, so that $j_s \mid (b-a)$ and $j_s \mid (c-a)$. Therefore, $i_s \mid (b-c)$, and this is the Cauchy criterion.

We therefore have a mapping from \underline{G} into the set of all equivalence classes of Cauchy sequences $\{\rho^{a_y}\}$. To see the mapping is 1 - 1 we ask: can two distinct elements of \underline{G} give rise to equivalent sequences? Two sequences $\{\rho^{a_y}\}, \{\rho^{b_y}\}$ will be equivalent iff the combined sequence $\rho^{a_1}, \rho^{b_1}, \rho^{a_2}, \rho^{b_2}, \cdots$, is Cauchy. Suppose the elements of \underline{G} differ in the *n*-th coordinate, which is ρ^a, ρ^b , respectively. If the combined sequence were Cauchy, then $j_n \mid a_y - b_\mu$ for $v, \mu \ge N(n)$. In particular, $j_n \mid a_y - b_y$ for $v \ge N$. For any such v, consider the v-th coordinates ρ^x, ρ^y . We have $\varphi_{vn}(\rho^x) = \rho^a \Rightarrow j_n \mid (x - a), \varphi_{vn}(\rho^y) =$ $= \rho^b \Rightarrow j_n \mid (y - b)$. But $j_n \mid (x - y)$, so $j_n \mid (a - b)$, a contradiction since a = b, and $a, b < j_n$. Therefore the mapping is 1 - 1.

Is it onto? Given the Cauchy sequence $\{\rho^{u_{\gamma}}\}\$, the class to which it belongs is uniquely determined by its limit, some $\sigma \in G$ (G is Hausdorff). Consider the homomorphisms $G \to G/C_n \cong G_n$, given for each n by $\sigma \to \sigma G_n$. Now G/C_n is cyclic of order j_n , generated by the coset ρC_n . Hence σC_n is the same coset as some $\rho^{u_n} C_n$, where $o \leq u_n < j_n$. Consider the sequence $\{\rho^{u_n}\}$. It is an element of G, for if $m \geq n$, then $C_m \subset C_n$, and by the way the u_i were chosen, $\rho^{u_m} \sigma^{-1} \in C_m$, $\rho^{u_n} \sigma^{-1} \in C_n$, so $\rho^{u_m-u_n} \in C_n$. But then $j_n \mid (u_m - u_n)$. Therefore, $\varphi_{mn} (\rho^{u_m}) = \rho^{u_n}$. Thus $\{\rho^{u_n}\} \in G$, and its image under the mapping is clearly the equivalence class of the given sequence $\{\rho^{u_v}\}$. Thus the mapping is onto.

To see it is continuous, let C_n be any neighborhood of the identity in G. Now the topology in \underline{G} is that induced in it as a subspace of ΠG_n . The neighborhood of the identity $U = \underline{G} \cap (\rho^0, \rho^0, \dots, \rho^0, \chi \prod_{k>n} G_k)$ will be mapped into C_n , since the images will all leave F_n fixed. Thus the mapping, being continuous at the identity, is continuous. It is easily verified that the mapping preserves products. Since it is I - I, continuous and onto from one compact Hausdorff space to another, it is a homeomorphism as well as a group isomorphism.

We note that the device of using a totally ordered collection of groups to establish the isomorphism was necessary since otherwise not every element of \underline{G} would give rise to a

Cauchy sequence. For example, if Ω is the algebraic closure of k, then \subseteq is the inverse limit of the cyclic groups C_n , for every n. Consider, e.g., the element $\{p^{a_n}\}$, with a_n defined as follows: (i) if $2 \ge n$, $a_n = 0$; (ii) if $n = 2^s \prod_{i=1}^r p_i^{s_i}$ (s > 0, $p_i \neq 2$), a_n is the unique solution (mod n) of the congruences

$$x \equiv I(2^{s})$$
$$x \equiv o\left(\prod_{i=1}^{r} p_{i}^{s_{i}}\right).$$

If a_n is so defined, and $d \mid n$, it is easy to verify that $\varphi_{nd}(\rho^{a_n}) = \rho^{a_d}$, so $\{\rho^{a_n}\} \in \mathcal{G}$. But one sees easily that $\{\rho^{a_n}\}$ is not a Cauchy sequence.