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Algebra. — Right alternative alternator ideal algebras . Nota
di Gruria Maria PiacentiNi CATTANEO, presentata @9 dal Socio
B. SEGrE.

RIASSUNTO. — Si studiano algebre R sopra un campo F alternative a destra, soddi-
sfacenti un’identitd della forma [z, (2,a,8)] =Yy (2, a,[a,d]), per Va,b ¢ R e qualche
vy in F, tali inoltre che il sottogruppo additivo generato dagli alternatori sia un ideale. Si
dimostra che, se queste algebre sono prime e dotate di unita 1 e di un idempotente ¢ # o, # 1,
allora (salvo poche eccezioni qui specificate) esse sono alternative. Si suppone sempre che la
caratteristica del campo F sia diversa da 2 e da 3.

INTRODUCTION

Let R be a nonassociative algebra over a field F. An associator (@, &, ¢)
is defined as usual as (a,6,¢) = (ab) c—a (6c) and a commutator [a, 8]
as [a, 6] = ab— ba. An alternator is an associator of the form (e, «, 6),
(@,6,a) or (6,a,a). We shall make the assumption on the characteristic
of F to be prime to 6, so that scalar factors 1/2 and 1/3 are admissible.

An alternator ideal algebra is an algebra in which the additive subgroup
generated by all alternators is an ideal, with the condition that there also
be a formula for the absorption. For more details on alternator ideal alge-
bras we refer to [3].

In [5] it has been shown that, if R is a right alternative algebra, then
R is an alternator ideal algebra if, and only if, [R,M(R,R,R)] <
csM@®R,R,R), where M (a,b6,¢)=(a,b,c) +(,a,c). In this paper
we study right alternative algebras R which for all 2,64, ce R, satisfy an
identity of type

(I) [d,(b,b,c)]:ocﬂ\/l([d,b],&,c}—{—o(,zM([a,b],c,b)
+oasM ([a,¢],6,8) +aM(([&,c],a,d)
+°‘5M<[6’c]>b;a)

with «,€ F.

In [3] it'was shown that, if R is a right alternative alternator ideal algebra
with an identity element 1, then R satisfies (1) if and only if, for some
vyeF,[e,(a,a,b)]=vy(a,a,[a,b]). Weare thus studying right alternative
alternator ideal algebras such that [2,(a,,8)] =y (¢, 2, [a, 8]) for some

(*) Work performed within the « Gruppo Nazionale Strutture Algebriche, Geometriche
e le loro Applicazioni del Comitato Nazionale per le Scienze Matematiche del Consiglio Na-
zionale delle Ricerche ». The work was initiated while the Author was at Iowa State Uni-
versity (Ames, Iowa, U.S.A.) with a fellowship from the C.N.R.

(**) Nella seduta del 10 aprile 1976.

25. — RENDICONTT 1976, vol. LX, fasc. 4.
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v in F. In [3] it was shown that, with two possible exceptions, if R is a prime,
right alternative algebra satisfying an identity of the form (1), then, if R has
an identity element 1 and an idempotent ¢ ,e 7 0, 3% 1 such that (¢, ¢, R) = o,
R is alternative. .

In this paper we drop the requirement (¢,¢, R) = o and we prove the
following: '

THEOREM. If R is a right alternative algebra with an identity element I
and an idempotent ¢ # o, 7 1 and if R satisfies (1), then (e, e, R) is a trivial
ideal of R, contained in the center of Ry + Ry, apart from some exceptions
specified later on.

COROLLARY. [f R is a prime right alternative algebra with an identity
element I and an idempotent ¢ 70,7 1 and if R satisfies an identity of the
Jorm (1), then, with some possible exceptions specified later on, R is alternative.

NOTATION

B

“We shall use both juxtaposition and “ -
In expressions where both appear, the product indicated by juxtaposition
is to be taken first: thus (2,6 ,¢) = ab-c —a-bc.
We shall often write expressions like (R, R, R) (or [R, R]) meaning
by this the vector space over F generated by all (¢, 4,¢) for all @,4,ce R
(or by all [a, 6] for all @, b€ R). -
If I is an ideal of an algebra R and I* = o, we call I a #7vial ideal. R is
. semiprime if it has no nonzero trivial ideals. R is prime if, whenever I and J
are ideals such that 1] =o, then I =0 or J = o.

" The 7ight nucleus of R is the set {a€ R/(R, R, a) =o0}. The Zft and
middle nucleus are defined analogously. The wwucleus of R is the set
{¢e RIR,R,a)=(R,a,R)=1(a2,R,R)=0}. The center of R is the
set {ae R/[a,R] = (R,R,a)=R,a,R)=(a,R,R) =o}.

An alternative algebra R is an algebra such that (¢,6,6)=(6,a,0) =
= (6,b,a) for all a,be R. '

A right alternative algebra R is an algebra such that (¢, 4,6) = o for
all @, b€ R. The following identities hold in any right alternative algebra
of characteristic different from 2 (see [4]): .

to indicate multiplication.

@ (a,b;b)=(a,b,0)b, foral a,b,ceR,

3) A(a,b,c,d)=(ab,c,d) + (@,6,[c,d))—a(b,c,d)—(a,c,d)b=0,
‘ ' for all a,b,c,de R.

. I;f’ R is a right alternative a’lgeBra over a field of characteristic different
from 2, with an idempotent ¢, let R = R; + Ry + R, be the Albert decom-

position of R relative to e, where ex; =x,¢ =2x,,ex,=1x,¢ =0 and
€1 + ZXyp ¢ = xyp (see [1]). It is easy to see that Ry Rg = R;R; =o0. If we
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consider the algebra R ") which is the same vector space as R and has product
xoy defined in terms of the product xy of R by 2xey = xy+yxr, R
is a Jordan algebra (see Theorem 2 of [2]). The following inclusions
then hold (see [2]): Ryp°Ry € Ryp, RypoRy € Ryp and RypeRyp & R, 4 R,
Also, we have (e,e¢,R)=(¢,¢,Ryp) € R; + R, If we furthermore
set Ryp={ye Rly =exyp + (¢,¢, [¢,x12]) for ‘some xyp€ Ryp} and
R ={ye Rly =xype + (¢, [e, x152] ,¢) for some x1p€ Ryp} then R = R, +
+ Ry + Roi + Ry and, once we observe that ¢R;p-¢ = o, it is a matter of
simple computation to show that Ry, Ry € Ry and that Ry e S Ry,
¢Ry1 € R,. ‘

We shall use the subscript notation to specify a particular component
of a product we intend to examine. Thus, for example, (xy; Y1), means the
summand of the product xy ¥o1 which lies in R,.

When an algebra R satisfies (1) with coefficients o, oy, ag, oy, a5 We
will say that R is of type (o, oy, o5, 0tg , %;).

PRELIMINARY RESULTS

From now on, R will always represent a right alternative algebra with
an identity element 1 and an idempotent e =~ o, 7% 1, which satisfies an
identity of the form (1). We furthermore suppose the characteristic of F to
be prime to 6. Since we are interested in the case in which (e, e, R) is not
identically o, the following lemma will hold.

LEMMA 1. o + oy + a3 =0 and oy + oy + a5 = 0.

Proof. From (1) we derive |
o=[x,(,e,] =(m +am+a)le,[r,e],e),
o=le,(e,e,x)] = (05 + g + a5) (e, [e, %], ©).

By our assumption on (¢, e, R), the lemma is proved.
LEMMma 2, R, R, € R,.

Proof. By (xy,%,¢)=—(x,,¢,%)=o0 it follows that x y, =
= a; + ay—eay. To prove that R; R, < R, it is therefore sufficient to
show that: (x; y7)q; = 0.

From .<I)’ e, M <e yE1, )] = e, (e, 21, y)] = [e y%11] = by Lem-
ma I «3(e, e, [%,]) which tells that [e,x; ] is an element of R, -+ R,
and hence (x,14)¢ = 0. '

COROLLARY 1. R,R, S R,.

Proof. Since R has an identity element 1, the idempotent ¢’ =1 —¢
satisfies ¢’ 20, 1 and (¢/,¢',R) #%0. The decomposition of R with
respect to ¢’ is exactly the same as the one with respect to e, except that the
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subscripts are interchanged. Thus the corollary is proved by “reversing
subscripts ”’.

LEMMA 3. a) RyoRy S Ryge, b) RyRyoSeRyy, © Ry R, < eRyg,
d) Ry Ry S Rype.

Proof. From (xy,%,¢) =— (xyp,¢,y) and Lemma 2 we derive

RioR; € Ry. From (91, %10, €) =— (91, €, %10) and (e, 1, ¥10) = — (¢, %49, 31),
lt fOllOWS R] RIO c éRlo. Since R10° Rl < RI/Z) then RIO Rl < RIO e.

From (%10, %0, €) = —10,¢,%0) » (Jo,%10,€) =— (Yo0,¢,%,) and
%10°0€ Rujp, We have yo 219 = ayp € + by — eboy , %10 Y0 = — @rg € + ayo + €by,.
By addition of the following two equalities
[e, (0, e, 7410) + (¢, 50, 710)] = —[e, Yo ¥10] = (a3 + “5)M‘<[e » X0l L Yo, €) +

+ (a5 + a) M ([e, x10] , € »J’p) + (ag + 2) M ([0, %10] s €, €)

and

0= [%,(¢,e,x10] = g M ([, %10] , ¢, €) + s M ([¢, %10] , Y0, &) +
A ag M ([e, x10] ¢, 50) ‘
and by Lemma 1, RoRy;0E R; + R;, which yields RyR;p <& Rype and
Ry Ry S eRy.
COROLLARY 2. ') RyRoSeRy, b) RyRyS Rye, ¢') RyR; S Rye,
d) Ry Ry € eRy,.

Proof. It follows from Lemma 3 interchanging subscripts.

MAIN SECTION

We are now able to study the set (¢,¢, R) = Rjpe 4+ ¢Ry;.  We shall
prove the results for Ry, ¢; hence, reversing the subscripts, analogous results
will hold for ¢Rgy. The results contained in the following lemmas will allow
us to say that (¢, e, R) is a trivial ideal of R, contained in the center of R; -+ R,.
There are some exceptions to this statement.

LEMMA 4. Ry e is a trivial ideal of Ry, contained in the center of R;.

Proof. From Lemma 2 and 3 it easily follows that M ([e, x40], ¢, 1) =

—xp ¥, M ([e, 710] , 315 e) = — - xp¢ and M ([31, %10] , €, €) = (Y1 %101 =
—xy0%;. Adding the following two relations

o= [e,(e,91,%0) +(I1,e,%0)] = — 21091 + Y1 %10 €,
[y1,(e,e,210)] = @ X101 — % Y1 * X0 €

one gets

€Y) . [Ry,(e,e,Rip)] = [Ry, Rype] =0;
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since Rjpe-R; € Ryp Ry € Rype, the previous relation tells us that Ry,e is
an ideal of R,, which commutes with R;.

We next show that Rjje is contained in the nucleus of R,. By
A (x19,€,%1,2) =0 and Lemma 2 it follows that (exy, 3;,2) = 0. Again
by A (e, %y, Vi z,), whe have (¢, x5, [%1,2]) = (%10, %1, 2), which yields
Fpe s = (Fpe-y) 2. By (4) and by the fact that Rype is an ideal of R,
it follows 2 ¥;+ %19¢ = 2, (¥1°%10¢) Which tells us that x,¢ is in the right
nucleus of R,. The following equalities say that x,, ¢ is in the left nucleus
of R;, and hence in the nucleus of R;:

(F0€,91,8) = Fppe Y1) sH— %10 Y151 =2 V1" X¥10€ — Y1 81 Xp & =
=an Y xpe—y (B X06) =2 Y1 Fpe— (Y1°%10€) 1= (81, Y1, %10 €) = O.

To conclude the proof of the lemma we must now show that the R;-
ideal Rjpe is trivial. By (4) it is sufficient to show that (x,0¢)?2 = 0. By
xho = (g0 € + ex10) Xy = Xyp -y + ¢x3 and by the fact that 2% e R, from
(e, %10, %10) =0, RypeRyp & R; + Ry and Lemma 3, it follows x4 ¢-2;4 = 0.
Then, on account of (2),

O =119 Xy =(€,¢,%) Z1o = (¢, %10, %10) = — (€, X190, ¥198) =
— eXygr Xyg € + X9 Xy € = (g €)%

COROLLARY 3. (e,e, R) is a trivial ideal of R, + R,, contained in the
center of Ry + R,.

Proof. ;By reversing subscripts in Lemma 4, ¢Ry, is a trivial ideal of
R,, contained in the center of R,. Since (¢,¢, R) =R;q¢ + ¢Ry and since
R; Ry = Ry R; = 0, the lemma si proved.

LEMMA 5. Ry -Ryge = 0, unless the algebra is of type (2a,a—1,
—30at1,a,20—1I). :

Proof. Right alternativity, Lemma 3 and Corollary 2 yield R;o Ry S
SR, +Ro and RyRyyS Ry + Ry, If we set x5 you = a1 + @9, Yo %10 =
= &, + &,, it is easy to check that the following relations hold:

F10€ Yor = Qo , €Yor %10 = by, M ([e, Z10] s €, Yor) = — 3 @ — 10" 1>

M ([e, %10] , Vo1 » €) = @o+ Zro Vo + b1 — Yo %0 ¢ , M ([¢, Y] s €, %10) =

=—30—yu %0, M ([, V0] %10, €) = b1+ Yu %10 + @o— %10" Vo1

with x0-¢yn € ¢Ryy and yg-219¢€ R e.
From (1) we derive the relations

e, M (e, %0, v)] ={—3m +t—a} @+ {30 + 4 (g — o)} &y +
| +{—o F o+ o} Hrgreyn + {on—2 0} Yor #106

o, e, 2] ={—3m—4(@a—}ao +{3m—o +as} b+

v F{—ou + 20} %0 Y0 + {og — g — o3} yor - #p0 €.
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Since. [¢,M (¢, %19, Yor)] = — *10° €V + by, and [y, (e,e,x9)] =
= Yg %10 € — &y, the previous system becomes
o={—3m+om—oata +{30+4(—a)—1}6 +
+{—o oy + g + 1} 29 ey + {on—2a vz,
o={—3m—4(m—au) +1}a +{30—o + )b +
+{—o t2a} ey +{og— o —oag— 1}y €.
Suppose yq - %19¢ #=0. Then ay— 2 oy = 0 and o; — oty — oy, — I = 0, and the

algebra is of type (2a,x—1,—3a +1,a,2a—1), and it immediately
follows that a, = x)5¢-yy must equal zero.

COROLLARY 4. Ryy:¢Ry = 0, unless the algebra is of type (20,0 —1,
—3a-+1,0,2a—1I).

Proof. 1t follows from the previous lemma interchanging subscripts.

LEMMA 6. Ryg-Ryge =o0. Ryge-Ryy =0, unless the algebra is of type
(“’By'—“'—g92“+ﬁ'—l ,——O(—l—l).

Proof. By Lemma 4, Ryge is a trivial ideal of Ry; then o =x5¢-3y0¢ =
= Z19-¥10 ¢ and the first statement is proved. By right alternativity, Lemma 3
and Ry,°Ry € Ry + R, we can write x4 710 = @3 4 a4, + ap— eag s V1o X190 =
= b — ayg— @y + eay. Also we have

X10€ V1o = —V10€ " X10 = o €,

M ([e, xy0] , €y ¥10) = — & — @yg— @9 ¢ — @y
M ([e,xio] %10, €) =M ([, 10], 219, €) = @y + 64,
M ([#10, 310] s €, €) = —2@mpe — 2 cay,

M ([e, 310] y €, X10) = — by + ayg + a1 ¢ + €ag -

We now use (1) and the above equalities to get the following relations:

o.M (e, 210, 310)] = {— o0+ sg— o} & + {0 + 2 (e — et} by +
F{—dou—3a + oy} (@mee +eap) +{—20—a+ a}a,
0= [0, M (10, 210, ) = {3 (ta— )} @ + {3 (3 — o)} b,
[0, M (o ¢, ] = {— s + g — o @y = L, + 2 (ta — )} &y +
- {—4 o — 3 0 + ag} (a9e + eag) + {—2 0 — o + g} @4

Since [¢,M (¢, %10, V10l = — @+ 2@, [*10, M (319, ¢, )] =— a1+ apoe,
it follows, subtracting the third equation from the first, 2;y¢ = o, which yields
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@9 == X9 ¢ Y19- The system becomes
o={—ou +ay—oy}a + {o +2(0— )} b +
F{—d4m—3mm fagteay F{—2m—a + oy +1}a,,
o= {3 (m—m)}a + {3 (s —ap)} &1-
From the last equation one sees that two cases may arise: either ay = a, or

a, + b, =o. ,
If 0y = a4 and a9 %20, then oy = 1/2 and the algebra is of type

(1/2,0,—a—1/2,a,1/2). In these conditions, @ =4, and eay =
= (%19 Y10)o = O unless a = — 1. ‘
If @, + 6, =0 and @, # o, it follows @, = — &, = o and the algebra

is of type (a¢,B,—a—B,2a +Bf—1,—a -+ 1). If B 7~ —a—r1/2, then
eaq = (%10 Y10)o = O-

Algebras of type (1/2,a,—a—T1I/2,a,1/2) are clearly of type
(¢,B,—a—B,20+B—1,—a-F 1)

COROLLARY 5. R -¢Ry = 0. ¢Ryy. Ry = 0, unless the algebra is of
type (@ ,B,—a—p,2a+B—1,—a -+ 1)

We are now able to obtain the following

THEOREM. Let R be a right alternative algebra with identity element I and
an idempotent e =0, % 1. [f R satisfies (1), then (e, e, R) is a trivial ideal
of R, contained in the center of Ry-+ Ry, with only possible exceptions for
algebras of type (2a,0—1,—30+1,a,20—1) or (¢,B,—a—2f,
20 +B—1,—a-+ 1)

Proof. The proof follows from Corollary 3, Lemma 5, Lemma 6 and
the corollaries to these lemmas, keeping also in mind that, by Lemma 3 and
Corollary 2, Ryge-Ryy CeRogy Cle,e,R) and ¢Ry-RyyE Ryge < (¢,¢, R).

COROLLARY 6. Let R be a prime, right alternative algebra with an identity
element I and an idempotent ¢ =0, F# 1. If R satisfies (1), then R is alter-
native. The only possible exceptions are the ones listed in the previous theorem
and (—1/2,0,1/2,0, 1/2).

Proof. By the Theorem above and primeness, (¢, ¢, R) must be o. The
result then follows from Theorem 10 of [3]. Algebras of type (1/2,—3/4,
1/4,1/4,— 1/2), which appear as exceptional cases in that theorem, are
included in the algebras of type (2,0 —1,—3 0 +1,a,2a—1I).

As a concluding remark we have that a quick glance at the exceptional
cases of the Theorem allows us to say that, in algebras of types (2 @, & — 1,
—3a+1,a,20—1), if @ ~1/2,(¢e,e,R) is a right ideal of R and a
trivial ideal of R; + R,, contained in the center of R; + R,; in algebras of
type (a,B,—a—PB,20 +Bf—1,—a+1), if «a~1 and B F—1/2,
(e,e,R) is a left ideal of R (and a trivial ideal of R; 4+ R, contained in the
center of R; + Ry).
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