ATTI ACCADEMIA NAZIONALE DEI LINCEI

CLASSE SCIENZE FISICHE MATEMATICHE NATURALI

RENDICONTI

DAVID LOWELL LOVELADY

Oscillations induced by forcing functions

Atti della Accademia Nazionale dei Lincei. Classe di Scienze Fisiche, Matematiche e Naturali. Rendiconti, Serie 8, Vol. **60** (1976), n.3, p. 210–212. Accademia Nazionale dei Lincei

<http://www.bdim.eu/item?id=RLINA_1976_8_60_3_210_0>

L'utilizzo e la stampa di questo documento digitale è consentito liberamente per motivi di ricerca e studio. Non è consentito l'utilizzo dello stesso per motivi commerciali. Tutte le copie di questo documento devono riportare questo avvertimento.

Equazioni differenziali ordinarie. — Oscillations induced by forcing functions. Nota di David Lowell Lovelady, presentata (*) dal Socio G. Sansone.

RIASSUNTO. — Si dànno condizioni sufficienti che assicurano il carattere oscillatorio delle eventuali soluzioni limitate dall'equazione

$$u^{(n)} + (-1)^{n+1} qu = f.$$

Let q be a continuous function from $[0, \infty)$ to $(0, \infty)$, and let n be an integer, $n \ge 2$. It is wellknown (see, for example, [1, Corollary 2.2, p. 508]) that there is a bounded positive solution of

$$u^{(n)} + (-1)^{n+1} qu = 0$$

on $[0, \infty)$. In the present work we shall obtain conditions on a continuous function f which ensure that every bounded solution of

(I)
$$u^{(n)} + (-1)^{n+1} qu = f$$

is oscillatory, i.e., has an unbounded set of zeros. Several Authors have recently dealt with nonhomogeneities in oscillation problems (see, for example, [2], [3], [5], and [6]), but most of these studies have considered maintaining oscillation rather than inducing oscillation.

If b is a real number, let $b^+ = (|b| + b)/2$ and $b^- = (|b| - b)/2$. The following theorem is our main result.

THEOREM. Suppose there is a bounded oscillatory function φ on $[0, \infty)$ such that b > 0 > c, where $b = \limsup_{t \to \infty} \varphi(t)$ and $c = \liminf_{t \to \infty} \varphi(t)$, such that

(2)
$$\int_{0}^{\infty} s^{n-1} q(s) (b - \varphi(s))^{+} ds = \infty \text{ and } \int_{0}^{\infty} s^{n-1} q(s) (c - \varphi(s))^{-} ds = \infty,$$

and such that $\varphi^{(n)} = f$. Then every bounded solution of (1) is oscillatory.

Note that our theorem does not guarantee that (1) has an oscillatory solution, for (1) might not have a bounded solution. The equation

(3)
$$u''(t) - u(t) = e^t \cos(e^t) - e^{2t} \sin(e^t),$$

with φ given by $\varphi(t) = \sin(e^t)$, has no bounded solutions, as can be seen by elementary means. There are, however, some unbounded oscillatory solu-

^(*) Nella seduta del 13 marzo 1976.

tions of (3), so we leave open the question: Do the hypotheses of the theorem guarantee that (1) has an oscillatory solution?

Condition (2) prevents the inequality

$$\int_{0}^{\infty} s^{n-1} q(s) \, \mathrm{d}s < \infty.$$

This is not too stringent, for if (4) holds then (1) has a bounded positive solution. To see this, suppose (4) holds, and let $\beta > -\inf_{t>0} \varphi(t)$. Now

(5)
$$u(t) = \beta + \varphi(t) + \frac{1}{(n-1)!} \int_{t}^{\infty} (s-t)^{n-1} q(s) u(s) ds$$

can be solved by iteration, and the solution of (5) is a positive solution of (1).

Proof of the Theorem. Let u be a bounded nonoscillatory solution of (1). Since -f satisfies the same hypotheses as does f, it suffices to assume u is eventually positive. Find $\beta \geq 0$ such that u(t) > 0 if $t \geq \beta$. Let $v = u - \varphi$. Now v is bounded and

(6)
$$v^{(n)} + (-1)^{n+1} qu = 0.$$

From (6), $v^{(n)}$ is eventually one-signed, so each $v^{(k)}$, $k=0,\cdots,n$, is eventually one-signed. Find $\gamma \geq \beta$ such that none of $v,v',\cdots,v^{(n)}$ has a zero in $[\gamma,\infty)$. Since v is bounded, $v^{(k)}v^{(k+1)}<0$ on $[\gamma,\infty)$, for $k=0,\cdots,n-1$, and (6) says $v^{(n)}>0$ if n is even and $v^{(n)}<0$ if n is odd, so $v^{(k)}>0$ on $[\gamma,\infty)$ if k is even and $v^{(k)}<0$ on $[\gamma,\infty)$ if n is odd. Now $v^{(k)}(\infty)=\lim_{t\to\infty}v^{(k)}(t)$ exists for $k=0,\cdots,n-1$, and $v^{(k)}(\infty)=0$ if $k=1,\cdots,n-1$. The possibility $v(\infty)>0$ is not excluded. Now

(7)
$$v(t) = v(\infty) + \frac{1}{(n-1)!} \int_{t}^{\infty} (s-t)^{n-1} q(s) u(s) ds$$

if $t \ge \gamma$ (compare [4, Lemma 2]). If $v(\infty) < -c$, then u is clearly oscillatory, so $v(\infty) \ge -c$. Recall that v' < 0, so $v(t) \ge -c$ if $t \ge \gamma$. Now $u(t) \ge \varphi(t) -c$ if $t \ge \gamma$. Since u > 0 on $[\gamma, \infty)$, this says $u(t) \ge (\varphi(t) -c)^+ = (c - \varphi(t))^-$ if $t \ge \gamma$. This and (7) say

$$\int_{\gamma}^{\infty} (s-\gamma)^{n-1} q(s) (c-(s))^{-} ds < \infty,$$

contradicting (2). The proof is complete.

REFERENCES

- [1] P. HARTMAN (1964) Ordinary differential equations, Wiley and Sons., New York.
- [2] G. D. JONES and S. M. RANKIN III Oscillation of a forced nonlinear second order differential equation, Rend. Accad. Naz. Lincei», to appear.
- [3] A. G. KARTSATOS (1971) On the maintenance of oscillation of nth order equations under the effect of a small forcing term, « J. Differential Equations », 10, 355–363.
- [4] D. L. LOVELADY (1975) Oscillation and a class of odd order linear differential equations, «Hiroshima Math. J.», 5, 371–383.
- [5] S.M. RANKIN III Oscillation of a forced second order nonlinear differential equation, « Proc. Amer. Math. Soc. », to appear.
- [6] B. SINGH (1975) Impact of delays on oscillation in general functional equations, «Hiroshima Math. J.», 5, 351–361.