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SEZIONE 1

(Matematica, meccanica, astronomia, geodesia e geofisica)

Matematica. — On cohomology with bounds on complex spaces
Nota di PaTrick W. DARrKO, presentata ® dal Corrisp. E. MARTINELLI.

RIASSUNTO. — In [3; Teorema 2] R. Narasimhan ha stabilito un teorema di isomorfi-
smo di tipo Leray, in presenza di limitazioni date da una crescita polinomiale. In questa Nota
si stabilisce un teorema che generalizza quello accennato, basando su uno schizzo di dimostra-
zione dato da Narasimhan nel caso da lui considerato.

1. HOLOMORPHIC SECTIONS WITH GROWTH

Let Q be an open subset of some C* and ¢ a plurisubharmonic function
on  with the property that there are constants K; > o0, K, >0, K3 >1,
K, > o0 such that z€ Q and |z—& | <exp(—K;¢ (2) —K,) imply £€ Q
and exp ¢ (§) < K; 9 (2) + K,. The pair (Q, ¢) is then said to satisfy the
condition (H). For a bounded Q in C® this condition is almost equivalent
to that given in [2], and Q is then a domain of holomorphy.

Suppose Q is bounded and the pair (Q, ) satisfies the condition
(H), 0 is the structure sheaf of C" and p >o0 an integer. A section
f=UA, [T (Q, 0P is said to be of ¢-growth if there are constants
¢ >0,,p = 0 such that '

| F@) | =AE) |+ +]| /ol (@) <cexp(pp ()

for all € Q. We then denote all sections of (7 over Q of ¢-growth by
T, (Q,0m). ‘

For the definition of ¢-growth for coherent analytic sheaves we require
the closure of Q to have a fundamental system of neighbourhoods each of

(*) Nella seduta del 13 marzo 1976.
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which is a domain of holomorphy. If F is a coherent analytic sheaf on a
neighbourhood of Q, the by Cartan’s Theorem A there is an exact sequence

(91’—}\—9 F—-o

of 0-homomorphisms in a neighbourhood of Q, where p > o is some integer,
and feI'(Q, F) is of ¢-growth if fe ', (Q, F) =AI',(Q, 0?)). It is shown
in [1] that ¢-growth for coherent analytic sheaves as given here is well defined.
Let (X, x0) be a complex space and Y a relatively compact open subset
of X. Y is said to be g-admissible in X, if there exist a bounded open set Q
in some C" and a function ¢ on Q so that (i) the pair (Q, ¢) satisfies the con-
dition (H), (ii) Q has a fundamental system of neighbourhoods which are
domains of holomorphy and (iii) there is a neighbourhood Y’ of ¥ in X and
a closed imbedding 7 of Y’ in a neighbourhood Q' of Q such that 771 (Q) =
If F is a coherent analytic sheaf on X and =, (F) is the o™ direct 1mage on
Q' we define I'y (Y, F), sections of F on Y of ¢-growth by

Lo (Y, F) ={fe I'(Y,F): 0, (f)e [y (Q, 0, (F))}-

2. CoHOMOLOGY WITH BOUNDS

In the preceeding, ¢ was a single function on some open set Q. In this
section it is a collection of functions ¢ = {@;};c1, where I is some index set,
there is an open bounded subset Q; of some C" such that the pair (Q;, ¢;)
satisfies the condition (H) and ¢; >0 on Q;. By a ¢-admissible open cove-
ring {U;};e1 of a complex space (X,x0) we mean an open covering of X
such that for each 7, U; is ¢ -admissible in X.

Note that if {U;};ie1 is a ¢-admissible open covermg of X and
Ui,nUyn---nNnU; is is a finite intersection of open sets of the covering,
then there are p functions ¢;,...,;, such that U; nU;n---NU,, is
@iy.-.i;-admissible in X. Let ; be the imbedding of a neighbourhood of
U; into a neighbourhood of the closure of %; (U;) in some C". Then, for
instance, in the case of the intersection of two open sets U; NU;, there
is a holomorphic map /4, of a neighbourhood of v, (U;; N U,,) into a
neighbourhood of ;, (U;; N Uj,) such that v, = /,3°%;,, and a holomorphic
map /%, of a neighbourhood of w;, (U;; U, into a neighbourhood
of 3 (Ui, nU;,) such that w;, = Ayuem;,. On w;, (U;; NU,) let @4, be
defined by @iy.i, () = max (9, (2) , i, U (2)) and on s, (Us, A Usy) et
Pig,iy (2) = max (CPH (ftan (2)) Piy (2» Then, the pairs (y; (Uil ﬁUi2>, cPi1»i2>)
(i (Ui, 0 Uy, 94,,5,) satisfy the condition (H), and U; nU,;, is both
®3;,i,-admissible and ®iy,i;-admissible in X.

If Piy. i s , <ph , are two of the p functions derived as above such that
Uy=Uyn---nN U, p s 0= (#1 5+ + ) %p) is both o, -admissible and cpu

......
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admissible in X, then it is easy to see that

.....

coherent analytic sheaf F on X. We shall therefore write 'y (U, , F) for each
one of the Pquly"',ip Uy, F).

Now let (X, x0) be a (paracompact) complex space and F a coherent
analytic sheaf on X. Let # = {U;};c1 be a locally finite open ¢-admissible
covering of X for some ¢ = {@;};c1. As in [3] we define the bounded (alter-
nate) g-cochains of # with values in F as those Cochains '

¢ =(c)eCI1(%,F) = HII‘(U,,,F),

ael?
Uy =U;yn - NnU;, 0= (G, -, 7), which are alternate and satisfy
ca€ Ly (Uy,F)  for all «e Ie7,
We denote by Cf, (%, F) the space of bounded cochains. The coboundary
operator '
3:C4(%,F) >Cr (% ,F)

maps CL (%, F) into C¥"' (%, F). 1If ZL(%,F)={ccCL(¥,F): 8 = o}
B, =3CY™ (#,F), then as usual BL(%,F)<cZ,(#,F), and we define

HY (% ,F)=Z, (% ,F)BL (%, F), and call it the bounded cohomology of
% with values in F. We then have the following

THEOREM. Let F be a coherent analytic sheaf on a complex Space X and
let U be a locally-finite open @-admissible covering of X. Then, for any ¢ = o,
the natural map

H! (%, F) > H1 (X, F)

is an isomorphism.

3. PROOF OF THE THEOREM

Since, that Hy (# , F) — H° (X, F) is an isomorphism is clear, we prove
the theorem for the case ¢ > 1.
We shall need the following

LEMMA [1; Theorem 2.1]. Let (X, x0) be a complex space and Y a ¢-ad-
missible subset (where ¢ is a single function), Let Gy and G, be two coherent
analytic sheaves on X and \: Gy — Gy a surjective xO-homomoriphism. Then
the induced map '

I,(Y,G) =T, (Y,Gy) is surjective.
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Let 6 = (Uy, Uy, -, U,) be in the nerve of # and U, €%,
Uye#, --,Uye % with |6 |nU;;nU; N - Ui, #¢. Thereis a holomo-r
phic map /%, of a neighbourhood of 7, (U, N U,,) into a neighbourhood of
Nay (Ugy N Ug,) such that n,, = /Ay, 074, 1 <v < £, and a holomorphich map 7%,
of a neighbourhood of 74, (Ug, N U7, into a neighbourhood of 74, (Us, N Usy)
such that i, = /ijone, ,0 <A <. Let

Doy ,og, - apig- iy = MAX (PogrPary %y 5" * *» Py liay Pigohig s " *s @iqoﬁiq).
On 74, (|0 [N Ui - - 0 TU). Then the pair
Ouo G [NUig - 0UL) , Pay, o sapion i)
satisfies the condition (H). If n,« (F) is the o™ direct image we write
Lo (ay (|0 [N Uig =+ 0 U3 5 1 age(F))
for
Loy cesapior-eriy (o (18 10 Ui 0 Ui 0+ - AU 5 Mg (F)
and set
To(lolnUyn - nUs, , F)={fe ' (o |[nUpn - N U;,, F) i nex (f) €
€Ty ey (o [0 Uiy -+ N UL, Nge (FN}-
Let
|o|={lc|nU:Uex},C;|c|,Fllo)=
— = @eCt@||s|,FllcDice Ty (|0 ]aUnn - AUs,, B

for each
B=o,Bi, B}, BE(@/|c|,Flic]) =
=3C; @\ |, Fllo ), 2% (%]|s ], Flle|) =
—{ceCL (| |o|,Fl|]): b = o}
and

H, (@/|o |, Fl|o ) = Z4 (|| |, Fl|o /BS (%] s |, Fllo D

for ¢ > 1.

Now, because % is a locally finite covering and the closure of | o | is com-
pact %||c | is a finite covering of |6 |; %/|s|={lo 10U, -+, |a [N U},
say. Let

ey (|6 ) =V, agx (F) = F/, U; =, (|0 |0 U, 1<7i</
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and

’

' = {U]" Lo "Ui}'

Set

CL(W ,F'|V)y={c= () Ct (¥ ,FIV): e T, (Ug,0 -+~ NV, , F)
for each

b=, B}, B, (@, F[V)=8C (W FIV), 2, (W F'|V) =

={cecCL(@ ,F |V): 8 = o}
and
He @', F'|V) = Z4 (@ , F'[V)[B (U', F'|V) for ¢ > 1.

As in Leray’s Theorem to prove the above theorem it is enough to show
that HZ (%/| 6 |, F/} o |) = o for all nerves ¢ of % when ¢ > 1. And because
of the imbedding, to prove that H (#/|o |, F/|c|) = o for a particular
6 = Uy, -+, Uy,) it is enough to prove that H (', F'[V) = o.

Since V is a domain of holomorphy and its closure has a fundamental

system of neighbourhoods each of which is a domain of holomorphy, there
is a terminating chain of syzygies

() .0 N G AN e B SN L L. R N

in a neighbourhood of the closure of V, where 0 is the structure sheaf of C*
and 7 is a natural number:

To prove that HE (%', F'|V) = o we use induction on the length 7 of the
terminating chain of syzygies. When » = o the exact sequence (1) reduces to

(2) 00" Y, F >0;
thus, in this case we need only show that HL (%', ¢°/V) =oforg >1,p > 1.
This is done by induction on p. When p = 1, that H%, (%', 0/V) = o is simple
to demonstrate because of the finiteness of the covering of V. When p > 1
from the exact sequence of sheaves

0—->0—=>0"—0""'=o0
we get for each B = (B, -+, B,) an exact sequence
3) 0T, (U, 0) - T, (U, 07) - T, (U, 071 >0

having used the lemma in the exactness of (3) and where

Us =Ug0 - N U,
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From (3) we get the exact sequence
@ 0 —CL(@', O]V —CL (@', 0P|\ —C% (% , 0"~} |V) > 0.
And from (4) we get a long exact sequence of bounded cohomology groups
() e HE(,0NV) > HL(, O'V) ~HL (@, 07 V) -

SHE @, OV > e
HY (@', 0/V) = H{ (', 0/V) = o, hence
HG (%', 0°|V) = HG (%', 0" 7' [V);
thus by induction |
| HL (%', O°|V) = o for ¢g>1,p> I-.

To conclude the proof of HL (%', FI[V) = o for all ¢ > 1 assume that
HY (@', G) = o for all ¢ > 1 when G is a coherent analytic sheaf on V which
has a terminating chain of syzygies of lenght <»-— 1. The exact sequence
(1) can be reduced to the two shorter exact sequences

1 B Wy —
(6) o—moP gt 2, L Lo ML R o,

0—>R >0, Fo,

where R is the kernel of y,. By the induction hypothesis H (%, R/V) = o
for all ¢ > 1. From the short exact sequence in (6), using the lemma again,
we get a long sequence of bounded cohomology groups

) o> HE (W, 07V) > H, (W, F'[V) > HGP (W, RV) — -+

Since, also H% (%', 0™°[V) = o for all ¢ > 1, we get that H, (%', F'|V) =o
for all ¢ > 1. Q.E.D.

The author wishes to thank Prof. R. Narasimhan from whose comments
he got the idea of the proof.

REFERENCES

[1] P. W. DARKO (1975) — Sections of Coherent Analytic Sheaves with growth on Complex
Spaces, « Annali di Matematica Pura ed applicata (IV)», o4, 283-295. .
[2] L. HORMANDER (1967) — Generators for some rings of analytic functions, « Bull. Amer.

Math. Soc.», 73, 943-949- ,
[3] R. NARASIMHAN (1970) — Cokomology with bounds on Complex Spaces, « Lecture Notes

il Mathematics», I55, Springer Verlag, 141-150.



