## ATTI ACCADEMIA NAZIONALE DEI LINCEI

## CLASSE SCIENZE FISICHE MATEMATICHE NATURALI

# RENDICONTI

## Piero Mangani

# Algebrizzazione della logica monadica dotata dell'operatore $\tau$ di Hilbert

Atti della Accademia Nazionale dei Lincei. Classe di Scienze Fisiche, Matematiche e Naturali. Rendiconti, Serie 8, Vol. **60** (1976), n.2, p. 77–83. Accademia Nazionale dei Lincei

<http://www.bdim.eu/item?id=RLINA\_1976\_8\_60\_2\_77\_0>

L'utilizzo e la stampa di questo documento digitale è consentito liberamente per motivi di ricerca e studio. Non è consentito l'utilizzo dello stesso per motivi commerciali. Tutte le copie di questo documento devono riportare questo avvertimento.



# RENDICONTI

#### DELLE SEDUTE

# DELLA ACCADEMIA NAZIONALE DEI LINCEI

# Classe di Scienze fisiche, matematiche e naturali

Seduta del 14 febbraio 1976 Presiede il Presidente della Classe Beniamino Segre

#### SEZIONE I

(Matematica, meccanica, astronomia, geodesia e geofisica)

Algebra. — Algebrizzazione della logica monadica dotata dell'operatore τ di Hilbert (\*). Nota di Piero Mangani, presentata (\*\*) dal Corrisp. G. ZAPPA.

SUMMARY. — An algebraic version of a monadic 1st order logic with Hilbert's τ-symbol is given and compared with another one to be found in a previous paper written by the Author.

Sia  $\mathcal{L}$  un linguaggio formalizzato così definito:

Alfabeto di  $\mathscr{L}$  è: una sequenza  $(P_{\xi})_{\xi<\alpha}$  (dove  $\alpha$  è un ordinale > 0) di simboli predicativi unari, un simbolo x di variabile individuale ed i segni logici  $\vee$ ,  $\wedge$ ,  $\neg$ ,  $\leftrightarrow$ , =,  $\tau$ .

Gli insiemi & ed & dei termini e delle espressioni di L sono definiti tramite induzione incrociata nel modo seguente:

$$\begin{split} & \mathscr{C}_0 = \{\,x\,\} \qquad \mathscr{E}_0 = \{\,x = x\,\,;\, \mathrm{P}_\xi\,x\,\}_{\xi < \alpha} \\ & \mathscr{C}_{n+1} = \mathscr{C}_n \cup \{\,\tau\alpha: \alpha \in \mathscr{E}_n\,\} \\ & \mathscr{E}_{n+1} = \mathscr{E}_n \cup \{\,\alpha \lor \beta\,; \,\alpha \land \beta\,;\, \neg \alpha\,; \,\alpha \to \beta\,; \,\alpha \longleftrightarrow \beta\,; \,t_i = t_j\,; \\ & \mathrm{P}_\xi\,t_i: \alpha\,,\, \beta \in \mathscr{E}_n\,\&\,t_i\,,\, t_i \in \mathscr{C}_{n+1}\,\}_{\xi < \alpha}\,, \end{split}$$

da cui

$$\mathcal{E} = \bigcup_{n \in \omega} \mathcal{E}_n$$
 ,  $\mathscr{E} = \bigcup_{u \in \omega} \mathcal{E}_n$ .

Se  $t \in \mathcal{T}$  ed  $\alpha \in \mathcal{E}$ , con il simbolo  $S_t \alpha$  denotiamo l'espressione di  $\mathcal{L}$  ottenuta da  $\alpha$  sostituendo tutte le occorrenze libere di x con t.

(\*) Lavoro eseguito nell'ambito dell'attività del Gnsaga del C.N.R., 1975. Questo lavoro è dedicato a Giovanni Sansone nel suo 85° compleanno.

(\*\*) Nella seduta del 14 febbraio 1976.

Introduciamo inoltre le seguenti abbreviazioni:  $S_{\tau\alpha} \alpha = \exists \alpha$ ,  $S_{\tau(\neg\alpha)} \alpha = \forall \alpha$ . L'insieme degli *enunciati* (formule chiuse) di  $\mathscr L$  sarà denotato con  $\overline{\mathscr E}$ . Ad  $\mathscr L$  associamo un calcolo  $\mathscr C_{\mathscr L}$  avente i seguenti assiomi:

- i) Tutte le istanze di tautologie proposizionali.
- ii)  $\alpha \to \exists \alpha$  (assioma «debole» del  $\tau$ ).

iii) 
$$\forall (\alpha \leftrightarrow \beta) \rightarrow (\tau \alpha = \tau \beta)$$
 (assiona «forte» del  $\tau$ ).

iv) 
$$\begin{cases} x = x \\ (t_i = t_j) \to (\check{S}_{t_i} \alpha \to S_{t_j} \alpha) \end{cases}$$
 (assiomi dell'identità).

 $(\alpha, \beta \text{ sono elementi di } \mathcal{E}, t_i \text{ e } t_j \text{ di } \mathcal{E} \text{ ed } \check{S}_{t_i} \alpha \text{ indica una sostituzione } parziale di <math>x \text{ con } t_i \text{ in } \alpha)$ .

& avrà le seguenti regole di deduzione:

i') Modus porens

ii') 
$$\frac{\alpha}{S_t \alpha} (\alpha \in \mathscr{E}; t \in \mathscr{E}).$$

Scriveremo, al solito,  $X \mapsto \alpha$  per indicare che  $\alpha \in \mathscr{E}$  è derivabile da  $X \subseteq \mathscr{E}$  e  $\mapsto \alpha$  per indicare che  $\alpha$  è una tesi di  $\mathscr{C}_{\mathscr{L}}$ .

Definiamo ora una semantica per  $\mathscr{L}$ :

una struttura adeguata ad  $\mathscr L$  sarà una struttura  $\mathscr A=\langle\, A\,$  ,  $R_\xi\,$  ,  $\Phi\,\rangle_{\xi<\alpha}$  tale che:

- 1) A è un insieme non vuoto.
- 2) per ogni  $\xi < \alpha$ ,  $R_{\xi} \subseteq A$ .
- 3)  $\Phi: \mathscr{P}(A) \to A$  è tale che, se  $X \subseteq A$  è non vuoto,  $\Phi(X) \in X$  (cioè  $\Phi$  è una funzione di scelta sui sottoinsiemi non vuoti di A).

Sia  $\mathscr A$  una struttura adeguata ad  $\mathscr L$  e  $\sigma \in A^{\{x\}}$ . Definiamo  $\overline{\sigma} \in A^{\mathscr E}$  e la relazione  $\mathscr S$ at $_{\mathscr A}(\alpha,\sigma)$ , con  $\alpha \in \mathscr E$ , per induzione incrociata, nel modo seguente:

(o) 
$$\begin{cases} \overline{\sigma}x = \sigma x \\ \mathscr{S}at_{\mathscr{A}}(x = x, \sigma) \\ \mathscr{S}at_{\mathscr{A}}(P_{\xi}x, \sigma) & \text{sse } \sigma x \in R_{\xi} \quad (\xi < \alpha). \end{cases}$$

$$\begin{cases} \text{Se } \alpha \in \mathscr{E}_{n}, \text{ poniamo } \alpha^{\mathscr{A}} = \{ \ a \in A : \mathscr{S}at_{\mathscr{A}}(\alpha, \sigma'), \text{ con } \sigma' x = a \}. \\ \text{Definiamo ora:} \\ \overline{\sigma}(\tau \alpha) = \Phi(\alpha^{\mathscr{A}}). \\ \mathscr{S}at_{\mathscr{A}}(\alpha \wedge \beta, \sigma), \qquad \mathscr{S}at_{\mathscr{A}}(\alpha \vee \beta, \sigma), \text{ etc. nel modo consueto.} \\ \mathscr{S}at_{\mathscr{A}}(t_{i} = t_{j}, \sigma) & \text{sse } \overline{\sigma}t_{i} = \overline{\sigma}t_{j}. \\ \mathscr{S}at_{\mathscr{A}}(P_{\xi}t_{i}, \sigma) & \text{sse } \overline{\sigma}t_{i} \in R_{\xi}. \end{cases}$$

Scriviamo, al solito,  $\mathscr{A} \models \alpha$  sse, per ogni  $\sigma \in A^{\{x\}}$ ,  $\mathscr{S}at_{\mathscr{A}}(\alpha, \sigma)$  e  $\models \alpha$  sse, per ogni  $\mathscr{A}$  ed ogni  $\sigma \in A^{\{x\}}$ ,  $\mathscr{S}at_{\mathscr{A}}(\alpha, \sigma)$ .

Abbiamo ora i seguenti teoremi:

- I) (Lindenbaum). Ogni  $X \subseteq \overline{\mathscr{E}}$ , X non contraddittorio, si può estendere ad un  $X' \subseteq \overline{\mathscr{E}}$ , X' non contraddittorio e massimale.
  - 2) (Completezza). Se  $X \subseteq \overline{\mathscr{E}}$  è non contraddittorio allora X ha un modello.

Dimostrazioni. Il Teorema I si dimostra, come al solito, usando il lemma di Zorn.

Il Teorema 2 si dimostra costruendo un mode'lo  $\mathscr A$  di X (modello « canonico ») nel modo seguente:

Sia X' una estensione, non contraddittoria e massimale, di X ed indichiamo con  $\overline{\mathscr{E}}$  l'insieme dei termini chiusi di  $\mathscr{L}(\overline{\mathscr{E}} = \mathscr{E} - \{x\})$ .

Si definisca su  $\overline{\mathscr{C}}$  la seguente relazione di equivalenza:  $t_i \, \rho \, t_j$  sse  $X' \longmapsto (t_i = t_j)$ , e si ponga  $A = \overline{\mathscr{C}}/\rho$ ; per ogni  $\xi < \alpha$  definiamo  $R_\xi \subseteq A$  nel modo seguente:  $[t] \in R_\xi$  sse  $X' \longmapsto P_\xi \, t$  (ovviamente questa è una buona definizione poiché, per gli assiomi dell'identità del calcolo  $\mathscr{C}_{\mathscr{L}}$ , se  $t \circ t^*$  si ha:  $X' \longmapsto P_\xi \, t$  sse  $X' \longmapsto P_\xi \, t^*$ ).

Per definire  $\Phi: \mathscr{P}(A) \to A$  operiamo nel modo seguente: se  $Y \subseteq A$  è tale che *esiste* una formula  $\alpha$  di  $\mathscr{L}$  per la quale accade che:  $[t] \in Y$  sse  $X' \mapsto S_t \alpha$ , poniamo  $\Phi(Y) = [\tau \alpha]$ ; altrimenti  $\Phi(Y)$  sia un arbitrario elemento di Y.

La definizione data è «buona»: osserviamo, in primo luogo, che  $\Phi$  è definita anche per l'insieme vuoto poiché ad esso è «associata» la formula:  $\neg (x = x)$ . Inoltre, se  $\alpha$ ,  $\alpha^*$  sono due formule soddisfacenti la condizione richiesta per Y, si ha  $X' \mapsto \forall (\alpha \leftrightarrow \alpha^*)$  e quindi, per l'assioma forte del  $\tau$ ,  $X' \mapsto (\tau \alpha = \tau \alpha^*)$ ; si ha, infatti,  $[t] \in Y$  sse  $X' \mapsto S_t \alpha$  e  $[t] \in Y$  sse  $X' \mapsto S_t \alpha^*$  e dunque per ogni  $t \in \overline{\mathscr{C}}$ ,  $X' \mapsto S_t \alpha$  sse  $X' \mapsto S_t \alpha^*$ . Essendo X' massimale si ha, per ogni  $t \in \overline{\mathscr{C}}$ ,  $X' \mapsto (S_t \alpha \leftrightarrow S_t \alpha^*)$ , cioè  $X' \mapsto S_t (\alpha \leftrightarrow \alpha^*)$ .

Posto  $t_0 = \tau$  ( $\neg (\alpha \leftrightarrow \alpha^*)$ ), si ha  $X' \mapsto S_{t_0}$  ( $\alpha \leftrightarrow \alpha^*$ ), cioè  $X' \mapsto \forall (\alpha \leftrightarrow \alpha^*)$ . Siamo ora in grado di provare che la struttura  $\mathscr{A} = \langle \overline{\mathscr{C}}/\rho$ ,  $R_{\xi}$ ,  $\Phi \rangle_{\xi < \alpha}$  sopra definita risulta un modello di X' (e quindi di X), addirittura che si ha, per ogni enunciato  $\alpha$  di  $\mathscr{L}$ ,  $\mathscr{A} \models \alpha$  sse  $X' \mapsto \alpha$ . La prova è di routine e sarà omessa.

Si ha allora il seguente

COROLLARIO (« adeguatezza » di  $\mathscr{C}_{\mathscr{L}}$  per la semantica). Se  $X \subseteq \overline{\mathscr{E}}$  ed  $\alpha \in \overline{\mathscr{E}}$ , allora  $X \vdash \alpha$  sse  $X \models \alpha$  (1).

2. Consideriamo ora una teoria X, non contraddittoria e massimale, in  $\mathscr{L}$  e sia  $\mathscr{A}$  il modello canonico di X ( $\mathscr{A} = \langle A, R_{\xi}, \Phi \rangle_{\xi < \alpha}$ , definito nel § 1)).

<sup>(</sup>I) Per il § I si veda anche [4].

Sia  $\mathcal Q$  l'algebra di Boole semplice e  $\lambda$  l'isomorfismo canonico fra  $\mathscr P(A)$  e  $\mathcal Q^A$ .

Indichiamo con  $\mathscr{B}$  la sottoalgebra di  $\mathscr{Q}^A$  avente per insieme base  $B = \{\lambda(\alpha^{\mathscr{A}}) : \alpha \in \mathscr{E}\}$  e con  $\varepsilon$  l'applicazione da B ad A definita così:  $\varepsilon(\lambda(\alpha^{\mathscr{A}})) = [\tau\alpha]$ .

Si ha facilmente, per ogni  $a \in A$  ed ogni  $p \in \mathcal{B}$ , p(a) = I sse  $\mathcal{A} \models S_{\tau\beta} \alpha$ , dove  $p = \lambda(\alpha^{\mathcal{A}})$  ed  $a = [\tau\beta]$ . (Infatti:  $\mathcal{A} \models S_{\tau\beta} \alpha$  sse  $[\tau\beta] \in \alpha^{\mathcal{A}}$ ).

Abbiamo ora il seguente:

TEOREMA I. La quaterna  $(2, A, \mathcal{B}, \varepsilon)$  è una  $\tau$ -algebra funzionale (semplice) nel senso di [5].

Dimostrazione. Basta verificare le condizioni i), ii), iii) di [5] (p. 68).

Ad i): sia  $a \in A$  e  $p \in B$ , con  $p = \lambda(\alpha^{\mathscr{A}})$  ed  $a = [\tau \beta]$ . Se  $p(\varepsilon(p)) = I$  la diseguaglianza  $p(a) \leq p(\varepsilon(p))$  è banalmente vera; sia allora  $p(\varepsilon(p)) = 0$ . Essendo  $\varepsilon(p) = [\tau \alpha]$ ,  $\mathscr{A} \models \neg S_{\tau \alpha} \alpha$  e quindi  $X \models \neg S_{\tau \alpha} \alpha$  e, per l'assioma debole del  $\tau$ ,  $X \models \neg \alpha$ . Usando la regola di deduzione ii') del calcolo  $\mathscr{C}_{\mathscr{L}}$  si ha che  $X \models S_{\tau \beta} (\neg \alpha)$ , cioè  $X \models \neg S_{\tau \beta} \alpha$  e dunque  $\mathscr{A} \models \neg S_{\tau \beta} \alpha$  ed infine p(a) = 0. Quindi, per  $p(a) \in A$  ed  $p(a) \in B$  si ha:  $p(a) \leq p(\varepsilon(p))$ .

Ad ii): se p,  $q \in \mathcal{B}$ , la funzione costante  $\varphi_{p,q}$  che ad ogni  $a \in A$  associa il valore q ( $\varepsilon$  (p)) appartiene a  $\mathcal{B}$  poiché  $\varphi_{p,q} = \lambda$  (( $S_{\tau\beta} \alpha$ ) $^{\mathscr{A}}$ ), con  $q = \lambda$  ( $\alpha^{\mathscr{A}}$ ) ed  $\varepsilon$  (p) = [ $\tau\beta$ ].

Ad iii): per  $ogni p, q, r \in \mathcal{B}$  si deve avere che:

$$(p \dotplus q) (\varepsilon (p \dotplus q)) \ge r (\varepsilon (p)) \dotplus r (\varepsilon (q)).$$

Basterà ovviamente provare che, se  $(p \dotplus q)$  ( $\epsilon(p \dotplus q)$ ) = 0, anche  $r(\epsilon(p)) \dotplus r(\epsilon(q))$  = 0, per ogni  $r \in \mathcal{B}$ .

Siano  $p = \lambda(\alpha^{\mathscr{A}})$  e  $q = \lambda(\beta^{\mathscr{A}})$ ; poiché  $\lambda$  è un isomorfismo si ha  $p \dotplus q = \lambda(\alpha^{\mathscr{A}} \oplus \beta^{\mathscr{A}}) = \lambda((\neg(\alpha \leftrightarrow \beta)^{\mathscr{A}});$  dall'ipotesi che  $(p \dotplus q)(\varepsilon(p+q)) = o$ , segue  $\mathscr{A} \models \neg S_{\tau(\neg(\alpha \leftrightarrow \beta))}(\neg(\alpha \leftrightarrow \beta)),$  cioè  $\mathscr{A} \models S_{\tau(\neg(\alpha \leftrightarrow \beta))}(\alpha \leftrightarrow \beta)$  e quindi  $\mathscr{A} \models \forall (\alpha \leftrightarrow \beta).$ 

Si ha infine:  $X \mapsto \forall (\alpha \leftrightarrow \beta)$ , cioè  $X \mapsto (\tau \alpha = \tau \beta)$  e dunque  $[\tau \alpha] = [\tau \beta]$ ; da questo segue che  $\varepsilon(p) = \varepsilon(q)$ ,  $r(\varepsilon(p)) = r(\varepsilon(q))$ ,  $r(\varepsilon(p)) + r(\varepsilon(q)) = 0$ , per ogni  $r \in \mathcal{B}$ . Il teorema è così provato.

Il Teorema I si può « invertire ». Abbiamo infatti il seguente:

TEOREMA 2. Se  $\langle W, \overline{A}, \overline{\mathscr{B}}, \overline{\varepsilon} \rangle$  è una  $\tau$ -algebra funzionale sem plice, esiste una teoria, massimale non contraddittoria, X in un calcolo  $\mathscr{C}_{\mathscr{Z}}^*$  tale che l'algebra  $\{\mathcal{Q}, \overline{A}, \mathcal{B}, \varepsilon\}$  « associata » al modello canonico  $\mathscr{A}$  di X è isomorfa a  $\{W, \overline{A}, \overline{\mathscr{B}}, \overline{\varepsilon}\}$ . (Daremo soltanto uno schema della dimostrazione).

Sia  $\langle p_{\xi} \rangle_{\xi < \alpha}$  un buon ordinamento (privo di ripetizioni) di  $\overline{B} \longrightarrow \{o, 1\}$  e sia  $\langle P_{\xi} \rangle_{\xi < \alpha}$  un insieme bene ordinato e privo di ripetizioni.  $\mathscr{L}^*$  avrà come simboli predicativi unari la sequenza  $\langle P_{\xi} \rangle_{\xi < \alpha}$ . Definiamo ora due applicazioni  $\lambda : \overline{c}^* \to \overline{A}$  e  $\mu : \mathscr{E}^* \to \overline{\mathscr{B}}$  (con  $\overline{c}^*$  insieme dei termini chiusi di  $\mathscr{L}^*$  ed  $\mathscr{E}^*$  insieme delle espressioni di  $\mathscr{L}^*$ ) nel modo seguente:

$$\mu(x = x) = I \in \overline{B}$$
 e  $\mu(P_{\xi} x) = p_{\xi}$ ;

se  $\mu$  è definita per  $\alpha \in \mathscr{E}^*$ ,  $\lambda(\tau \alpha) = \bar{\varepsilon}(\mu(\alpha))$ ;

se  $\lambda$  è definitiva per  $t_i$ ,  $t_j \in \overline{\mathscr{C}}^*$ ,  $\mu$   $(t_i = t_j)$  è la funzione costante di valore I se  $\lambda$   $(t_i) = \lambda$   $(t_j)$ , la funzione costante di valore zero altrimenti.

 $\mu\left(P_{\xi}t_{i}\right)$  è la funzione costante di valore I se  $p_{\xi}\left(\lambda\left(t_{i}\right)\right)=I$ , è la funzione costante di valore zero altrimenti;

se 
$$\mu$$
 è definita per  $\alpha$ ,  $\beta \in \mathcal{E}^*$ ,  $\mu$  ( $\alpha \vee \beta$ ) =  $\mu$  ( $\alpha$ ) +  $\mu$  ( $\beta$ ), etc....

Sia ora X la teoria in  $\mathscr{L}^*$  i cui teoremi sono tutte e sole le formule chiuse  $\alpha$  di  $\mathscr{L}^*$  tali che  $\mu$  ( $\alpha$ ) = 1. X è una teoria, non contraddittoria e massimale, in  $\mathscr{L}^*$  il cui modello canonico  $\mathscr{A}$  ha l'algebra associata  $\langle \mathscr{Q}, A, \mathscr{B}, \varepsilon \rangle$  isomorfa  $\alpha$  (W,  $\overline{A}$ ,  $\overline{\mathscr{B}}$ ,  $\overline{\varepsilon}$ ).

Possiamo concludere dicendo che il concetto di  $\tau$ -algebra funzionale semplice dato in [5] è « adeguato » per algebrizzare le teorie (non contraddittorie) massimali di una  $\tau$ -logica monadica.

3. Sia ora X una qualsiasi teoria (non contraddittoria) in  $\mathscr{L}$ . Definiamo sull'insieme  $\mathscr{E}$  delle espressioni di  $\mathscr{L}$  la seguente relazione binaria:  $\alpha \underset{\chi}{\sim} \beta$  sse  $X \mapsto (\alpha \leftrightarrow \beta)$ . Si verifica facilmente che la relazione  $\underset{\chi}{\sim}$  è di congruenza per l'algebra  $\mathscr{F} = \langle \mathscr{E}, \vee, \wedge, \neg, \rightarrow, \leftrightarrow \rangle$  delle formule di  $\mathscr{L}$  e che  $\mathscr{F}/\underset{\chi}{\sim}$  risulta un'algebra di Boole.

Si ha anche che, per ogni  $\alpha, \beta \in \mathscr{E}$ , l'applicazione  $\varphi_{\alpha} : \mathscr{F}/_{\widetilde{X}} \to \mathscr{F}/_{\widetilde{X}}$  ben definita da:  $\varphi_{\alpha} [\beta] = [S_{\tau\alpha} \beta]$  risulta un *endomorfismo* di  $\mathscr{F}/_{\widetilde{X}}$ .

Osserviamo che, se  $X \mapsto (\alpha \leftrightarrow \bar{\alpha})$ , allora  $\phi_{\alpha} = \phi_{\bar{\alpha}}$ : infatti da  $X \mapsto (\alpha \leftrightarrow \bar{\alpha})$  segue  $X \mapsto \forall (\alpha \leftrightarrow \bar{\alpha})$  e dunque  $X \mapsto (\tau \alpha = \tau \bar{\alpha})$ , da cui (per ogni  $\beta \in \mathscr{E}$ )  $\phi_{\alpha}$   $[\beta] = \phi_{\bar{\alpha}}$   $[\beta]$ .

Definiamo ora un'applicazione  $\varepsilon: \mathscr{F}/_{\widetilde{X}} \to \mathscr{E}$ nd  $(\mathscr{F}/_{\widetilde{X}})$  nel seguente modo:

$$\epsilon\left(\left[\alpha\right]\right)=\phi_{\alpha}\,,\qquad\text{per ogni}\quad\alpha\in\mathscr{E}\,.$$

Si ha ora il seguente:

TEOREMA 3. La terna  $(\mathcal{F}|_{\widetilde{X}})$ ,  $\mathcal{E}$ nd  $(\mathcal{F}|_{\widetilde{X}})$ ,  $\varepsilon$  ) risulta una  $\tau$ -algebra (monadica) nel senso di [5] (algebra che chiameremo  $\tau$ -algebra di Lindenbaum-Tarski della teoria X).

Dimostrazione. Basterà verificare le condizioni i'), ii'), iii') di [5], p. 69.

Ad i'): dobbiamo provare che, per ogni  $\alpha \in \mathscr{E}$ ,  $\phi_{\alpha}\left([\alpha]\right) \geq [\alpha]$  cioè che  $[S_{\tau\alpha}\,\alpha] \geq [\alpha]$ . Ma  $X \vdash (\alpha \to S_{\tau\alpha}\,\alpha)$ , per l'assioma debole del  $\tau$ , e questo prova l'asserto.

Ad ii'): dobbiamo provare che, per ogni  $\alpha$ ,  $\beta$ ,  $\gamma \in \mathscr{E}$ ,  $\phi_{\beta}$   $(\phi_{\alpha}([\gamma])) = \phi_{\alpha}([\gamma])$ , cioè che  $[S_{\tau\beta}(S_{\tau\alpha}\gamma)] = [S_{\tau\alpha}\gamma]$ , ma questo è ovvio per la definizione di « sostituzione » in  $\mathscr{L}$ .

Ad iii'): dobbiamo provare che, per ogni  $\alpha, \beta, \gamma \in \mathcal{E}$ , si ha

$$[S_{\tau(\neg(\alpha \longleftrightarrow \beta))}^{\;\;(\alpha \longleftrightarrow \beta))}] \ge [S_{\tau\alpha}\,\gamma] \dotplus [S_{\tau\beta}\,\gamma]$$

cioè che

$$\left[ S \mathop{(\alpha \! \leftrightarrow \! \beta)}_{\tau ( \neg (\alpha \! \leftarrow \! )\beta)} \right]' \! \geq \left[ S_{\tau \alpha} \, \gamma \right] \dotplus \left[ S_{\tau \beta} \, \gamma \right] \cdot$$

ed infine che

$$\left[ \forall \; (\alpha \leftrightarrow \beta) \right] \leq \left[ S_{\tau\alpha} \; \gamma \leftrightarrow S_{\tau\beta} \; \gamma \right]$$

Ma:

$$X \leftarrow (\forall (\alpha \leftrightarrow \beta) \rightarrow (\tau \alpha = \tau \beta))$$

e

$$X \blacktriangleright (\tau\alpha = \tau\beta) \rightarrow (S_{\tau\alpha} \gamma \longleftrightarrow S_{\tau\beta} \gamma)$$

e quindi

$$X \longmapsto (\textbf{V} \; (\alpha \longleftrightarrow \beta) \to (S_{\tau\alpha} \; \gamma \longleftrightarrow S_{\tau\beta} \; \gamma))$$

da cui segue l'asserto. Il teorema è così provato.

Abbiamo ora un inverso del Teorema 3.

TEOREMA 4. Se  $\langle A, \theta, \overline{\epsilon} \rangle$  è una  $\tau$ -algebra monadica con |A| > 1 allora esiste una teoria X (non contraddittoria) in un calcolo  $\mathscr{C}_{\mathscr{L}}$  tale che la  $\tau$ -algebra di Lindenbaum-Tarski di X è isomorfa a  $\langle A, \theta, \overline{\epsilon} \rangle$ .

La dimostrazione di questo teorema si ottiene combinando il Corollario 6 ed il Teorema 8 di [5] con il Teorema 2 del presente lavoro.

Concludiamo con le seguenti osservazioni:

- a) il concetto di  $\tau$ -algebra monadica (dato in [5]) è «adeguato» per l'algebrizzazione delle teorie di una  $\tau$ -logica monadica.
- (b) è, ovviamente, un lavoro di routine (anche se tecnicamente complesso) estendere le definizioni ed i teoremi del presente lavoro al caso di una  $\tau$ -logica (elementare) con predicati a più posti ed ottenere così il concetto adeguato di  $\tau$ -algebra cilindrica (poliadica). Risulterebbe allora evidente che il

concetto di  $\tau$ -algebra cilindrica dato in [5] non risulta adeguato per l'algebrizzazione delle  $\tau$ -logiche elementari con predicati a più posti, come era già, in parte, osservato in [5] (cfr. nota 13, p. 82).

#### BIBLIOGRAFIA

- [1] N. BOURBAKI (1957) Eléments de Mathématiques (Théorie des ensembles), Livre 1, Paris.
- [2] P. R. HALMOS (1962) Algebraic logic, N.Y.
- [3] D. HILBERT e P. BERNAYS (1934-38) Grundlagen der Mathematik, I e II, Berlin.
- [4] A.C. Leisenring (1969) Mathematical logic and Hilbert's &-simbol, London.
- [5] P. Mangani (1966) Su certe algebre connesse con sistemi di logica elementare dotati dell'operatore τ di Hilbert, « Le Matematiche », 21 (1).