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Geometria differenziale. — Closed geodesics on F insler manifolds 
Nota di F ra n cesco  M ercu ri ^  presentata (* (**)‘n dal Socio B. S eg re .

R ia s s u n to . — Si descrivono alcuni teoremi sull’esistenza di geodetiche chiuse pei1 
varietà di Finsler compatte e semplicemente connesse. Le dimostrazioni appariranno in altri 
lavori.

i. Introduction

T he existence of closed geodesics on a riem annian m anifold has been, 
since Poincaré, a field of very active research in  differential geom etry. T he 
m ost general theorem , up to now, reads as follows (see [14]).

L et M be a sm ooth sim ply connected m anifold of dim ension n >  2. 
Then:

a) I f  the cohomology ring of M is not generated by only one element 
any riem annian m etric on M adm its infinitely m any closed geodesics;

b) T here is an open and dense set of riem annian m etrics each 
adm itting infinitely m any closed geodesics;

c) A ny riem annian m etric on M adm its at least three closed geodesics. 
Since there are no known examples of com pact riem annian manifolds 
with only finitely m any closed geodesics, and the ones left over by  a) are the 
“ simple ones ” , a natu ral conjecture is th a t there are always infinitely m any. 
A t the Vancouver congress in 1974 Anosov, in his communication, mentioned 
an exam ple of Finsler m etric on S2 w ith only two closed geodesics.

It seem$ interesting therefore to develop, on the lines of the riem annian 
case, the analogous theory for Finsler metrics. In  this paper we will describe 
the “ arithm etic theory  ” for closed geodesics on Finsler manifolds, and, in 
this context, the reason for A nosov’s exam ple is the non sym m etry of the 
m etric. However the arithm etic theory, although very suggestive, does not 
give a completely satisfactory answer to the problem  since arithm etically 
distinct closed geodesics are not necessarly geom etrically distinct.

I wish to thank  prof. W. Klingenberg for having suggested the problem  
and for very helpful conversations, and m y advisor at the U niversity  of 
Chicago, prof. R. K. L ashof for his constant encouragem ent and friendship; 
m ost of section 5. comes from  his ideas.

(*) This a summary of the author’s doctoral dissertation at the University of 
Chicago [15].

(**) Supported by the Italian Research Council (C.N.R.).
'(***) Nella seduta del 14 febbraio 1976.
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2. F i n s l e r  M a n ifo l d s

W e begin by setting some notations. If  M is a smooth m anifold we will 
denote by TM  the tangent bundle and by s0 (TM) the zero section. If  E 1 and 
E 2 are sm ooth vector bundles over a smooth m anifold and /  : Et -> E 2 is a 
sm ooth fibrewise m ap, we denote by dFf  the “ fibre d e riv a tiv e” of / ,  i.e. 
dF f  (e) =  d  ( /  [eju!(e)) where n1 is the projection of E1. N aturally  R  will 
denote the real line, R + the non negative real line, Q the rationals and Z the 
integers.

DEFINITION. A  Finsler manifold (M , F) is a pair consisting of a smooth 
m anifold M together w ith a continuous function F  : TM  -> R + such that:

1) F  is C°° on T M -^ (T M )
2) F  (X) =  o if and only if X € j 0 (TM)
3) F (tX) =  tE (X) for t e  R +
4) dF (F2) : TM-^o (TM ) -> T*M  is a non degenerage quadratic form 

(and therefore positive definite).

T he function E  =  F 2 is called the energy of the Finsler m etric and it is a 
C1 function (and naturally  C°° outside (TM )). T he lack of smoothness on 
i*0(TM ) is peculiar of Finsler manifolds and in fact E is C2 on all TM  if and only 
if F  is the norm  of a riem annian metric. On the other hand Finsler metrics 
which are not riem annian “ occur in nature ” (see, for example, [23]).

Consider the standard  symplectic 2-form w 0 on T* M and the pull-back 
wE =  (dF E)* w Q . w E defines a sympelctic stucture on TM-i*0 (TM ) and a 
vector field W E , called the Euler field, by:

(2.1) Z£/E (W e , V) =  i  dE  (V) for all V € T  (T M -j0 (TM )).

W E is then  a C°° vector field outside the zero section and extends to a C1 
vector field on all TM  vanishing on (TM). M oreover it is a second order 
differential equation.

The geodesics of (M , F) are defined as those C2 curves whose tangent fields 
are integral lines of W E; it is easily seen that actually geodesics are C°° curves 
and the energy is constant along their tangent fields.

If, ( # ! , • • • ,  xf)  are a system  of local coordinates in M and (x1 , • • •, x n , 
• •, x n) are the local coordinates in TM  associated to the fram e (9 jdx1 , • • •, 

• • •, d[dxn) the equation 2.1. takes the fam iliar form:

(2.2) (dE/dXi) (x (t) , x (t)) —  dE/dXi (x (t) , x (/)) =  o .

For a curve c : \a , b\ ->M  we define, as in the riem annian case: the<S>
E-length F , and the E-length , E , by:

b b

F  (c) =  ( f  (c{t)) d t Ë  (V) =  J E  (cifj)  d t
a a
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A  small modification of the riem annian case argum ent gives the following:

THEOREM A. (a) The Euler equations 2.2 have a unique solution with 
given initial conditions and this solution is smooth (C00).

(b) For p  eM  there is a neigborhood of p  and  s >  o such that any 
two points (in a given order) in are joined by a unique geodesic of length <  s 
and this geodesic depends in a C°° fashion on the two points (as long as they are 
distinct).

(c) Geodesics minimize “ locally ” Ê  and  F; conversely any curve that 
minimizes E  is a geodesic and any curve that minimized  F  is a geodesic, up 
to a possible reparametrization.

3. T h e  m a n ifo l d  of c lo sed  c u rv es  a n d  t h e  e n e r g y  in t e g r a l

Suppose, for simplicity, M em bedded in Rm and consider the Sobolev 
space H 1(S , R m) where S =  R/Z is the circle param etrized between o and 1. 
T he subset AM  =  {c c H 1 (S , Rw) : c (S) C M } has a riem annian m anifold 
structure, moddelled on a H ilbert space, induced by the structure of M (see, 
for example, [7], [14], [20]).

I f  F  : T M  * R + is a Finsler m etric on M the energy E induces a m ap, 
the E-length o energy integral, E  : AM  -> R  by:

Ê  (c) =  j  E  (c (/)) cIt
s

THEOREM B: Ê  is C2~ (i.e. it is C1 and its differential is locally 
lips chit z i ari).

W riting d E explicitly it is easy to recognize tha t any closed geodesic is 
a critical point for E. T he converse is also true:

T h e o re m  C:  ̂€M  is a critical point fo r  E i f  and only i f  it is a closed 
geodesic.

As mentioned above, the structure of M induces a riem annian structure 
on AM  and we will denote by ( , ) and || • || the relative scalar product and 
norm. Consider then, on AM , the vector field £ =  ■— grad E defined by

(5 , r) =  —  dE  (y)) for all y] <e T  AM

^ is a C1- vector field and therefore there is a unique integral curve of Ç 
thru  a given point.

T he standard  technique in M orse-Liustenik-Schnirelm an theory  for loca­
ting the critical points of a function is to “ to-go down ” along the integral 
lines of the  gradient field. This is usually  done, in the finite dim entional case, 
under a properness assum ption for the function. T he condition th a t plays
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the analogous role in the infinite dimensional case is the following (see [14],
[i8], [19]):

Condition (C). L et H be a riem annian (H ilbert) manifold and /  : H - > R  
a C1 function; /  is said to satisfy condition (C) if for any subset S C H on 
which /  is bounded but \\df\\ is not bounded aw ay from zero, the closure 
S of S contains a critical point for / .

T he following clearly implies condition (C) for the energy integral:

T h e o re m  D. Let {cn} ÇL AM be a sequence such that\
I . E  (cf) <  k Q fo r  some constant k 0

2- II ? 0«) Il O
then { cn } has a convergent subsequence.

4. T h e  c r it ic a l  p o in t s  t h e o r y  fo r  t h e  e n e r g y  in t e g r a l s

On AM  , 5 defines a semigroup of E-decreasing transform ations <pf : A M -> 
-> AM  as follows: Let c e AM  and ^  00 be the m axim al integral curve of 
E, w ith (o) =  c; then (f) is defined for all t >  o (as a consequence of 
condition (C)) and we set cpf (c) =  ^  (t).

Given a com pact set A  Ç AM  , A =)= 9, we define:

m inim ax (A) =  lim m ax (E |cp̂ A))
t—> 00

T he “ m inim ax theorem  ” gives then (see [19]):

THEOREM E. M inim ax  (A) is a critical value fo r  E .

N aturally  if we start w ith different subsets A  , B C A M  the relative 
m inim axes could coincide and, a priori, could give the same critical point. 
W e will define now a particular class of compact subsets for which the even­
tual coincidence of critical values (minimaxes) gives the existence of m any 
critical points with th a t E-value. We fix a field of coefficients for homology 
and cohomology.

F irst of all we w ant to avoid the trivial geodesics, i.e. E “ 1 (o), and for 
a > 0  we set A a M =  E “ 1 ([o , a]). We recall tha t there is a cap product 
pairing:

H* (AM , A°M ) ® H* (AM — A°M) H* (AM , A°M )

(see [13], [14]). We w ill say that two non zero homology classes z1 G H& (AM , 
A°M ) and z% e Hjc+j (AM , A°M ) ,y >  o, are subordinated i f  there exists a 
non zero cohomology class w  e f f  (AM -— A°M ) such that z1 =  'zz o  w. For 
a class z  € H* (AM , A0 M) we set:

m inim ax (2) =  inf m inim ax ( \ v \ )
vez

where v e z  m eans th a t v is a cycle in z  and \ v \  is its support.
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THEOREM F. Let z1 and z2 be subordinated homology classes in 
H* (AM , A0 M) and ki =  minimax (zf). Them.

1) ki is a critical value fo r  E ,
2) k2 >  kx >  o ,
3) I f  kx =  k2 the set of critical points at li-level kx has covering dimen­

sion >  dim  z2 —  dim  zx.

Theorem  F  is not yet completely satisfactory since, in case 3., if d im ^  — 
—  dim  ,81= I the set of critical points at th a t level m ay just be the set of 
closed geodesics obtained rotating a given one.

W e give now a description of the “ S-equivariant theory ” . T he circle 
S acts on AM  by rotations and let us denote by ÜM  the orbit’s space. Since 
E, as well as the riem annian structure on AM , is invariant under the action 
of S , E  induces a continuous m ap En : I1M -> R  and <pf induces a semigroup 
of En-decreasing transform ations cpj1 : IIM  -> n  M characterized by the com­
m utativ ity  of the diagram :

AM  AM

TC TC

v <pU ' '
iiM nM

where n : AM  -> IIM  is the  quotient m ap. As well as for AM  we have a cap 
product pairing:

h* (nM, n° M) ® h* (nM — n° m)-^u h* (ïïm , n° m)

where II“ M =  E n 1([o , a]) , a >  o; therefore we also have the correspondent 
concept of subordinated homology classes.

If  A n C IIM  is com pact and not em pty we define

m inim ax (An) =  lim m ax (En | ,n (An))

and, for z e  H*(nM , n°M),
m inim ax (z) =  inf m inim ax (| v | ).

vez

We have the analogous of theorem  F for the new situation:

T h eo r em  G. Let z1 and z2 be subordinated homology classes m  
H* (IIM  , n °M ) and h{ — minimax (zf). Them.

1) h{ is a critical value fo r  Ê,
2) h2 ^  hx >  o,
3) I f h x — h2 the set in IIM which is the image, under the quotient map , 

of the set of critical points of E -level hx in AM, has covering dimension 
>  dim z2 —  dim  z1.
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Geodesics constructed with the method of theorems F  and  G are called arith­
metically distinct. W e w ant to point out explicitly th a t arithm etically distinct 
closed geodesics m ay not be geom etrically distinct in the sense th a t they could 
be ju st coverings of the same geodesic. A n im portant reason for considering 
the above concept is th a t if ct and c2 are coverings of the same closed geodesic 
then the E -value of ci has to be relatively large. So the concept is particularly  
useful any tim e we can construct cycles in (AM , A0 M) or (IIM  , 11°  M) 
w ith small minim axes. M oreover there are non homogeneous variational 
problems th a t are treatable w ith the same methods. In  this case, since the 
energy integral is not invarian t for reparam etrizations of the type t  at, 
a — const. >  o, the concept of arithm etically distinct is most adequate.

5. T h e  r a t i o n a l  c o h o m o lo g y  o f  AM  a n d  IIM

W e will describe now some of the properties of the cohomology of AM 
and IIM  with rational coefficients (so H* (X) will m ean H* (X ; Q)). W e 
will assume M com pact and sim ply connected.

Sullivan has constructed cohomology classes wr e Har+b (AM), for some 
a > 0  and b > o ,  th a t restrict non trivially to H ar+& (DM) (see [14], [25]). 
Since H* (DM ) is a free algebra (in the sense of graded com m utative and 
associative algebras) it follows th a t whenever an even dimensional class in 
H* (AM) restricts non trivially  to H* (DM), it generates a polynomial subal­
gebra in H* (AM). This happens, for example, if the first non vanishing 
rational hom otopy group is odd dimensional or if M has the hom otopy type 
of the product of two com pact manifolds.

Since the inclusion AM  — A°M  c —> AM is a hom otopy equivalence 
(see [6]) it is easily seen th a t if H* (AM) contains a polynomial algebra there 
are infinitely m any subordinated homology classes in H * ( A M , A ° M ) .

U nfortunally , in some interesting cases, as for exam ple S2/", the ring 
structure in H* (AM) is not very rich. In  these cases it is useful to look at 
H* (IIM ). T he following theorem  relates the two:

THEOREM H. There is an exact sequence'.

• • -> H r_1 (AM ,A°M) -> H r~2 (IIM  , n°M)

H r (IIM  , n°M ) -51* Hr (AM , A°M) • •

where w 2 € H 2 (IIM  —  II0 M).

In  particu lar we notice th a t the first non vanishing cohomology groups 
of (AM , A0 M) and (IIM  , II0 M) occur in the same dimension.
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Example : Looking at the m inim al model for AS2  ̂ it is easily seen that:

I Q if -S' =  (27 +  i) (2/è— I)

H s (AS2*, A0S2*) =  Q if j  =  (27 +  1) (2 k —  I )  +  I

- o otherwise

and the ring structure is the trivial one. In  correspondence with a class 
#, generating H 2^-1 (.AS21 , A0 S ;, there is a non vanishing class in 
H 2*“ 1 (IIS2*, II0 S2*) such th a t the cup product with ( w f f  is non zero for, 
at least, o <  p <  2 k —  1 and so H* (IIS2* , H0 S2*) contains at least 2 k 
subordinated homology classes.

A nother consequence of the previous theorem is the following:

THEOREM I. A t least one of the following facts holds'.
1) H* (AM) contains a polynomial algebra,
2) H* (IIM  , n°M) contains two subordinated homology classes.

Theorem  I implies, in particular the existence of at least two arithmetically 
distinct closed geodesics on any Finsler manifold {compact and simply connected').

Remark. If  the Finsler m etric is symmetric, i.e. F  (X) =  F (—  X), 
instead of considering IIM  =  AM /S we could consider IIM  =  A M /o (2) 
(theorem  G holds also in this situation). In  this case Klingenberg has proved 
the existence of, at least, three subordinated homology classes in H* (IIM  , 
n°M ; Z2). His proof does not carry over to H* (IIM  , II0 M ; Z2). This 
justifies the assertion, m ade in the introduction, that the reason for Anosov’s 
exam ples seems to be the non sym m etry  of the m etric.
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