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Geometria differenziale. — Closed geodesics on Finsler manifolds ©.
Nota di Francesco MEgrcuri 7, presentata ¢*” dal Socio B. SEGRE.

RIASSUNTO. — Si descrivono alcuni teoremi sull’esistenza di geodetiche chiuse per
varietad di Finsler compatte e semplicemente connesse. Le dimostrazioni appariranno in altri
lavori.

1. INTRODUCTION

The existence of closed geodesics on a riemannian manifold has been,
since Poincaré, a field of very active research in differential geometry. The
most general theorem, up to nhow, reads as follows (see [14]).

Let M be a smooth simply connected manifold of dimension 7 > 2.
Then:

@) If the cohomology ring of M is not generated by only one element
any riemannian metric on M admits infinitely many closed geodesics;

6) There is an open and dense set of riemannian metrics each
admitting infinitely many closed geodesics;

¢) Any riemannian metric on M admits at least three closed geodesics.
Since there are no known examples of compact riemannian manifolds
with only finitely many closed geodesics, and the ones left over by &) are the
““ simple ones ", a natural conjecture is that there are always infinitely many.
At the Vancouver congress in 1974 Anosov, in his communication, mentioned
an example of Finsler metric on S* with only two closed geodesics.

It seems interesting therefore to develop, on the lines of the riemannian
case, the analogous theory for Finsler metrics. In this paper we will describe
the ‘“ arithmetic theory’ for closed geodesics on Finsler manifolds, and, in
this context, the reason for Anosov’s example is the non symmetry of the
metric. However the arithmetic theory, although very suggestive, does not
give a completely satisfactory answer to the problem since arithmetically
distinct closed geodesics are not necessarly geometrically distinct.

I wish to thank prof. W. Klingenberg for having suggested the problem
and for very helpful conversations, and my advisor at the University of
Chicago, prof. R. K. Lashof for his constant encouragement and friendship;
most of section 5. comes from his ideas.

*) This a summary of the author’s doctoral dissertation at the University of
Chicago [15].
(**) Supported by the Italian Research Council (C.N.R.).
(***) Nella seduta del 14 febbraio 1976.
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2. FINSLER MANIFOLDS

We begin by setting some notations. If M is a smooth manifold we will
denote by TM the tangent bundle and by s, (TM) the zero section. If E, and
E, are smooth vector bundles over a smooth manifold and /: E, - E, is a
smooth fibrewise map, we denote by & f the “fibre derivative” of f, i.e.
dp f(€) = d (f |gn(e) (¢), where =, is the projection of E;. Naturally R will
denote the real line, R™ the non negative real line, Q the rationals and Z the
integers.

DEFINITION. A Finsler manifold (M , F) is a pair consisting of a smooth
manifold M together with a continuous function F:TM —>R™ such that:

1) Fis C°  on TM-s,(TM)
2) F(X)=o0 if and only if X €s,(TM)
3) F(X) = ¢F (X)  for teR*

4) dy (F*) : TM-s,(TM) —T*M is a non degenerage quadratic form
(and therefore positive definite).

The function E = F? is called the energy of the Finsler metric and it is a
C' function (and naturally C* outside s, (TM)). The lack of smoothness on
5o(TM) is peculiar of Finsler manifolds and in fact E is C* on all TM if and only
if F is the norm of a riemannian metric. On the other hand Finsler metrics
which are not riemannian ‘‘ occur in nature” (see, for example, [23]).

Consider the standard symplectic 2-form w, on T*M and the pull-back
wy = (dg E)*w, . wy, defines a sympelctic stucture on TM-s,(TM) and a
vector field W, called the Euler field, by:

(2.1) wy (W, V) =4dE (V)  for all V €T (TM-s,(TM)).

W, is then a C* vector field outside the zero section and extends to a c'
vector field on all TM vanishing on sy (TM). Moreover it is a second order
differential equation.

The geodesics of (M, F) are defined as those C* curves whose tangent fields
are integral lines of Wy; it is easily seen that actually geodesics are C* curves
and the energy is constant along their tangent fields.

If (%, -+, x,) are a system of local coordinates in M and (%, -+, %, ,
%y, +,%,) are the local coordinates in TM associated to the frame (3/ox, ,- - -
«+-, dfox,) the equation 2.1. takes the familiar form:

b

(22) QR (r (1), % () — 0w (x (1), & (9) = o

For a curve c¢:[a,8] —-M we define, as in the riemannian case: #se
F—/engzﬁ F, and the E-length, E, by:
' b
f«“’@):fF(é(x))dx E@:} E (¢ (2)) dt

a a
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A small modification of the riemannian case argument gives the following:

THEOREM A. (@) The Euler equations 2.2 have a unique solution with
given initial conditions and this solution is smooth (C*).

(b) For p €M there is a neigborkood U, of p and > o suck that any
two points (in a given order) in U, are joined by a unique geodesic of length <e
and this geodesic depends in a C* fashion on the two points (as long as they are
distinct).

©) Geoa’eszcs minimize ““locally” B and F; conversely any curve that
minimizes £ is a geodesic and any curve that minimized ¥ is a geodesic, up
to a possible reparametrization.

3. THE MANIFOLD OF CLOSED CURVES AND THE ENERGY INTEGRAL

Suppose, for simplicity, M embedded in R™ and consider the Sobolev
space H'(S,R™) where S=R/Z is the circle parametrized between o and 1.
The subset AM = {c € H'(S,R™:¢(S)CM} has a riemannian manifold
structure, moddelled on a Hilbert space, induced by the structure of M (see,
for example, [7], [14], [20]).

If F: TM sR* ‘is a Finsler metric on M the energy E induces a map,
the E-length o energy integral, E:AM—>R by:

E (o :fE(é(t)) dz

S

THEOREM B: E 45 C*~ (te. it is C* and its differential is locally
lipschitzian).

Writing dE expl1c1t1y it is easy to recognize that ahy closed geodesic is
a critical point for £. The converse is also true:

THEOREM C: ¢ €M s a critical point for E if ‘and only if it is a closed
geodesic.

As mentioned above, the structure of M induces a riemannian structure
on AM and'we will denote by (,) and || - || the relative scalar product and
norm. Consider then, on AM, the vector field £ = —gradﬁl defined by

(¢,n)=-—dE(y) for all €T AM

£ is a C'7 vector field and therefore there is a unique integral curve of £
thru a given point.

The stax:qdard technique in Morse-Liustenik-Schnirelman theory for loca-
ting the critical points of a function is to “to go down” along the integral
lines of the gradient field. This is usually done, in the finite dimentional case,
under a properness assumption for the function. The condition that plays
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the analogous role in the infinite dimensional case is the following (see [14],
[18], [19]):

Condition (C). Let H be a riemannian (Hilbert) manifold and /: H— R
a C' function; f is said to satisfy condition (C) if for any subset S CH on
which f is bounded but || df]| is hot bounded away from zero, the closure
S of S contains a critical point for f£.

The following clearly implies condition (C) for the energy integral:

THEOREM D. LZet {¢,} CAM be a sequence such that:
1. E(c,) < 4y for some constant k,

2. [[E(n)ll =0

then {c,} has a comvergent subsequence.

4. THE CRITICAL POINTS THEORY FOR THE ENERGY INTEGRALS

On AM & defines a semigroup of ﬁ-decreasing transformations ¢,: AM—
—~ AM as follows: Let ¢ € AM and {, (#) be the maximal integral curve of
£ with {, (0) = ¢; then ¢ (¢) is defined for all # > o0 (as a consequence of
condition (C)) and we set o, (¢) = ¢, ().

Given a compact set A CAM , A==, we define:

minimax (A) = lim max (E |e,))
=00

The ¢ minimax theorem ” gives then (see [19]):

THEOREM E. Minimax (A) is a critical value for E.

Naturally if we start with different subsets A, B C AM the relative
minimaxes could coincide and, a priori, could give the same critical point.
We will define now a particular class of compact subsets for which the even-
tual coincidence of critical values (minimaxes) gives the existence of many
critical points with that E-value. We fix a field of coefficients for homology
and cohomology.

First of all we want to avoid the trivial geodesics, i.e. E™ (0), and for
a >0 we set A°M =E""([0,a]). We recall that there is a cap product
pairing: ' .
Hyx (AM, A°M) ® H* (AM — A°M) -2 H, (AM, A°M)

(see [13], [14]). We will say that two non zero homology classes z € Hy (AM ,
A°M) and z,€Hppj (AM,A°M),j >0, are subordinated if there exists a
non zero cohomology class w € H (AM — A°M) such that 2, = 2z, O w. For
a class #2€ He (AM, A°M) we set:

minimax (2) = inf minimax (| v |)
vEZ

where v €z means that » is a cycle in £ and | 7| is its support.
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THEOREM F. Let 2, and 2y, be subordinated homology classes  in
Hx (AM , A°M) and k; = minimax (z;). Then:

1) k; is a critical value for E,
2) kg =1y >0,

3) If by = ky the set of critical points at B-level b, has covering dimen-
ston > dim g, — dim 2, .

Theorem F is not yet completely satisfactory since, in case 3., if dim z, —
—dimz = 1 the set of critical points at that level may just be the set of
closed geodesics obtained rotating a given one.

We give now a description of the ¢ S-equivariant theory”. The circle
S acts on AM by rotatiofls and let us denote by IIM the orbit’s space. Since
ﬁ as well as the riemannian structure on AM, is invariant under the action
of S, E induces a continuous map En IIM — R and ¢, induces a semigroup
of Ep-decreasing transformations cpt : TIM — IT Mcharacterized by the com-
mutativity of the diagram:

AM —®, AM
Vo
oM ‘- IM

where 7 : AM — IIM is the quotient map. As well as for AM we have a cap
product pairing:

Hy (1M, I°M) ® H* (IM — I° M) H, (TIM , II° M)

where 1M = Ef* ([0, 2]), @ = o; therefore we also have the correspondent
concept of subordinated homology classes.
If Ag CIIM is compact and not empty we define

minimax (Aq) = hm max (Eg |11

(An)>
and, for z€ Hy(IIM , TI°M),

minimax (2) = inf minimax (|7 |).
VEZ

We have the analogous of theorem F for the new situation:

THEOREM G. Let 2z, and z, be subordinated homology classes in
Hy (IIM , TI°M) and #; = minimax (2;). Then:
1) k; is a critical value for &,
2) hy >l >0,
3) If hy = hy the set in TIM which is the image, under the quotient map,

of the set of critical points of T-level hy in AM, has covering dimension
> dim 2, — dim z,.
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Geodesics constructed with the method of theoréms ¥ and G are called arith-
metically distinct. We want to point out explicitly that arithmetically distinct
closed geodesics may not be geometrically distinct in the sense that they could
be just coverings of the same geodesic. An important reason for considering
the above concept is that if ¢; and ¢, are coverings of the same closed geodesic
then the E-value of ¢; has to be relatively large. So the concept is particularly
useful any time we can construct cycles in (AM, A°M) or (IIM, I°M)
with small minimaxes. Moreover there are non homogeneous variational
problems that are treatable with the same methods. In this case, since the
energy integral is not invariant for reparametrizations of the type # — a,
a = const. > o, the concept of arithmetically distinct is most adequate.

5. THE RATIONAL COHOMOLOGY OF AM AND IIM

We will describe now some of the properties of the cohomology of AM
and IIM with rational coefficients (so H* (X) will mean H* (X ;Q)). We
will assume M compact and simply connected.

Sullivan has constructed cohomology classes w, € H**? (AM), for some
a >0 and 6 > o, that restrict non trivially to H”** (QM) (see [14], [25]).
Since H* (QM) is a free algebra (in the sense of graded commutative and
associative algebras) it follows that whenever an even dimensional class in
H” (AM) restricts non trivially to H* (QM), it generates a polynomial subal-
gebra in H* (AM). This happens, for example, if the first non vanishing
rational homotopy group is odd dimensional or if M has the homotopy type
of the product of two compact manifolds.

Since the inclusion AM — A’M C——» AM is a homotopy equivalence
(see [6]) it is easily seen that if .H* (AM) contains a polynomial algebra there
are infinitely many subordinated homology classes in Hx (AM , A°M).

Unfortunally, in some interesting cases, as for example S**, the ring
structure in H* (AM) is not very rich. In these cases it is useful to look at
H* (IIM). The following theorem relates the two:

THEOREM H. There is an exact sequence:
< > HTHAM ,AM) - HT2 (M, TI°M) 2%
H (M, I°M) = H" (AM , A°M) — - -
where w, € H?* (IIM — TI° M).

In particular we notice that the first non vanishing cohomology groups
of (AM,A°M) and (IIM, II°M) occur in the same dimension.
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Example: Looking at the minimal model for AS** it is easily seen that:

\Q if s=@Cj+1)(k—1)
H (AS*,A°S™) = ' Q if s=(2j+1)(2k—1) +1

o} otherwise

and the ring structure is the trivial one. In correspondence with a class
z, generating H**7' (AS* | A° $*¥), there is a non vanishing class in
H*1 (11S** | 1° S**) such that the cup product with (wy)? is non zero for,
at least, 0o < p <24—1 and so Hy (TIS**  TI°S**) contains at least 2 4
subordinated homology classes.

Another consequence of the previous theorem is the following:

THEOREM 1. At least one of the following facts holds:
1) H* (AM) contains a polynomial algebra,
2) Hy (IIM , I°M) contains two subordinated homology classes.

Theorem I implies, in particular #he existence of at least two arithmetically
distinct closed geodesics on any Finsler manifold (compact and simply connected).

Remark. 1f the Finsler metric is symmetric, i.e. F(X)=F (— X),
instead of considering IIM = AM/S we could consider IIM = AM/o (2)
(theorem G holds also in this situation). In this case Klingenberg has proved
the existence of, at least, three subordinated homology ciasses in Hy (IIM
TI°M ; Z,). His proof does not carry over to Hy (IIM, TI° M ; Z,). This
justifies the assertion, inade in the introduction, that the reason for Anosov’s
examples seems to he the non symmetry of the metric.
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