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Algebra. — Ranked partitions of rectangular matrices over fintte
Jfeelds. Nota di Joun H. HopgEs, presentata @ dal Socio B. SEGRE.

RIASSUNTO. — Per certe matrici A;, A,, B, viene determinato in modo esplicito il
numero delle soluzioni (U, , Uy) dell’equazione matriciale (1-1) su di un campo finito, dove
le U;, U, abbiano ranghi assegnati.

I. INTRODUCTION

Let A; be an m X¢ matrix of rank p,, A, be an sX# matrix of rank p,
and B be an sX# matrix of rank » over a finite field F of ¢ elements.
In [3], the Author enumerated the pairs of §Xm matrices U; and zX¢?
matrices U, such that

(1.1) U,A +A,U,=B.

More recently, A. Duane Porter [7] and the Author [4] have determined for
certain integers @ = 1,6 = 1, and matrices A, , A,, the number of solutions
W+, Wy, Vy,---,V, over F of the more general matrix equation

(1.2) W, - WA +A,V,.---V,=B.

In this paper we study the problem of determining the number of solutions
U, , U, of (1.1) of given ranks r,,r,, respectively, over F. If this problem
could be solved for arbitrary A, , A,, then it would be possible to determine
the number of solutions of (1.2) for arbitrary @, 4, A, , A, by using Porter’s
enumeration [6] of the solutions of the matrix equation W, .- W, =U,,
which depends on the rank of U;. Unfortunately, however, the enumeration
given in the present paper is only complete for matrices A, , A,, and B satis-
fying certain special conditions that are implied by Porter’s conditions in [7]
on A; and A,.

2. NOTATION AND PRELIMINARIES

Let F denote the finite field of ¢ = p/ elements, p a prime. Except as
noted, Roman capitals A, B,--- will denote matrices over F. A (m,#)
will denote a matrix of » rows and » columns and A (2, »;7) a matrix of
the same size with rank ». I, will denote the identity matrix of order » and
I (m ,n;7) will denote an » X7 matrix with I, in its upper left corner and
zeros, elsewhere.

(*) Nella seduta del 10 gennaio 1976.
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If A = (a;;) is square, then ¢ (A) = Xa,; is the #ace of A and whenever
A 4+ B or AB is square, then 6 (A + B)=06(A) +6(B) and ¢(AB) =
= o (BA).

For a€ F, we define

(2.1) e(@) =exp2mit(@)p , t(0)=a-+of _1_...+ocpf*1’

so that for all «,B€e F, e(@)e GF (p), ¢e(« +B) =e () e (B) and
' 25 g, ®=0,

(2.2) 1g“e(w() (O’ %o,

where the sum is over all ye F. By use of (2.2) and properties of ¢ it is easily
shown that for A = A (m, »)

Wm’ A=O,
(.3 gewAB)}:%i Ao

where the sum is over all matrices B = B (i, m).
The number g (% ,v;¥) of #Xv matrices of rank y over F is given by
Landsberg [5] as

y—1

(2.4) g,v;9) =@ —)@—Ne—7).
j=

Following [2; (8.4)], if B = B (s, #; p), we define

(2.5) | H®B,2 = ; e {— o (BO)},

where the sum is over all matrices C =C (¢, s;2). This sum is evaluated
in [2, Theorem 7] to be

2z

(26) H (B , 2’) — gpzzo (_ I)igj(j‘zo_n/z [j] g(S—— p,t—p ,Z——']) ,
i j:

where [j] denotes the g-binomial coefficient defined for nonnegative integers

p and ; by [2]:1, [i]:oifj>p and

[p] =0—¢) (01— N1 —g)--(1—¢), o<j=sop.

Since H (B,2) as given by (2.6) depends only on-s,¢,p and 2z, we write
H@B,2) = H (s,2,p,2:-

3. RANKED SOLUTIONS OF (I.1); GENERAL CASE
Let N denote the number of solutions Uy =U, (s, 7 ;7,), Uy =U,(%,¢;7s)

over F of equation (1.1) for given Ay =A;(m,%; 01), A=A (5,7 py)
and B =B (s,#;7). Let P, Q,, Py, Q, be arbitrary, but fixed, nonsingular
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matrices of appropriate sizes over F such that PyA;Q, = J, =1(m,¢; ¢y
and P, A, Qy = Jo=1(s,7n;p;). Then, letting By =B, (s,#;») =P, BQ,,
it is easy to show that (1.1) is equivalent to

(3-1) Ui Ji + J: U= By

Therefore, in view of (2.3) and other properties of ¢ and ¢ from section 2,
N is given by
32  N=g¢g* 3 3 ¢{c(Ui]i+]:U:—ByC)

Up, Uy C(2,9)

=g X e{o(BoC) X e{—0 (U1 J:O} 3 ¢ {0 (J. U, O)},
Cit,8) U Ug

where the summations are over all Uy =U, (s, m;7), Uy, =U,(n,¢;r)
and C (¢, s5) over F.

In order to sum over all C (¢, s) in (3.2), we may group together all terms
corresponding to C’s of the same rank z with 0 = 2 = min (¢,s5). For each
such 2 > o, we may let C = PI (¢, s;2)Q, where P and Q are nonsingular
of orders ¢ and s, respectively. Then, to sum over all C of rank # in (3.2),
we may sum independently over all such nonsingular P and Q and divide
this sum by the number of different pairs P, Q which yield each different
C =C(¢,s;2). This number is easily shown to be equal to g, gslg (¢, s;2),
where g (¢,s;2) is the number of such C over F as given by (2.4) and
gr =g (&, #; k) is the number of nonsingular matrices of order Z over F.

If all of the above is done in (3.2), we get

(3.3) N =g [g (s,m;n)g(n,t;m) +
(t,s)
£ B ek B e (s BoPIC, 559} 5,08

where (¢, s) denotes the minimum of # and s, P and Q run independently

through all nonsingular matrices of orders ¢ and s, respectively, over F and

for arbitrary but fixed z, P, and Q, the sums S, and S, are defined by
Si= 2 e{s(U,],PI(,s5;2)},

Us(s,m;7)

S, = E e{o(I{t,5;2)QJUy}.

\ Uy (n,t;72)

(34).

(Note that S; and S, have been simplified by replacing — QU; and — U, P
by U,; and U,, respectively).

If P and Q in (3.4) are partitioned into submatrices as P = (P,;),
Q= (Qy) for i,j = 1,2, where Py = Py, (py, 2; /1) witho =, = min (g, 2),
Po=Pup(pr,2—2) , Pu=Pu(t—0p1,2) , Po=Pyp{—p,2—2) and
Qu=Qu(z, p2;/0) With 0o =fp =min(z,p), Q=0Qun(,s— ), =
=Qu(s—2,p) , Qu=2~0Qn(s—=z,s—p,), then it is easily shown that

rank J; PI(¢,s;2) =/ and rank1(z,s5;2)QJ,=/;.
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Therefore, for any such P and Q, in view of the definition (2.5) and comment

following (2.6), S, =H(@n,s,f,,n) and S,=H(,n,f,,7), where
H(s,?,p,2) is given by (2.6). Substituting these results into (3.3) and
grouping terms for which P and Q have P;; and Qy; of ranks f; and f,, respecti-
vely, we get

(3.3) N =g [g(s,m;rl)g(n,t;rz)
¢, (01,2) (2,00
+ 2 8 siles X XN Hen, s /i) HE n fa7)
= 1= 3=

.%'e{c(BOPI(t,x;z)Q)}],

where for each choice of z, £, and f;, P and Q run independently through
all nonsingular matrices of order # with rank P;; = f; and order s with rank
Qu = f5, respectively. In order to proceed further, we must obtain a more
explicit value for the inner sum in (3.5). This is done in section 4 for certain
special B,. The Author has been unable as yet to evaluate this sum for gene-
ral B,.

4. THE VALUE OF N FOR SPECIAL B,

If certain assumptions are made concerning the form of B, then it is
possible to obtain explicit values for N from the formula (3.5). For this purpose,
let B, be partitioned as B, = (B;;) for 7= 1,2, where By is psXp;, By
is paX(2—p1), By is (s — pa) Xy, and By is (s — p2) X — pu)-

First of all, it was shown by the author [3, Theorem 7] that with A, , A,
and B, as defined earlier, a necessary condition that (1.1) has solutions U, , U,
of any ranks is that By, = 0. In this case, it is easy to show that for P and Q
defined and ipartitioned as in section 3, the summand in the inner sum in
(3.5) becomes

(4.1) e{c(BoPI(z,s5;2)Q)} =
=¢{06BuPuOuw}e{oBwPsyQu}e{o By PuQu)}.

The difficulty in obtaining a more explicit value for the inner sum in
(3.5) occurs because in (4.1) the matrices P;; and Qy; are each involved in two
different - factors. If we assume that not only B, = o, but also B, =0
and By = o, so that By, has rank » < min (p,, p.), then we can prove

THEOREM. Let Ay =Ay(m ,2;0),As =A,(s,7; 05) and B =B (s5,2;7),
with » = min (py, p2). Let Py ,Q,, Py, Qy be arbitrary nonsingular matrices
over F such that Py AL Qy=1(m ,t; ) and Py A, Q, =1(s V7 ) and let
By = P, BQ, be partitioned as above, with By = By (g2, p1;7), By =0,
By = 0 and By = 0. Then the number N of solutions Uy = U, (s, m ;nry),
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U, =U,(n,t;7) of equation (1.1) over ¥ is given by

(42) N=g* [g (s,m;r)g(n,t;7)

(t,s) (°1,2) (2,02)

+ 21 g(t,J‘;Z)/gtgszo fZO H(”z)svfl!rl>H(t)n)f2)7’2) ‘
~<p(f1,l‘——pl,z,Z)Cp(z,t—z,t,t)‘cp(fz,:—pz,z,z)cp(z,s-——z,s,s)-

(r, f1)
: Z g(”,ZU’)(P(J/,Pl—ryZ,fl)H(Pz,Z,J”fz)] ’

y=0

where g (u , v ;y) is the number of uXv matrices of rank y over F as given by
(2.4) and gy, =g (&, k; k) is the number of nonsingular matrices of order k
over ¥, (a, b) denotes the minimum of integers a and b, the value of the function
H(s,2,p,8) 2s given by (2.6) and ¢ (r ,n ,t,r + v), as given by (4.5) below
is the number of (n + m) Xt matrices of rank r + v over F whose last m rows
are those of a givem m Xt matrix of rank r.

Proof. Suppose that the hypotheses of the theorem are true. Then in
view of (4.1), we see that the inner sum in (3.5) becomes

(4.3) S = IE) e{ o (By PuQut,

where for fixed z,f;, and f;, P and Q run independently through all non-
singular matrices of order # with P, = Py, (p;,2;/,) and order s with
Qu = Qyu (2, p2;/y), respectively. For each fixed such pair of matrices
Py, Qu, the number of distinct corresponding pairs of nonsingular matrices
P, Q is easily seen to be

(44) CP(f1,f—91,Z;Z)CP(zyt;Z,f:’)'iP(fz,5—‘92,2»@(\0(2,3—2,5,5),

where ¢ (# , n,¢,7 + v) is the number of (# + ) X ¢ matrices of rank » 4+ »
over F whose last 7 rows are those of a given m X# matrix of rank ». This
number has been determined by Brawley and Carlitz [1; Lemma, p. 167]
as

» v—1 .
4-5) ¢ m,t, 7 +v) = [v]q"”‘”"l:!(q‘—q”‘),

n
where [v] denotes the g-binomial coefficient defined for non-negative integers

n and v in section 2. Thus, sum S defined by (4.3) is equal to the expression
(4.4) times the sum

(4.6) ; S :P‘§ 4 { 6 (By Py Qll)} :PZ 4 { 6 (I (p2, p1;7) Pu Qu)} .

llIQll

If now any arbitrary, but fixed, P;; in (4.6) is partitioned as
Py, = col (Pyyy, Pyyp), where Py, is Xz of rank y,0 <y = min (7, f;), then
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I(pg, p1;7) Py = col (Pyy;, 0) is.py X2 of rank y so that in view of definition

(25),
(4’7) Z e{c(I(Pz» Pl;r)PIIQ}1}=H(P2’Z’y,f2)’

Qu1(2,02:f3)

where H (s, 7, p, 2) is given by (2.6). For each y, the number of such ma-
trices Py over F is g (7, 2 ; ) and for each such fixed matrix Py, the number
of matrices Py (p,, 2; /1) is just o (v, py— 7, 2,/,) as given by (4.5). There-
fore, it follows from (4.6) and (4.7) that sum S defined by (4.3) is equal to the
expression (4.4) times the sum

) (r,f))
(4.8) Z})g(r,z;y)@(y,pl—r,z,fl)H(pz,z,y,fz)-
Y=

If the value of S so obtained is substituted for the inner sum in (3.5), we get
formula (4.2) so that the theorem is proved.

S. AN ILLUSTRATION OF THE THEOREM

We close with an example of matrices A, , A, and B in (1.1) for which
the hypotheses of the theorem, concerning B, apply. Consider (1.1) for
matrices A; and A, such that p, = rank A, = ¢ and p, = rank A, = s and
B=B(s,?;7). If P and Q are arbitrary but fixed nonsingular matrices
such that PBQ = I (s, #;#), then (1.1) is easily shown to be equivalent to

(5.1) Vi Q) + (PA)Y Vy = I (s, 257),

where A; Q is mX# of rank # and PA,; is s X# of rank s. If we take A; Q
and PA, in place of A; and A,, respectively, in the theorem, it follows by
virtue of the 'special ranks of these matrices that we may take both Q, and
P, to be identity matrices and so B, =1(s,#;7) satisfies the hypotheses
of the theorem concerning its submatrices. Thus, the number N of solutions
V=V, @ ,m;r), Vo=V, (n,2;7) of (5.1), which is equal to the number
of solutions U; = U, (s, m ;7), Uy = U, (n, ;7 of (1.1), is given by (4.2).

We note that these conditions on A; and A, are exactly those assumed
by Porter [7] in connection with equation (1.2) for arbitrary @ and &.
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