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Equazioni funzionali. — On the behaviour of the solutions of a
system of differential equations with set functions as unknowns. Nota
IT di ApoLr Haimovici, presentata ® dal Socio B. SEGRE.

R1ASSUNTO. — Ved. quello dato al principio della Nota I, apparsa nel precedente
fascicolo di questi « Rendiconti », alla fine della quale trovasi la Bibliografia. Le numerazioni
dei paragrafi e delle formule continuano quelle di detta Nota I.

4. THE LINEAR SYSTEM

Consider the linear system
do
(18) H;(x)=A<P(Px), @ = (P, P2, s Pm) s

where A is, as in (9), a constant matrix. We look for a solution of (18), with
singular part v = (v, vy, - -,Vy,) with support on the null measure set H € R*.
Let S be a linear transformation, with non-singular matrix (s;,), and

(19) Lp:S(P det S#O) ¢:(q}lr¢2r"')¢m):
chosen so that SAS~'=] is a Jordan canonical matrix. Equation (18) becomes:
d¢

(20) dw =1y,
where

A, o o --- Ay o o .- A; 0 O
j=|{° A, 0 --- , A=]©° Ay o --- , A= A O

o o A o o Ay o 1 A

Denote also by
(21) h=3Sv, h= (b, g, lom)

the singular measures of {;, with the same support H as ¢;. If A; is a real
eigenvalue of A, the subsystem of (20) corresponding to it will be

ddy -
T,(x) = ki $u (P)
(22) S ) = 4 (B) + haha (B
djl,si (:’C) = "I"i,s,‘—l (Px) + A q’i,s,' (Pz>
®

(*) Nella seduta del 10 gennaio 1976.
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(we have used a notation with two indices for the components of {: the first
index labels the eigenvalue, the second one denotes the rank of the component
in the set of components with the same A;; an analogous notation will be
used in the following).

If there exist also complex eigenvalues of A, then we shall perform a
second linear transformation

® =Ty =TSo,

letting unchanged the {’s corresponding to the real \’s, and changing the
others, corresponding to a pair of complex ones A,A;; =2, in

;.1 (Pa) = — {3 (P) + $yua,1 (P}
(32) 1
(D:i+1,l(P:v) = 27 {%‘l (Px) - ’1-'7'+1,z (Px>} .

Denote by 1 the set of indices 7, for which 2; is real, and by J the set of
indices ; for which 2; is complex. The system in @ will be:

dq’“ (%) = % Dy (Py)

dd) 2
—2 () =0, D, (P
(24) | (%) = @y (Pg) + 2 Pip (Py) Gen
d;
dy. (x) — T8—1 (P:c) + )\i (Dz 8 (Pz)
[ do, .
I day_‘gl-— (x) = a]' q)jl (PZ) - bj d)j+1’1 (Px) y )\_’i == d] + Zb]'
|
”(%Df () = a; O (Pp) — &5 Pjia,5 (Pr) + Pju (Pr)

....................................................

3%— @) = a3 O, ,; (P) — b Byoayy (P + Dy
can) | el

SR () = 0y @y (B) + 5 D (B
L (3) = 0 o (B) +6; @, (B) + Dpiaa (P)
l‘\ d;(zg—i (@) = a; Pj 11,5 (Po) + 6; sy (P) + sy, 11 (Po)-

3. — RENDICONTI 1976, Vol. LX, fasc. 1.
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The singular measures of ®; will now be:
(25) ﬂ::Tﬁ:TSV) TC=<7'~'1:7'52»"';T%)»

with the same support H. In the real case m; = 4;, in the complex one we
shall write w; = p; 4 7g;.

Taking into account the properties of the functionsw (x, y,\),w; (x , ¥, ),
V:(x,y,N) and W,(x,y,2), defined in the previous paragraph, the solution
of this system will be:

(26) (I)ir (Pz) =f Z wy (x Yo )\'L) dm'i,r—H-l,y (Z. el y ¥r=1,2,"-", 'Y'i)
=1

H

r
(I)jr (Px> = j ; {Vr—-l+1 (x 'V 7\]') dp]',l,fl - Wr—l+1 (x 'V 7\}') dgjl,y}
H
(26,)

Djiy,r (Px) = f 12:1 {Vr-l+1 x,5, 7\5) d%’l,y + W (x,y, 7\j) dﬁjl,y}-

H
After this preparation , we can prove
THEOREM A. Swuppose that:
1) In the complex plane there exists a domain X, such that, if N € X then
(27) |z, (x,y,N)| <M = const. t=1,2,--);
ii) all the eigenvalues of A arve in X,
then the trivial solution of (18) is stable, in the sense of our definition.

Proof. Starting with (18), we perform a linear transformation U =TS
(as in the previous considerations) and arrive to system (24,), (24,) the solu-
tion of which is (26), (26,). Between the functions ¢ and ®, the two sets of
inequalities hold:

2 \ 2 N 2 2 L 2 ] N 2 L 2 2 < 2
(28) “Z;(DiSZICP@'SA Zlq)i y o a -Z“ICP‘S@-ZI(I%SA iZICPi,
= - o= i= = = =

with suitable constants @ , a’, A, A’ depending on the elements of the matrix U.
Remark now that from (27) it follows

(20) Vix,7,0] , W@y, 0| <M.

From the expression (26), (26,) of the solution, it easily follows

| @ (Pr)| < Mf IZ_JI |dm2i, 14| (zel),
i

(@, @] <M [ 3 (ldpal + ldg) e
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Choose now %4, p,¢ such that:

6o [lamd=a o [lasd o [laed s
H H H
It follows:
1 ./
(31 5 3 @0+ 3 3 (@) ShCep
i =1 =1

m
with a constant C easily computable. Using (28), it follows Z o < A*MPC® 2
=1

If we take n < (ACM)'g, it follows X2 <e?.

It remains to be proved that we can choose the singular measures in
such a way that (30) is fulfilled; now, from inequalities of the same type as
(27), and taking into account that ©= = TSv = Uv, we deduce

20+ T B @t + @) =2 Tk

Take v; such that v; << n/(m6), where & is the greatest absolute value of the
coefficients of the matrix U-! = S~ T-%; we get n, = 2 bi;v; and |m;| <.

It follows then that, if we take

G2 il <=~ (ACM) e

the relation (31) is a consequence; and so the theorem is proved.

5. NON LINEAR SYSTEMS

We now come back to system (9), and suppose:

@) the matrix A has its eigenvalues }; in the domain X, where for
x€Q,yeH ,w,(x,y,)) are bounded;

6) the functions G;(x,P,) defined on QXR™ satisfy uniqueness
conditions for system (9), and

Gi (x ) O) = 0,
¢) the same functions G; satisfy also
m A4a)/2
63 16 G0 @I <K@ 3 @ihy)
=
where K (x) satisfies

(34) G(V;z—)“"“fK (@@, +L) dy, <M, < + o0

Py
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(6 is the greatest order of multiplicity of the eigenvalues of A, and L is the
greatest absolute value of the eigenvalues of A).

THEOREM B. If A,H ,G satisfy the above conditions a) , b),c) and the
mapping P satisfies conditions i), ii) of §2 and ) of § 3, then the trivial
solution of (9) is stable, in the sense of the definition of § 1.

Proof. Let be € > 0 and v; the singular measures of ¢; with support
on the null-measure set H. Applying the transformation U = TS to the vector
function ¢, we obtain the system:

[ d®;
'—a'p’_l (x> =N (Dil (P:c) + Fil (x s \ (P:t))

d;::z. (%) = Oy (P) + 7 Dy (P) + Fia (x, @ (P,)

(351) (e D),
(%) = B (Pa) + 0 Biyys (P) + Fiy (x, @ (B)
o dd,; ’
( “d—”‘]L (%) = a; @y (Pp) — 6; @jya,0 (Pr) + Fju (x, @ (Py))
t d(Djz
—Ep.— (x) = a; (Djz (P:c> - bj (I)j+1,2 (Pz> + (Dy,l (Px) +
+ Fi,z (x ’ d (Pz)>
dq)',s
d:L . ( ) =a; (Dj,sj (Pz)—“éj (I)j+1,sj (Pz) + (I)i,sj—l (Pa:>+
‘ + Fj, (x, © (P, )
(352) / dod. ]j( o Jesl),
”d_J:i (®) =06;Dj; (Py) + @, Pjpy s (Pr) + Fipga (v, ©(Py)
dq)iﬂ,z

T (x) = 61 (Djz (Px) + a; (Dj+1,2 (Px) + (Dj+1,1 (Px) +
+ Fipa (o, @ (Py)

d®ju,s;
L@ =80 (R) + 4P,y (P) + Ppa (P +
+ Fiag (x,  (B)

where we have used the same notation as in § 2, and have denoted F = UG.
The singular measure of ¢ will be, as in §2, = = Uy, and we denote
hi =m; for €1, and n; = p; + dg; for j€ . '
The hypothesis &) for G, leads to F (x,0) = 0, and ¢) leads to:

. m (14-o0)/2
(36) IFe ol <R@ (S <I>%) ,
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where K (%) differs from K (x) by a multiplicative constant, and consequently
satisfies a co‘ndition analogous to (33):

(37) o [ R (@) (7,1 4 L) dy < My < 400
Pz

The solution of (335), (355) is given by the intermediate of the Volterra inte-
gral equations system:

@y, (Py) = O3 (Py) + f 2@, 9,0 Fira (v, @ (B dyy, (€D,
Px

(Dj,r (Px) = (D(y)r (Px> + .f lgr.:; {Vl (x ) 7‘7‘) Fj,l—r+1 (.3/ ) () (P:l/)) -

Py

(38) ‘ .
— W, <x ' Vo 7‘]’) Fj+1,l-—r+1 (v, () (Py))} dy'y (] € J)

(Dj+1,r P = ®3+1,r P + f l=21 {Wz (x,y, )\j> Finirn (v, \J (Py» +
Px

+Wilr, M) Fimn (v, @ (Py))} dy s
where ®° (P,) is the solution of the linear system (24), with singular part .

The equivalence between the stated problem and system (38) can be
proved by differentiation of the two members of the last equations, taking
into account the differentiation formula given in § 3 and relations (14).

We shall now prove that the singular parts of ®; can be chosen so that

(NoH

(39) (@; (P))* <i,

i
L

n; being a given real number. To this end, consider the operator .# defined by
o (P,) = (£ @) (P,), where .# ® is given by

By (b= 0% + [ Swr(r,y W) Fopra (7, OB dy,  GED

Py

By (0 = O, + [ 3 (Vi3 Fioia (0, @ (B) —
Py
(40) .
- Wl (x Yo Aj) F]',l—r+l (J/ , @ (Py>)} d!"y )
&)j+f,r (Px) = @3“,7 (Px) +fl=zl {Vl (x 'Y "7‘7') Fj+l,l‘r+1 (J’ ) o (Py» +
Py

+Wi(x, ¥, %) Fiira (v, © (Py)} dy .
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Let 7 be a positive, for the moment arbitrary number, and .# the set of vector
functions @ satisfying:

(Di (Px> 2 2
“1) z(m@c,?m)“'
and write (40) under the form:
a)ir (Px) . q)gf <P“> -+

o, 1+L)  wo(,1+D

v w (x,y, M) ey, 1 +L) Fima,®®) el
+f_1 w@, 1+ L) N CES R AL
Px
by, (P _ O (P)
o(x,1+L)  o@,1+1L)
+ " 3 {Vl F,y Mo, 1 +L) Fjm, @ (Py)) o
) 1=1 ow(x,1+L) oy, +L)
Wix,y, Mo, 1 +L) Fiim@,?® (Py))} ;
- o, 1 +L) w(y,1 FL) dusy (Gel)
Dy P) P, (Pa)

ox,1+L)  o@®,1+L)

r V(":J’J\j)w(y,l +L) Fj+1,r—l+1<y’(D(P1/)>
+JZ{Z w@,1+L) oy, +L)

+

+Wl(x»3")\j)w(ysI+L) Fj,r;l+1<y:¢)<Py)>} dHy~

o(x,1 +L) o(y,1+L)
From the properties of w;—see §2—we get:

|wl(x:y’7\i)| S|wl(x!.y’L>I Swl(-x:y, I +L);

and »
wz(x,y,M>‘°(J’,1+L> <1
w(x,14+ L) -
We choose now the measures %;, p; and g; such that:
@ (P,)
—_— | <

T being another, for the moment arbitrary, positive number; this choice is
possible since, according to (26,), we have

@y (P < S w(x, Yy, e (v, 1+ L) d%i, 1
m(x 1+ L) ;1 ox,1 +L) o(x,1 +L)

f i d;lz e s S
@, 1 +L)

IA
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and, according to (26,), in the same way we obtain

q)gr (Px> " < f dp},
, 1+ L) , 1 (o(y 1+ L)

+

dg;, )
o(y,1+L)

If now Q is a lower bound for o (x, 1 + L), condition (42) is obviously
satisfied if:

@ [laheal=e f Ayl < f Jdgsal <Q -,

where o is the greatest multiplicity order of the eigenvalues A.
Suppose now @;, ®; chosen in the class of continuous functions
satisfying

¢’1<Px) I b
l'w<x,I+L>]S” ’ ”<\z‘vmj)'

Then, taking into account the hypothesis, (40) leads to:

L a)irﬂ)z) < fr w(x,y, Moy, +L)
oz, 1 +1) *“rp )

o(x,1 +L)
‘ Fi,l—r+1 (,',V; @ (Pﬂl» ‘
o(y,1 +L)

K () [Z (@, (P "
o(y,1+L) duy =

dp, <t +o

x

<o [R5 (0 (v, 1 4 D)y <
P

I

St M st
2

For the other functions, ®;,, we obtain in an analogous way the same limita-
tion. Choose now ‘

T <<

2 T

It follows

®; (P,) I ®; (P,) )2< 2
oG, D | T L E(?(x,IJrL) ="

i.e., the functions @, belong to the same class .# as ®; and as a conse-
quence, it follows that the solution of system (38) belongs to .#; it is
obvious that (39) can also be satisfied.

To come back to the stability of (9), let € be a real positive number and
choose

ol
TS AM
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[A is defined in (28) and M in (27)], and

[a is defined in (28) and o and Q in (43)]. Then, taking into account (28),
we have

2
dﬂ:z i 11 A

(¥, 1+L)

SLE

zeIUJ r= 1

IA

2 I e n?
Y < << .
a2Q2 ;V’—AaMz 4 ~ 4

It follows then

3ot M=
2 Pi= Mt = o

=1

taking again into account (28), we have

‘/i o <e,
=1

and this completes our proof.

6. ANOTHER STABILITY THEOREM

The following stability theorem can be proved in conditions different
from the previous ones.

THEOREM C. Swuppose that, for eack i, the functions wy(x,v,N;)
(C=1,2, --,8;) (§; the multiplicity of \;) are, in absolute value, smaller then
o (x,N), this function satisfying the conditions

o) o(x,N\) >o;
B) given t > o, it exists v such that

Izl > =o,\) <7,

the other conditions of Theorem B being realised: then, the trivial solution
of (9) is stable.

The proof is analogous to that of Theorem B, with the only difference
that w (y,1 4 L) and o (x, 1 4+ L) are substituted by o (¥,2") and o (x,))
respectively.

'An immediate application of this theorem is given by the case of a system
of ordinary differential equations, where

© (X 'Y 7\i> = 27\5(95—-31) ’ w (x ’ 7\2'\5 - 57\’.1'
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The stability theorem obtained is that of Liapounov, when the real parts of
the eigenvalues A; of A are negative. :

ExamprEs: 1) Take Q = {(#); 7, >o0,i=1,4},P,={§,0<x < ,i=1,k}
k
and let w be the Lebesgue measure, with weight I/]___[ (1 +x%). The system of equations
1
can be written as:

Fo ) o

(44) E‘; Oty + - Oy,

=Ap + G (x, 9 (Pp).

The functions w (¥, ¥ ,2) and o (¥ ,}) are in this case

k k
. |1| (arctg x —arctg y)" 0 I I (arctg x)"
1

wrs = St e B

’

(nty¥

and they are bounded. If the other conditions of Theorem B are satisfied, the trivial solution
of the system (44) is stable.

2 ‘2
2) Take as before Q = {(x;);, ;= 0,7=1, 2} and Pz=§(ai);aiz o, YE2< XA
=1 1=1

Our system is now, in polar coordinates

2
% ;;P(') =Ap+Gx,e(Py) , x=rcos® , y=rsinb.
Then
w(t,y,N) = § an (e 42— 07 +91 )"
o n—o 7! 4 ’
[e°) n x2 x2 n
o (x,N) = > (_Ti(_li_z))’
n=0 7! 4
i.e.

(2 4 22 —am (93 + )
4

AT (xf + xg)_ )
4

w(x,_y,l)zexp{ } ,  ©(x,\) =exp

It is obvious that these functions satisfy the hypotheses of Theorem C. However, the
conclusion of this theorem cannot be applied to the system (9), since the hypotheses of the
theorem on the differentiation of an integral in § 2 are not realised. Of course, the above
conclusions are valid for the solution of the Volterra integral system (38), if the other hypo-
teses hold.

In [3] we have also given other theorems concerning the behaviour of the solution of (9).



