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Equazioni differenziali ordinarie. — Swfficient Conditions for
Nonosctllation of n-th Order Nonlinear Differential Equations ). Nota
di Lu-San CHEN, presentata © dal Socio G. SANSONE.

R1ASSUNTO. — Si danno condizioni sufficienti perché tutte le soluzioni di una classe di
equazioni differenziali nonlineari siano nonoscillatorie.

I. INTRODUCTION

In the paper [1], Graef and Spikes have given sufficient conditions for
every solution of the nonlinear differential equation

L@+ O + POgE®), ) =r(;20),% )

to be nonoscillatory. Those results are obtained in terms of integral condi-
tions on 2 (Z;x (), 2" (¢)) and p (#). The purpose of the present paper is to
give sufficient conditions for nonoscillation of 7-th order nonlinear differential
equations of the form

™ @D @) +p@O) g @),z (@), -,z V@)=
:/z(t;x(t),~~,x‘"‘”(t)), (”22)

which contains a damping term involving the (z — 1)-th derivative of the
unknown function, where

i)/ :[t,00) > (0, 00) is continuous, %, =>o0,
(ii) p: [ty, 00) > (0, o0) is continuous,
(iii) g 4 R* > R = (— o0, o0) is continuous and satisfies

J’1g(J’2,"':yn) >0 for N (#: 0) and for any l(Z IO),

(iv) &[4, 00) X R* > R is continuous.

In the sequel, all functions considered will be assumed continuous on
their domains, and the existence of solutions of (¥*), which are valid for all
large ¢, will be assumed without further mention. A solution of (¥) is a func-
tion x (#) € C*([#,, o0), R), which satisfies (*) on [¢,, c0) (¢, = %, (4, fixed)
and depending on the particular solution x (¢)). Denote by U the family of
all such solutions of (*). A function x (#) € U is said to be ‘‘ nonoscillatory
if there exists # (=¢,) such that x (¥) %0 for ¢ ># and it is said to be
bounded if |x (¢)| < £ for every ¢€ [¢,, o0), where £ is a positive constant.

(*) This research was supported by the National Science Council.
(**) Nella seduta del 10 gennaio 1976.
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2. Sufficient conditions for nonoscillation.
To prove the main results we need the following Lemma.

Lemma (Kiguradze [2], [3]). Let u be a positive v-times continuously dif-
Sferentiable function on an interval [ty, o). If u®™ is of constant sign and is
not identically zero for all large t, then theve exist a T (> t,) and an integer
l,o<I<vuwithv -+ odd if u™ <o,v+/7 even if u™ > o0 and suck that
Jor every t =T,

/>0 implies u* > o (f=o,1,--,/—1)
and
I<v—1 implies (—1)**u® () >0, (k=/,/+1,--,v—1).
We make use of the following conditions: '
(¢r) for every x (£)eC™[¢,, c0) there exists a constant M such that
gx@,x @), -, 2"V () <M for all large ¢
(c;) for every x (¢)eC™ [4,, o0) there exists a constant L. such that
L<g@x@,x @), 2" @)
for all large ¢

(c5) for every x (#)eC”[f,, o) there exists a real-valued function
Z, (¢) on [¢,, c0) such that

() <Ah(;x@),x @), -, 21 )
for all large ¢

(cg) for every x (¢)eC"[4,, 00) there exists a real-valued function
4y (£) on [£y, o0) such that

Et;x@),x (@), -, 2%V @) <A (2)
for all large ¢

THEOREM 1. Suppose that conditions (c,) and (¢c;) are satisfred. Moreover,

assume that
(o8

(1) J [ () — Mp ()] ds = + oo.

to
Then every x (¢) €U 4s nonoscillatory.
Proof. We will write equation (*¥) as the system

\ xn-1) —

A
ORI 1@
( Y=h@t;x@, 2" V@O)—pDgE @, -, 2V @) .
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Suppose there is a solution (x (£),y (#)) of (**).
Integrating the second equation in (**) from #, to #, we have

YO =@+ [ A, 20 () ds

— [5©g@ x99 as.
Then, from (¢), (¢3) and (1) we have
YOZY + [ h©—Mp@lds > foo a5 roo.

Hence, there exists # > ¢, such that y (#) > o for # > #, which, in view of
the first equation in (**¥), implies x~1 (#) > o0 for # >4¢. Hence, from the
Lemma, there exist a T(>4) and an integer /(0 </<#n-—1) with
n—1 -+ / even, such that for every # =T

x® () > o, b=o0,1,-,0l—1,

(— DHE£® () > 0o, b=0l,l+1, - n—2
From this we conclude that x' (#) > o for every # >T and so x (#) is non-
oscillatory. Here no assumption is made about the sign of M.

The proof of following theorem follows from a procedure quite similar
to the proof of Theorem 1. The details may be omitted.

THEOREM 2. Swuppose that conditions (c;) and (cy) are satisfied. Moreover,
assume that

oo

[t s @1ds = —oo.

to

Then every x (¢) € U is nonoscillatory, wherve no assumpiion is made about the
sign of L.

THEOREM 3. For the equation (*), subject o the condition (cg), suppose
that g (91 ,¥3, s Vo) S boudend from above whenever the first variable is
bounded. Moreover, assume that

f[/zl —Np©]ds = +oo  for every .
to

Then every bounded x (¥) €U is nonmoscillatory.
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Proof. Suppose that x (£) € U is bounded with the property o < x (¢) < £
for every ¢ >1¢,. Then there exists a constant A; such that o <g(x (¥, --
<o, 2V () <y for every £ >4, Hence we obtain

y(t)ZJ{(lo)JrJ[/ll(f)~—%1p(f)]ds—>+°° as #-—>oo,

and the desired conclusion follows as in Theorem 1. Thus x (¢) is nonoscil-
latory. A similar proof holds in the case — % < x (f) <o (£= a positive
constant) and our theorem is established.

THEOREM 4. For the equation (*), subject to the condition (cy), suppose
that g (Y1, Y2, Yn) &S bounded from below whenever the first variable is
bounded. Moreover, assume that

f[hz ) —2p()]ds =—oc0 for every A,.

Then every bounded x ()€U is nonoscillatory.

Proof. As g(y1,%2," ) ¥n)is bounded from below, i.e. A, <<g(51, ¥2," * *, Vn)s
the theorem follows immediately from Theorem 3.

THEOREM 5. Swuppose the condition (c3), in addition assume that there
exists a constant | satisfying

lg 1y Yar )|l S<u for every t>14,

and

Jh©—uls@has =+ .

Then every x (¢) €U is nonoscillatory.
Proof. The proof is obvious.

THEOREM 6. [n Theorem 5, replace (cs) by (cy) and, moreover, suppose that

(oo}

‘.U@(‘) +ulp@ds=—o0.

o
to

Then every x (£) €U is nonoscillatory.

Proof. This follows immediately from Theorem 3.
The proofs of the following theorems are similar to the proofs of the
above ones and will be omitted.
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THEOREM 7. Assume that the condition (c5) is satisfied and that

&y Yay s Yn) 1S bounded whenever the first variable is bounded. Moreover,
Suppose ‘

([lzl(s)—~*r|p(s)|]d.r=+oo for every T > o.

to

Then every bounded x (£)€ U is nonoscillatory.

THEOREM 8. [n Theorem 7, replace (c3) by (cy) and moreover, assume

[o o]

f[/z?(s)+¢|p(s)|]ds=—oo for every T > o.

to
Then every bounded x (t) € U is nonoscillatory.

Remark 1. The particular case #» = 2 is due to Graef and Spikes [1].
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