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Equazioni differenziali ordinarie. — Sufficient Conditions fo r  
Nonoscillation of n-th Order Nonli?iear Differential Equations (* (**)}. Nota 
di L u - S a n  C h e n ,  presentata (*#) dal Socio G. S a n s o n e .

RIASSUNTO. — Si danno condizioni sufficienti perché tutte le soluzioni di una classe di 
equazioni differenziali nonlineari siano nonoscillatorie.

i .  In t r o d u c t io n

In the paper [1], Graef and Spikes have given sufficient conditions for 
every solution of the nonlinear differential equation

[/ if) x'  (t)]' +  p ( t ) g  (x (1f) , (t)) =  h ( t ; x ( t )  , x '  (0)

to be nonoscillator y . Those results are obtained in terms of integral condi
tions on h i t  ; x  (f) , x' (f)) and p  if). The purpose of the present paper is to 
give sufficient conditions for nonoscillation of n-th order nonlinear differential 
equations of the form

(*) V (t\) XM  (*)] ' +  p i t )  g  (x if) , x ’ ( t ) , . - - ,  (0) =

=  h it ; x ( f )  , ••• ,  x ^ - 1 f t ) )  , in > 2 )

which contains a damping term involving the i n — i)-th derivative of the 
unknown function, where

(Î) 1 : [to , 00) (0 ,0 0 ) is continuous, to >  0 ,
(ii) p  : [t0 , 00) -> (0 ,0 0 ) is continuous,

(iii) g  R” —>■ R =  (— 0 0 ,00 ) is continuous and satisfies

’2,- ■ - , y  n) >  0 for y x 0) and for any t 0̂) i

(iv) h : [ t0 , 00) x R ” - > R is continuous.

In the sequel, all functions considered will be assumed continuous on 
their domains, and the existence of solutions of (*), which are valid for all 
large t, will be assumed without further mention. A solution of (*) is a func
tion x  if) 6 Cn ([tx , 00) , R) , which satisfies (*) on [tx , 00) (tx >  t0 (t0 fixed) 
and depending on the particular solution x  (f)). Denote by U the family of 
all such solutions of (*). A function x  (f) e U is said to be “ nonoscillator y ” 
if there exists tx ( >  tx) such that x  if) f=. o for t >  tv and it is said to be 
bounded if \x (f) \ < k  for every t e  [tx , 00), where k is a positive constant.

(*) This research was supported by the National Science Council.
(**) Nella seduta del io gennaio 1976.
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2. Sufficient conditions for nonoscillation.
To prove the main results we need the following Lemma.

LEMMA (Kiguradze [2], [3]). Let u be a positive v-times continuously d if
ferentiable function on an interval [t0 ,00). I f  u {v) is of constant sign and is 
not identically zero fo r  all large t, then there exist a T ( >  t0) and an integer 
/ ,  o <  /  <  v with  v T- /  odd i f  u (v) <  o , v -f- /  even i f  zdv) >  o and such that 

fo r  every t >_ T,

I >  o implies u (k) > 0  (k =  0 , 1 , • • • , / — 1)

and

I <  v —  I implies (—  i ) l+k u {k) (t) >  o , (fi — I f i  -f- 1 , • • •, v — 1). 

We make use of the following conditions:

(rx) for every ^ (t) G Cn |/0 , °°) there exists a constant M such that 

g  (x (t) ( / ) , • • • )  x in~1} Çt)) <  M for all large t;

(r2) for every ^ (t) e Cn [t0 ,00 ) there exists a constant L such that

L <  g  (x (t) , (/) , • • •, (/))
for all large /;

(r3) for every a; (£) G O  [4 , oc) there exists a real-valued function
hx (t) on [t0 ,00 ) such that

hx (t) < . h ( t ; x  (/) x r (t) , - • •, x ^ - v  (,t))

for all large /;

(r4) for every # (/) G Cn [t0 ,00 ) there exists a real-valued function
A2 (V) on [/0 ,0 0 ) such that

h (t ; x  (t) , x f (t) -1 x {n~x) (ff) <  h3 (t)

for all large t.

T heorem  i. Suppose that conditions (cf and (c3) are satisfied. Moreover, 
assume that

00

(1) J (s) —  M / (j)] ds =  +  00 .
to

Then every x  (f) G U  is nonoscillator y\

Proof. We will write equation (*) as the system

( n - D  ___ y
H t) ’

y ’ =  h (t ; x  (t) ,■■■, x ill- v  (t)) —  p  ( f)g (x (t) ,• • •, .r*"-11 (t)) .
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Suppose there is a solution ix i f ) ,  y  iff) of (**).
Integrating the second equation in (**) from tQ to ty we have

t

y  00 =  y  (*o) +  J h (s ; * fa) » • • •, xin~v CO) d* —
to

t

—  j  P (s) g ( x (s) r  ■ CO) ds .
to

Then, from (cf), (cf) and (1) we have

t

y  if) (jo) +  [^1 (j) — (.?)] dj* —> +  00 as t —► 00 .
io

Hence, there exists tx >  t0 such that y  (f) > 0  for t > t l 9  which, in view of 
the first equation in (**), implies x {n~1} (f) > 0  for t '>t1. Hence, from the 
Lemma, there exist a T ( >  tf) and an integer /  (o <  /  <  ^ — 1) with 
n — I T~ /  even, such that for every t >  T

x (k) (f) >  o , k =  o , i , • • • , /  — I ,

(— i ) l+k x ik) (/) >  o , k =  l yl ~ \ - \ i ' ' ' y n  — 2.

From this we conclude that x* (f) >  o for every t >  T and so # (/) is non- 
oscillatory. Here no assumption is made about the sign of M.

The proof of following theorem follows from a procedure quite similar 
to the proof of Theorem 1. The details may be omitted.

Theorem 2. Suppose that conditions (c2) and (cf) are satisfied. Moreover, 
assume that

00

J [ A  CO —  Lp CO] d s  =  —  0 0 .
to

Then every x  if) e U is nonosdilatory, where no assumption is made about the 
sign of L.

THEOREM 3. For the equation (*), subject to the condition (V3), suppose 
that g  (yx , y 2 ,* • •, y f)  is boudend from  above whenever the first variable is 
bounded. Moreover, assume that

00

j* [Aj (j) — Xj (i*)] ds =  00 fo r  every \  .

Then every bounded x  if) € U is nonos dilatory .
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Proof. Suppose that x  (f) e U is bounded with the property o < x  (t) < k 
for every t  >  t0. Then there exists a constant \  such that o <  g  (x (f) , • • •
• • - , x (w~1) (t)) <  Xx for every t  >  t0. Hence we obtain

t

y  if) >  y  (*o) +  ! (s) — \ p  (i*)] di* -> +  00 as t ->oo ,
to

and the desired conclusion follows as in Theorem 1. Thus x  if) is nonoscil- 
latory. A similar proof holds in the case — k  <  x  if) <  o (k ~  a positive 
constant) and our theorem is established.

T h e o r e m  4. For the equation (*), subject to the condition (^4), suppose 
that g  (y 1 , y 2 , • • •, y n) is bounded from  below whenever the first variable is 
bounded. Moreover, assume that

00

[h2 (s) — X2 p  (i*)] di* =  — 00 fo r  every X2.

Then every bounded x  if) G U is nonosdilatory.

Proof. As g{yx, ^ 2, • • •, y n) is bounded from below, i.e. \ < g ( y x 
the theorem follows immediately from Theorem 3.

T heorem  5. Suppose the condition (c3), in addition assume that there 
exists a constant pi satisfying

k O i  ,y» r  ■ - , y n ) \ <  (A fo r  every t >  /„

and
00

J  i h  (s) —  it \p if) |] d* =  +  00 .
to

Then every x ( t ) e  U is nonosdilatory.

Proof. The proof is obvious.

THEOREM 6. In  Theorem 5, replace (c3) by (c4) and, moreover, suppose that
00

( \K  if) +  (A \P 0 ) |] às =  — 00 .
to

Then every x  if) G U is nonos dilatory.

Proof. This follows immediately from Theorem 5.
The proofs of the following theorems are similar to the proofs of the 

above ones and will be omitted.
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THEOREM y. Assume that the condition (c3) is satisfied and that 
g  (y i > y% > • * * > yn) bounded whenever the first variable is bounded. Moreover,
suppose

00

f  [ûi(s) —  r \ p ( s ) l ] d s  =  +  00 fo r  every t >  o.
to

Then every bounded x  (f) G U is nonosdilatory.

THEOREM 8 . In  Theorem 7, replace (c3) by (cf) and moreover, assume

00

(s) +  t \P(s )W ds =  — 00 for every t  >  o.
0̂

Then every bounded x (t) € U is nonos dilatory.

Remark 1. The particular case n =  2 is due to Graef and Spikes [1].
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