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Analisi matematica. — Asymptotic behaviour of the electric fie ld  
near the singular points o f the conductor s u r f a c e N o t a del 
Corrisp. G a e t a n o  F i c h e r a .

R iassunto . — Vengono dati risultati che descrivono analiticamente il cosiddetto 
« effetto delle punte » di un conduttore elettrico.

Let A be a bounded domain (connected open set) of the ^-dimensional 
cartesian space X n (n > 2 ) .  Suppose that the origin o of X n is contained 
in aA. Let be the unit sphere | x  | =  1 of X n. Denote by O a domain 
of S^“ 1, which does not coincide with S^“ 1. Let H be the cone obtained through 
projection of Q from 0, i.e. we denote by H the point set of Xn

H =  |#  ; o <  | # | <  I , co =  y—  € £> for x  ={= o j .

If we denote by Bn the unit ball \ x  \ <  1, we suppose that Ä O Bn — H.
Let u be a harmonic function belonging to ^  (A) and 9 a function ofO

C°° (X n). Suppose that u — 9 € (A). If we assume that 30 is sufficiently
smooth, then u € C° (H).

The problem now arises: under what conditions on 9 we have u £ C 1(H)? 
Let us first suppose that 30 is C°°-smooth (see [3], p.
Set u — 9 =  U , — A2 9 =  ®. An equivalent statement of our problem 

is the following: find under what conditions on <D we have U €C 1(H).
Let R be an arbitrary positive number less than 1. Assume o <  Rx <  

<  R2 <  R and denote by ^ (x) a cut off function , i.e. a function belonging to 
C°° (X n) whicl} coincides with 1 for | x  | <  Rx and vanishes for | x  | >  R 2.
Set w  =  For the arbitrariness of R , Rx , R2 our problem consists in
finding the conditions for <D under which u 6C 1(Hr), where H R is the inter­
section of H with the domain | ^  | <  R.

Let L tô be the Laplace-Beltrami operator on S^“ 1 and consider the classical 
eigenvalue problem in £2

(1) L w v +  \v  =  0 on Ü , v |9q =  o .

This problem has an increasing sequence of positive eigenvalues 
Xi <  X2 <  X3 <  • • • Let {vh} be a corresponding orthonormal complete 
system of eigenfunctions. (*) (**)

(*) Results of this paper will be announced in a lecture at the Conference on 
Partial Differential Equations to be held in Moscow (26 January 1976, 31 January 1976) to 
honour the 75th Anniversary of I. G. Petrowski (1901-1973).

(**) Presentata nella seduta del io gennaio 1976.
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Set for x  =\= O , (ù =  x  \ x  \-1 , p — \ x  \ y and for h — 1 ,2  

wh (p) =  w (pco) wA (co) dco ,

where dco is the unit hypersurface measure on S” \  
If we set

(2) A2w  = / ,

fh (p) =  [  y  (poi) Vh («) dco ,

from (2) we deduce by multiplication for vh (to) and after integration over Q:

«'a' (p) +  —-----  (p) +  4  Vh (co) a/ (pcor) dco =  / A (p) .
P P JQ

Hence, from (1),

(3) w'h (p) +  n 1 Wh (p) — \  v>h (p) =  fh  (p) •
p p

Set

Ì(n  —  2)2 +  4Xa — n +  2 1 (n —  2 ?  +  4 XA +  n — 2
W  a/ i ---------------------------   » pa = -----------------------    •

(S)

Since w  (R) =  w' (R) =  o, from (3) we deduce

(** +  p*) w* (p) =  /  — -jjs-) f*  w rAr ■

The function wh (p) is continuous for p -> o+, hence we must have
JX

j  r$h+1 ^  dr — o .

That enables us to write Eq. (5) as follows
P IX

(«a +  ßft) w h (p) =  p4 * J  f h (r) rH+1 d r +  p“A f h (r) r ~“*+1 dr .

We deduce for o <  p <  R

— («a +  Pa) wa (p) =  ■ ßA p H 1 f  fh  O') ^ +1 d r +  aA paA
XX

-1 f/A  y .
-a^+l dr .

/
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If w  eC 1 ( H r) the function wh (p) is continuous for p -> o+. If M is such 
that l / l  < M  in A, we have

I
pJ A  O') ^ +1 dr

0
<

ß * +  2
Mp .

The function

(6) dr

is continuous for p -> o+ if otÄ >  1. If aÄ <  1 the function (6) is continuous 
for p o+ if and only if

R

(7) f ' . / k ( r ) r - » +1dr =  o:
0

Hence a necessary condition for u eC 1 (H) is that (7) holds for every h 
such that ah <  1, i.e. <  n — 1.

It is not difficult to prove that conditions (7) are sufficient for u e C ^ H ). 
This can be; done by using the development of w  (po>)

00

w  (po) =  2  wh (p) Vh (<») (1).
*=1

Set V h (x) =  p“ â "n+2 Vh (co) ^ (pc). We may suppose that VÄ (#) is 
defined in A, by assuming VÄ (pc) =  o for | #  | >  R2. For every q € L2(A) 
denote by z =  the variational solution of the Dirichlet problem

A =  q in A , z  |3A =  o .

The following theorem holds.

I. Under the above hypothesis on d£l, necessary and sufficient condition 
fo r  u e C1 (H) is that

(8) j’ (Vä — GAa Va) Q>dx =  o
A

fo r  every h such that \ h <  n — 1.

(1) The technique to be used is the one largely employed in the paper [4].
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We have only to prove that Eq. (7) is equivalent to Eq. (8). We have, 
setting Ÿ h (x) =  p- ^ - n+2 Vh (to),

R R

[ fh  (r) r ~*h+1 dr — lim f  rn~x dr [ r ~'aÂ~ n+2 vh (co) /  (p , co) dco =
J E->0 +  J J

0 e i i

=  lim I Vh dx  +  2 I grad U grad tydx +  I VÄ UA* ^d# 
s - ^ 0 +  J J J

A —He A A

=  j" VÄ <D d; r— 2 j U grad V h grad ^ d x — j U V Ä A2 ^ dx
A A A

=  ( v AO d , _ / U A 2VAd* =  J (VA~ G A 2VA)<Dd*.

It must be remarked that the function VÄ — GA2VÄ does not depend 
on the cut off function that is easily seen.

The compatibility conditions (8) occur when and only when for some 
h : \ h <  n -— I ; hence, if there are any of such compatibility conditions, they 
are a finite set. If H is convex, since in this case \ > n — 1, we have 
u € C1 (H) for every <p € C°° (Xw).

It is not difficult to extend the preceeding analysis and find the conditions 
for u e Cm (H) for any given m >  1.

The situation is—in general—very different from Theorem I, if is 
not smooth. Since the case n — 2 is covered by Theorem I, we shall perform 
our analysis in the simplest case, i.e. n =  3.

Let us assume that 9Ü is a connected set formed by a finite collection of 
simple C°° arcs, two of them meeting eventually only in one end point. 
Let coj ,• • - , w q be the vertices of 0Q and let p.*. be the size of the angle of 
in co*; (pi*; is measured from the interior of Q; o <  <  2 tu) .

l)et us denote by lk the segment of X s defined by the condition

o  <  I ^  I <  I , X  =  \ X  \ <x>h .

By using techniques developed in [4], the following theorem can be 
proved.

II. For x  € H — (Ix ,U v  - U Itf) , I ^  I <  R , we have 

(9) I [grad (u — 9)]* I =  O £<t (p , a) I I t j  (<o) j

where a — oq [see (4)] , p — \ x  \ , <ù =  x  \ x  I" 1 ,

78
C

L.

1! 0 <  a <  2

d
=  P l o g

P

a =  2,

=  P a >  2,
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n

7U
^  =  — >

asymptotic estimate (9) cannot be improved.
The meaning of the last statement of the theorem is fully explained in [4].
This theorem points out that the problem of the behaviour of the electric 

field near the singularities of the conductor surface is essentially a problem 
of refined Numerical Analysis: f in d  close lower and upper bounds fo r  a, i.e. 
fo r  the first eigenvalue of problem (1).

This problem is, in general, extremely difficult.
Theorem II shows that if 30 has singularities, the singularities of grad u 

can occur not only in the vertex 0 but also along the edges corresponding 
to every <o& such that [x& >  tu.

However from Theorem II we deduce (see [4]):

III.  ' We have u € C1 (H) fo r  every 9 6 C°° (X3) when and only when (x* <  tu 
(k — I , • • •, q) and  a >  1.

The following theorems are interesting for applications, especially in 
Electrostatics; they refer to the case that a <  1 or (x& >  7u for some k.

IV, Let p  be the smallest of the positive numbers of the following set:

3 2  ̂ 2
1 — a ’ (Xi — n ’ ’ [xÿ — 7T

=  I CO —  CO*
yk

T* (<»>) { =  i CO • C0& J log
CO (ù% I

=  I <*> —

d is the diameter of H.

We have | grad u | e I f  (H R) fo r  1 <  p  < p.
The statement | grad u | € I f  ( H r )  with p ! >  p  is , in general, false.

V. Let p  be the smallest of the positive numbers of the following set: 

I —  a  * fXx ---- 7Z [Lq ----- 71

We have € L27(91H r) denotes normal differentiation in any regular 

point o f d1 H r  =  aH H Br  ; BR : \ x  \ < fo r  1 <  p  < p.

& U  r —The statem ent---- e I f  (31H R) with p ' f>  p  is, in general, false.9v

2. — RENDICONTI 1976, Vol. LX, fase. 1.



i8 Lincei -  Rend. Sc. fis. mat. e nat. -  Vol. LX -  gennaio 1976

Let us remark that we have p  >  3 in the Theorem IV and /  >  2 in the 
Theorem V. In [4], [5] the main problem, consisting in giving lower and 
upper bounds for a, has been solved in the case that A is the exterior of the 
cubic domain: o < ^ r 1 < i , o < ^ 2 < i , o < A r 8 < i  (2). The following bounds 
for a have been obtained:

0.433S <  <  0.4645.

Theorems IV, V and the lower bound obtained for a permit to state 
that (assuming without any loss that grad 9 has a bounded support): 

6000

I grad u I € L1133 (A) and € L3“ 5 (dA) (for any s : o <  s <  2).3v
Returning to the conditions for u € C1 (H), it turns out that the problem 

is now more complicated. In fact suppose that >  n. The conditions for 
the continuous differentiability of u near any point x° of I& distinct from 0, 
cannot be expressed by a finite set of integral conditions on ®.

For proving this statement consider in the X3 space a cylindrical coor­
dinate system (p , 0 , z)

x ± =  p cos 0 , x 2 =  p sin 0 , x 3 =  z  (p >  o , o <  0 <  2 7r) .

Let K be the domain (dihedral angle) defined by the conditions 

O <  p <  I , O <  0 <  [A..

Let A be a bounded domain of X3 such that for o < R <  1 : Ä O B r =
=  K O B r .

Suppose that u  is a harmonic function belonging to (A) and such 
that ü — 9 e ^  (A).

We consider the problem consisting in finding the conditions to be imposed 
on 9 for being u  € C1 (K O Br).

If we have p. <  71, then u 6C 1 ( K O B r )  (see [4]). Suppose p. >  7r. Set 
for h =  I , 2 , • • •

U A (x) =  (}> (x) I I —  P j sin —  6 sin kxz  ,

where ^ (x) is the above introduced cut off function and I_(7r/iA)00 is the 
modified Bessel function of the first kind (see [14], p. 372).

(2) In this case A is not bounded and the further condition u (00) =  o must be imposed
on u .
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By a proof similar to the proof of Theorem I, we get the following:

VI. Necessary and sufficient conditions fo r  u z C 1 ( K O B r )  are the follow­
ing'. J (U* — GA2 U a) <E> d* =  o ( * =  -I ,2

A

G has the above introduced meaning.
(Remark that, for (x == 2 tc, C ^ K O B r) has a self-explanatory meaning 

different from C1 (Br)).
Different from Theorem I, we have in this case a countable set of com­

patibility conditions.
Thus in the case that has some vertices and p.*. >  n for some k, the 

conditions for ^ e C1 (H) cannot be expressed by a finite set of integral con­
ditions on O. While the conditions obtained by combining Theorem I and 
Theorem VI are necessary for u € C1 (H), it is not known to the writer 
whether the set of all these conditions (which, obviously, can be reduced 
to a countable set) are sufficient for u £ C1 (H).

Short bibliographical remarks. There is an extensive bibliography dealing with elliptic 
differential equations in a domain with a singular boundary. The case n =  2, although very 
important for several applications, is less interesting from a theoretical point of view and 
easier to be handled. On the other hand for n =  2 the theory of analytic functions of one 
complex variable is of great help. For n >  3 the investigations in this field were started by 
a celebrated paper by Carleman [1]. It is impossible to refer here to all the papers devoted 
to this subject. However we must quote the outstanding papers by Kondrat’ev [7], [8], [9] 
and by Hanna and Smith [6], which have been the starting points of modern investigations 
in this field. Soviet Mathematicians have been very active in this field. Let us quote here 
the recent work of V. G. Maz’ja and B. A. Plamenevskii [10], [11 ], [12] who deal with a 
very general class of problems. The papers by M. A. Sneider [13] and P. Castellani Rizzo- 
nelli [2] solve important concrete problems for Electrostatics and Elasticity, respectively, 
in a domain with a singular boundary.
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