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Topologia. —• Two theorems characterizing increasing k-set con
traction mappings. Nota di K a n h a y a  L a l  S in g h , presentata (*' dal 
Socio B. S e g r e .

RIASSUNTO. — Vengono caratterizzati certi tipi di contrazioni, facendone fra l’altro 
applicazione per ritrovare alcuni risultati di Yamamuro [9].

T he notion of m easure of noncom pactness was introduced by C. Kura- 
towskii [1]. It was D arbo [2] who defined the concept of k-set contraction 
using the notion of m easure of noncom pactness. The concept of densifying 
m appings was introduced by Furi and Vignoli and Nussbaum  independently 
in [3] and [4] respectively. T he concept of i-set contraction was given by 
Petryshyn [5]. N ussbaum  using the m easure of noncom pactness of K ura- 
towskii [1] developed the degree theory for k-set contraction with k  <  1, 
and later extended it to densifying m appings. The degree theory  for i-set 
contraction was defined by P etryshyn [6]. There are several other kinds 
of m easure of noncom pactness developed by Sadovskii [5]. The elegant 
work of P etryshyn [7] and [8] contains applications of densifying as well 
as of i-set contraction m appings.

In the present paper we prove two theorems using the concept of yè-set 
contraction with k < i ,  characterizing the increasing k-set contraction mappings. 
An application of this concept is given to the degree theory of k-set contraction 
m appings. The results of Y am am uro [9] are obtained as Corollaries.

D e f in i t io n  i . i .  (C. Kuratowskii [1]). Let X be a real Banach space. 
Let D be a bounded subset of X. The measure o f noncompactness o/T>, denoted 
by y (D), is defined as follows:

y (D) =  inf {s >  o/D can be covered by a finite num ber of subsets 
of d iam eter <  e} ;

Y (D) has the following properties:

(0  0 <  Y (B) <  S (D), where § (D) is the diam eter of D,

(2) Y (B) — o if and only if D is precom pact (i.e. D is compact),
(3) ..y (D) =  o if and if y (D) =  o,

(4) Y (C U D) =  m ax { y (C) , y  (D )},

(5) C C D  implies y (C) <  y (D),

(6) y (C +  D) <  y (C) +  y (B), where C +  D =  {c, -f- d\c in C and
d  in D},

(7) Y (S (B , r)) <  y (D) + 2  r, where S (D , r) =  {x  in X jd  (x  , D) <  r  }.

(*) Nella seduta del 15 novembre 1975.
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Closely related to the notion of measure of noncompactness is the concept 
of A set contraction introduced by D arbo [2] as follows:

D e f in i t io n  1.2. Let X be a real Banach space. Let T  : X -> X be a 
continuous m apping. T hen T  is said to be a A set contraction if for any bounded 
but not precom pact subset D of X we have

y (T (D)) <  /&Y (D)

for some k  >  o. In  case y (T (D)) <  y (D) , (y (T (D)) <  y (D)) for any 
bounded but not precom pact subset D of X such tha t y (D) >  o, the T  is 
called densifying  (i —set contraction).

R em ark  i . i .  In  our discussion we will restrict k  in Definition 1.2 to 
satisfy o '< k  <  I .

D e f in i t io n  1.3. A  m apping T  : D X is said to be a A set contraction 
vector field if T  can be represented as T  (x) =  I (x) •— F (A), where I (x) is 
the identity  m apping and F  : D X is a A set contraction.

D e f in i t io n  1.4. A  m apping T  : D X, where D is some bounded 
subset of X, is said to be Fréchet-differentiable at x  in D if there exists a conti
nuous linear m apping T x : X X such that

T  (x  A  x 0) •— T (x) =  T ^  A  W (x , x 0) for all x  in X, where

(1) lim II W ( * ,* ) | |  -> o .
IMI 0II* II

T he linear m apping T^ is called the Frêchet-derivative of T  and is denoted
by T o , ,) .

D e f in i t io n  1.5. Let X be a real Banach space. Let D be an open 
bounded subset of X. Let D be the closure of D. A m apping T  : D -> X is 
said to be (e , §)-uniformly increasing at x 0 in D if there exist num bers 
s >  o and § >  o such tha t the following conditions are satisfied:

(1) ll^ll <  § implies x  A x 0 in D ,

(2) Il T  (A +  x 0) -— T  (x0) -— ax  || >  s | \x  || if a A o and o <  | \x  || <  S.

Lemma i . i .  The Fréchet-derivative o f a k-set contraction w ith k  <  1 
is a k-set contraction w ith k  <  1.

T he proof of Lem m a i .i  m ay be found either in N ussbaum  [io], pp. 191, 
or in Sadovskii [5], pp. 103.

Lemma 1.2. Let X be a real Banach space. Let D be an open, bounded 
subset o f X. L et T  : D -> X be a Fréchet-differentiable k-set contraction vector 

fie ld  w ith  k  <  I. Let the range o f T  (A0), the Frêcthet-derivative o f T  at x 0, 
be compact. Then every eigenvalue o f T  (x0) is positive i f  and only i f  T  is 
(s , 8)-uniform ly increasing at x 0 fo r  some z >  o and  S >  o.
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Proof. Suppose th a t every eigenvalue of T  To) is positive, but T  is not 
(s , 8)-uniformly increasing at x 0 for s >  o and 8 >  o. T hen we can find a 
sequence of elements x n in  =  1 , 2 , 3 , • • • ) and num bers aw such tha t

(1) Il T  (x0 +  x n) -— T (*0) ■— &n x n II <  (i/« ) II II , aB <  o and

o <  y xn\\ <  (i/m).

Let us denote for sim plicity T  (x  T  x 0) ■—■ T  To) by T ro (x). Thus we can 
write (1) as

Il T x0 (*n) —  an x n II <  0  /«) Il II . xn <  °  and O <  || || <  (i /«).

Now we wish to show th a t the sequence {ocw} is bounded. Indeed, taking 
into account (i)  and the linearity of T  (x0), we have

CLn — II ocn x n 11/I I x n U ^  I {(I T^o (x f) ■ <xn x n U T | |  ( x f  U }/| I x n U

<  ( ! /» )+  I I ^ T » )  | | / |T J <  (!/») +  T \ x 0) (x j\\x n | |)T  II W ( * 0  , Xn)l\\*n II 

<(iMTI|T To) Il T II w To, x j  \\l\\xn\\,
where the right-hand side is bounded because of (i)  of Definition 1.4. (|| T  To) II 
is the norm  of the linear m apping T  To)> since T  To) is continuous and the 
linear m apping || T To) II is finite); therefore there exists a subsequence 
{am} of { cLn} such th a t lim <xm =  a0 for some non-positive num ber a 0.

Let us first observe th a t x — T  (x) is also a ^ -se t contraction w ith k1<  1. 
Indeed let F ( x ) = x - — T T ) ,  then F being the difference of two continuous 
m appings is certainly continuous. Let A  be any bounded but not precom pact 
subset of D. Then

y (F (A)) <  y (A) —  ky  (A) =  (1 ■— k ) y  (A) =  kx y  (A), where o <  kx <  1.

M oreover from Lem m a 1.1. we conclude tha t the Frèchet-derivative 
F  , F To) =  I —  T  To) is also a ^ -se t contraction with o <  kx <  1.

L et x m =  Tm/ITmlD- Then |T W|| =  1, tha t is xm is bounded. Since by 
hypothesis the range of F To) is compact, we can infer the existence of a 
subsequence of {xm} such th a t lim F To) (xk )==x 1 for some element x 1.

Jc—>-oo

On the other hand by (1) and by (1) of Definition 1.4 we have 

(4) lim { ( I — a*) xh — F' (*0) 4  } =  lim ( 4  — F' (*0) 4  — a* 4  }
&->oo Tc-roo

=  lim ( T '(*0) 4  — «*4 } =  Fm (1/11* *11) {T ' (*0) 4  —  a* 4 }
Tc—>oo k->oo

=  lim (i/||** ||) { T '( x 0) x h- a***} =  lim (i/||** ||) (T '(* 0) **— T ^(**)} -f
Tv—>-oo Jc-> OQ

+  lim  ( i /Il x k II { T Xg (**) —  a* ** } =  o.
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Therefore it follows from (3) that

lim (1 — a*) x h =  x x.
&—>-00

Hence from (2) we have

lim x i  =  (1 /(i ■— a 0)) x x
k—> 00

which implies th a t || x ± || == i — a 0 and by (4) we have

T  (x0) (44/(1 —  a 0)) =  lim T  (x0) x k =  lim a*** =  a0% /(i — a„).
&->oo Jc-> 00

This m eans th a t a 0 is a nonpositive eigenvalue of T \ x 0).
Conversely let us assume tha t T  is (e , &)-uniformly increasing at x 0 for 

some s >  o and § >  o. Suppose a is an eigenvalue of t ' ( x 0) (x), i.e.

T  (Xq) (x ) =  OLX.

Since T  (x0) is linear, by (4) we have

T  (x0) (r\x) =  ay] (x) for every num ber r\.

Hence by (1) of Definition 1.5 we conclude tha t there exists >  o such that 
Si <  S and II W  (x0 , r\x) || <  s | y] | if | y) | <  S j.

T hus for I Y) I <  Sj we have

II T *o (yix) —  aY) (x ) Il =  II T 'O o) (y\x) +  w (x0 , 7]X) —  ar\x ||

=  II W  (x0 , T]x) II <  £ I Y) I =  S II Y]X II 

which by (2) of Definition 1.5 implies th a t a >  o.

Lemma 1.3. L et X  be a real Banach space. Let (— T) : D -> X be a 
k-set contraction vector fie ld . Then every eigenvalue o f the linear m apping  
T  (#0) is negative i f  and  only i f  the m apping  (■— T) is (e , §)-uniform ly increa
sing at x 0 fo r  some z >  o , 8 >  o and the range o f (— T )' (#0) is compact.

Proof. T he proof of Lem m a 1.3 follows im m ediately from the proof of 
Lem m a 1.2, since a num ber is a positive eigenvalue of T ( x 0) if, and only 
if, it is the absolute value of a negative eigenvalue of ■— T r (x o) =  (— T )' (x0).

THEOREM i . i .  Let X  be a real H ilbert space. L et D be an open bounded 
subset o f X . L et dz T  : D -> X  be k-set contraction vector fields on D . Let T  
be Bréchet -differentiable at x 0 in  D. L et the Frêchet-derivative T  (x0) o f T  satisfy  
the fo llow ing  conditions'.

(A) (T (x0) x  , x) P o i f  x  7̂  o ,

(B) the range o f T  (x0) is compact.

Then either T  or — T  is ( z , ^-u n ifo rm ly  increasing at x  in  D fo r  some s >  o 
and  S >  o.
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Proof. Suppose neither T  nor —T is (s , 8)-uniformly increasing at x 0 
for any £ >  o and § >  o. T hen from Lem m a 1.2. and Lem m a 1.3. we conclude 
the existence of num bers a* (i =  1 , 2) and elements x i (i =  1 , 2) such that

T  (x0) (xì) =  glìXì (i — i , 2 ) (a 1 >  o , a2 <  o) and x i =  1 (i — 1 , 2).

But by condition (A) are non-zero, therefore ax >  o and a2 <  o.
Since x 1 and t 2 are linearly independent we have

z (f) =  (i   t) X1 +  tx^ (o <  / <  1).
Now

(5) # (o) =  x x and z  (1) =  .

F inally  we consider the continuous function defined by

cp (t) =  (T ' (x 0) z (/)) , z (/)) (o <  t  <  1).

Then 9 (o) =  ( T \ x 0) 0  (o)) , z  (o)) =  (T ' (x0) fo )  , Xl) -  ^  , x j  =  ai || ^  ||2 >  6
and 9 (1) =  (T '(* 0) (* (1)) , z  (I))  -  (T (* 0) (>2) , *a) =  (oc2 ;r2 , *2) -  a2 1| *21|2 <  o. 
Thus there exists t0 in (o , 1) such th a t 9 (/0) =  o, i.e. (T(x0) (z (70) , z  (t0)) =  o. 
Since z (t) ^  o, a contradiction to (A). Hence the Theorem.

R em ark  1.2. L et X be a m etric space. Let T  : X -> X be a continuous 
m apping. T  is said to be a k-contraction if d  {T  (x) , T  (y)) <  k d  (x  , y)  for 
all x  , y  in X. It follows from Proposition 7, p. 15 in (3) tha t every k-con- 
traction is a >Lset contraction.

Exam ple i . i . A n exam ple of a m apping T  such th a t both +  T  and ■—T 
are L-set contractions w ith L  <  1 can be obtained by taking X =  R, the reals, 
and defining T  : R-->R by T(ar) =  (3/4X#). T hen clearly T  satisfies the Lipschitz 
condition w ith Lipschitz constant L  =  (3/4). Hence by R em ark 1.2. T  is 
L-set contraction w ith L  <  1. M oreover

I T  (x) -  ( T  (y))\ =  |T  OO - T  (x)\ =  |T  (x) - T  (y) | =  (3/4) •

T hus ■— T  also satisfies the Lipschitz condition with Lipschitz constant 
L  =  (3/4)- Therefore — T  is also a L-set contraction with L <  1. Furtherm ore 
T  (x) — 3/4 and (•— T) ( x ) =  — 3/4. Clean ly T  and — T both are o-set 
contraction, since both of them  satisfy the Lipschitz condition with Lipschitz 
constant L  =  o. O bviously the range of T, being finite dimensional, is compact.

D e f in i t io n  1.6. L et X and Y be two Banach spaces. Let D be a bounded 
subset of X. A  continuous m apping T  : D X  -> Y is said to be compact if T (D ) 
is relatively compact.

R em ark  1.3. A  com pact m apping is a o-set contraction. Indeed, let 
D be any bounded subset of X; then, since T  is compact, T  (D) is pre-com pact. 
H ence by property  (2) of y  we have y  (T (D)) =  o. Thus T  is a o-set contraction.



754 Lincei -  Rend. Se. fis. mat. e nat. -  Vol. LIX  -  dicembre 1975

COROLLARY i . i .  (Yam am uro). Let X  be a real H ilbert space. Let D 
be an open bounded subset o f X. Let ±  T  : D -> X be completely continuous 
vector fields on D. I f  T  is Frechet-differentiable at a in  D and the Frèchet- 
derivative T  satisfies the follow ing condition :

(1) (T ' (a) (x) , x) ^  o i f  x  f  O

then T  or ■— T is (s , 8)-uniform ly increasing at a in  D fo r  some s >  0 and  
8 >  o.

D e f in i t io n  2.1. A  m apping T  ; D -> X is said to be strongly increasing 
(or strongly nondecreasing') at x 0 in D if there exists a sequence { xn} such 
th a t x n 7̂  o , lim x n =  o and lim || Tg. (xf) — a x n ||/|| x n \\ =  o implies a >  o

n—>00 n—>oo
(or a >  0).

T h eo rem  2.1. L et X  be a real Banach space. Let D be an open, bounded 
subset o f X . L et T  : D -> X be a k-set contraction vector fie ld  w ith k  <  1. Let 
us assume that T  is Frechet-differentiable at x 0 in  D . Furthermore suppose 
that the range o f T  ( t 0), the Fréchet-derivative o f T  at x 0, is compact. Then T 
is strongly increasing (or strongly nondecreasing} at x 0 i f  and only i f  every 
eigenvalue o f the Fréchet-derivative T Xq (o , x) is positive (or non-negative).

Proof. Let us assum e th a t T  is strongly increasing at x 0 and X1 is an 
eigenvalue of T Xq (o , x). Therefore there exists x ± in X such that

(o , x) Xj Xi .

Since the Frichet-derivative T x (o , x) is linear with respect to x, we have: 

T ^  (o , t x f  =  Xj txx for any num ber t.

M oreover by definition of Fréchet-derivative we have

lim II (tei) — T Xo (o , fx{) || =  o or lim || TXg (/%) —  \  ^  || =  o.
£-> 0 0  £->00

Let us first observe th a t the m apping T  is strongly increasing (or strongly 
nondecreasing) at x 0 in D if and only if the m apping T Xq (x ) =  T  (x  +  x 0) ■— 
•—- T  (x0) is strongly increasing (or strongly non-decreasing) at zero (the zero 
element of X). Since T ^  is strongly increasing at zero, it follows th a t X1>  o.

Conversely let us assume th a t every eigenvalue of Tg (o , x) is positive 
and there exists a sequence { x n } such that

(1) x n =̂ o , lim x n =  o and lim \ \TXa(xn) —  axn\\l\\xn \\ =  o .
n->oo n-> 00

W ithout loss of generality  we m ay assume th a t a ^  1. Since by assum p
tion T ^  is k-set contraction vector field, we can write T^ as T x (x) =  x  —  

(x), where FXq (x) is a k-set contraction m apping. Hence from (1) 
we have 2

(2) lim II ( I a) x n F^0 (xf) ||/|| x n || — o .
n->oo
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From  (2) we conclude tha t

lim II (1 —  a) x n —  F*0 (xn) ||/|| x n || =  o
n -yoo

where ¥Xo(p ,x)  is the Frèchet-derivative of F^0 (x) at zero. The existence of such 
a derivative is guaranteed by the existence of Frèchet-derivative of (x) 
at zero. Let (y n — x nl\\ x n \\). Using the linearity of FXq (o , x) w ith respect 
to a: we have

(3) I™ II (1 — oc) y n —  FXg (o , y n) || =  O .
n—y 0 0

Since \\yn || =  || ll/ll^nll =  L {jy»} bounded. Now using the linearity of 
F^o (o , x) and the assum ption th a t the range of the Frechet-derivative is 
compact, we conclude the existence of a subsequence {y n.} such tha t

lim (o , y ni) =  y 0
i~> OO

for some y 0 in X. U sing the continuity of the norm  from (3) we have

lim (i — oc)y„t. =  y 0 .
i-y o o

Therefore ]| y Q || =  || ï •— oc || ^  o and

y  o —  T , o (o , y 0) =  Fh  (o , y 0) =  (i —  a) y 0 

so th a t a is an eigenvalue of T^0(o , x), hence we conclude th a t a  >  o.

D e f i n i t i o n  2.2. Let X be a real Banach space. Let D be an open, boun
ded subset of X. A  m apping T : D -> X is said to be (§)■-increasing at x 0 
in D if there exists a num ber 8 >  o such tha t

(1) x  +  x 0 in D if | |* | |  <  8;

(2) T  (x +  x 0) ■— T (x0) ^  ax  if a  <  o and o  <  || a  || <  8.

In  [30] we proved the following Theorem:

T h e o r e m  K. Let X be a real Banach space. Let D be an open, bounded 
subset o f X. L et T  : D -> X be a k-set contraction vector fie ld  w ith k  <  1. I f  
T  is (8f  increasing at x 0 in  D, then fo r  any 8t >  o such that 8± <  8 we have 
Deg ( o , B (o , Si) , T^o) =  1, where B (o , 8X) denotes the ball o f radius 81 w ith  
center at zero.

Since every ( e , 8)-uniformly increasing m apping at x 0 in D is also 
(S)-increasing at x 0 in D, as a corollary Theorem  1.1 we have

COROLLARY 2.1. L et X  be a real H ilbert space. Let D be an open, bounded 
subset o f X . L et ± T : D - > X  be k-set contraction w ith k <  1. Suppose that

53. — RENDICONTI 1975, Voi. LIX, fase. 6.
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T is Fréchet-differentiable at x 0 in  D and  T  (xf) satisfies conditions (A) and  
(B) of Theorem  1.1, then there exists >  o such that

Deg (o , B (o , , T Xq) =  I for any \  >  o  such th a t o <  Sj <  S

or Deg (o , B (o , S,) , — T Xq) =  1 for any >  o such th a t o <  <  8.

As a final result we deduce the following theorem  of Yam am uro as a 
Corollary of Theorem  2.1.

CO R O LL A R Y  2 .2 .  L et E  be a real Banach space. Let G be an open, bounded 
subset o f E. L et f  : G -> E  be a completely continuous vector fie ld  so that the 
set F  (G) is contained in  a compact set, where F  (x) =  x — f  (fi). Let its assume 
t h a t f  is Frêchet-differentiable at a in  G . Then f  is strongly increasing (or strongly 
non-decreasing) at a if, and only if, every proper value o f the Fréchet-derivative 
is positive (or non-negative).
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