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Topologia. — 7wo theorems characterizing increasing k-set con-
traction mappings. Nota di Kanmava Lar Sinen, presentata @ dal
Socio B. SEGRE.

RIASSUNTO. — Vengono caratterizzati certi tipi di contrazioni, facendone fra 1’altro
applicazione per ritrovare alcuni risultati di Yamamuro [g].

The notion of measure of noncompactness was introduced by C. Kura-
towskii [1]. It was Darbo [2] who defined the concept of £-set contraction
using the notion of measure of noncompactness. The concept of densifying
mappings was introduced by Furi and Vignoli and Nussbaum independently
in [3] and [4] respectively. The concept of 1-set contraction was given by
Petryshyn [5]. Nussbaum using the measure of noncompactness of Kura-
towskii [1] developed the degree theory for A-set contraction with £ < 1,
and later extended it to densifying mappings. The degree theory for 1-set
contraction was defined by Petryshyn [6]. There are several other kinds
of measure of noncompactness developed by Sadovskii [5]. The elegant
work of Petryshyn [7] and [8] contains applications of densifying as well
as of 1-set contraction mappings.

In the present paper we prove two theorems using the concept of A-set
contraction with £<(1, characterizing the increasing 4-set contraction mappings.
An application of this concept is given to the degree theory of £-set contraction
mappings. The results of Yamamuro [9] are obtained as Corollaries.

DEFINITION 1.1. (C. Kuratowskii [1]). Let X be a real Banach space.
Let D be a bounded subset of X. The measure of noncompactness of D, denoted
by ¢ (D), is defined as follows:

v (D) = inf {e > o/D can be covered by a finite number of subsets
of diameter < e};
v (D) has the following properties:

() o<y@D) <3(), where 3(D) is the diameter of D,

(2) y (D) =o if and only if D is precompact (i.e. D is compact),
(3) 4 D) =oif and if y (D) = o,

4) ¥(CUD) = max {y(C),y D)},

(5) CCD implies y (C) <y (D),

©® yC+D)<~y(@© +y@D), where C +D = {c+dJc in C and
4 in D},

N iY SO, )< y®D)+27 where SMO,»)={x in X/d(x,D)<r}.

(*) Nella seduta del 15 novembre 1975.
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Closely related to the notion of measure of noncompactness is the concept
of A-set contraction introduced by Darbo [2] as follows:

DEFINITION 1.2. Let X be a real Banach space. Let T:X — X be a
continuous mapping. Then T is said to be a £-set contraction if for any bounded
but not precompact subset D of X we have

Y (T D) < 4y (D)

for some £>o0. In case y(T (D)) <y D), (T D)) <y@®)) for any
bounded but not precompact subset D of X such that v (D) > o, the T is
called densifying (1—set contraction).

REMARK 1.1. In our discussion we will restrict £ in Definition 1.2 to
satisfy o << £ << 1.

DEFINITION 1.3. A mapping T :D — X is said to be a A-set contraction
vector field if T can be represented as T (x) = I () — F (x), where I (x) is
the identity mapping and F : D — X is a £-set contraction.

DEFINITION 1.4. A mapping T:D — X, where D is some bounded
subset of X, is said to be Fréchet-differentiable at x in D if there exists a conti-
nuous linear mapping T, : X — X such that

T (x +x9)—T (%) = Ty + W (x, x9) for all x in X, where
(1) ‘ lim ||[W(x,x)]| —o.

lzll >oflzll

The linear mapping T, is called the Fréchet-derivative of T and is denoted
by T (x).

DEFINITION I.5. Let X be a real Banach space. Let D be an open
bounded subset of X. Let D be the closure of D. A mapping T: D — X is
said to be (e, d)-uniformly increasing at x, in D if there exist numbers
e > o0 and § > o such that the following conditions are satisfied:

(1) Izl <3 implies x 4+ x4 in D,
@) ITE+xy)—T(xy) —ax|]=c|x]] if «a <0 and O<.;l|x||<8.

LEMMA 1.1. The Fréchet-derivative of a k-set contraction with k < 1
is a k-set contraction with k < 1.

The proof of Lemma 1.1 may be found either in Nussbaum [io], pp. 191,
or in Sadovskii [5], pp. 103.

LeMMA 1.2, Let X be a real Banach space. Let D be an open, bounded
subset of X. Let T:D — X be a Fréchet-differentiable k-set contraction vector
field with B < 1. Let the range of T (x,), the Frécthet-derivative of T at x,,
be compact. Then every eigenvalue of T' (x,) is positive if and only if T is
(e, O)-uniformly increasing at x, for some € > o and & > o.
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Proof. Suppose that every eigenvalue of T’ (xy) is positive, but T is not
(¢, 8)-uniformly increasing at x, for ¢ > o0 and § > 0. Then we can find a
sequence of elements x, (w = 1,2,3,---) and numbers a, such that

<I> “T (xo + xn)’—T <x0>"'°(nxn” < (””) “ an ’ %, <O and

o < |l mll < (1/n).

Let us denote for simplicity T (x + x,) — T (xy) by T, (x). Thus we can
write (1) as

| Tay (o) — | < @), <o and o< x| < (1/n).

Now we wish to show that the sequence {a,} is bounded. Indeed, taking
into account (1) and the linearity of T (x,), we have

oy = || oty 2 | 20 | < 1 {11 Ty (x00) — ot 20 || [ Ty () [| M1l 2
= (1/n)-+ HTxO () M x| < (172) + T’<x0> (@alll2en )+ | W (g 5 2) || |
< (/) + 1T @) |+ I W (o, 2) I 2]

where the right-hand side is bounded because of (1) of Definition 1.4. (|| T'(xo)ﬂ
is the norm of the linear mapping T (x,), since T (x,) is continuous and the
linear mapping || T ' (%) || is finite); therefore there exists a subsequence

{oy} of {a,} such that lim «, = «, for some non-positive number o,.
m—>0o0

Let us first observe that x—T (x) is also a A;-set contraction with 4, < 1.
Indeed let F(x)=x—T(x), then F being the difference of two continuous
mappings is certainly continuous. Let A be any bounded but not precompact
subset of D. Then

v (FA) < y(A)— Ay (A) = (1 — &)y (A) = Ay (A),  where o</;1<i.

Moreover from Lemma 1.1. we conclude that the Fréchet-derivative
F,F () = I—T (xo) is also a A;-set contraction with o < £ < 1.

 Let %, = (Xufll #m|l). Then | x| = 1, that is x,, is bounded. Since by

hypothesis the range of F (x,) is compact, we can infer the existence of a

subsequence {x;} of {x,,} such that lim F' (x,) (x) =, for some element x.
—> 00

On the other hand by (1) and by (1) of Definition 1.4 we have

@ lim {0 —ax—F (ro) m} = lim (i — F (%) 21— op. 7}
—> 00 —> 00

= lim {T" (o) 21 — oa. 71} = lim (1l 1) {T (o) 2 — o 2}
—> 00 —> 00

=k1_i;T°(I/lkall) {T"(xg) 24— o 23} = lim (xfll ) {T"(0) 2p— Tpy () } +

-|—I}i_£r;<1/” X || { Tay (22) — o 27} = .
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Therefore it follows from (3) that

lim (1 — o) 2, = 2, .

k—>o0

Hence from (2) we have

lim 2 = (1/(1 — o)) 7,

k—>o00
which implies that ||z, || = 1 — «, and by (4) we have

T'(20) () (1 — o0)) = 1im T (arg) 2 = lim oy 27 = 0t 23/(1 — ot).
k—>o00 k—>o00

This means that «, is a nonpositive eigenvalue of T'(xo).
Conversely let us assume that T is (e, 8)-uniformly increasing at x, for
some €> o0 and 3 > 0. Suppose « is an eigenvalue of T'(x(,) (%), i.e.
T (x0) () = .
Since T  (#,) is linear, by (4) we have
T (xg) () = an (x) for every number 7.

Hence by (1) of Definition 1.5 we conclude that there exists §;, > o such that
3 <8 and [|W (xy,nx) || <e|n|if |n]|<3?,.
Thus for || < §, we have

| Tep (12) — o () || = || T (2rg) (%) + W (g, 1%) — ocna ||
=W (o, n2) || <c|n|=c|nx]

which by (2) of Definition 1.5 implies that « > o.

LEMMA 1.3. Let X be a real Banack space. Let (—T):D — X be a
fe- Set contraction vector field.  Then every eigenvalue of the linear mapping
T (%o) 2s negative if and only if the mapping (— T) is (e, 8)-uniformly increa-
sing at %, for some € > 0,8 > o and the range of (—T)’ (x9) 25 compact.

Proof. The proof of Lemma 1.3 follows immediately from the proof of
Lemma 1.2, since a number is a positive eigenvalue of T () if, and only
if, it is the absolute value of a negative eigenvalue of — T’ (%) = (— T)' (x,).

THEOREM 1.1. Let X be a real Hilbert space. Let D be an open bounded
subset of X. Let +T:D — X be k-set contraction vector fields on D. Let T
be Fréchet -differentiable at xyin D. Let the Fréchet-derivative T'(xo) of T satisfy
the following conditions:

@A) (T@yz,x) #o0 if x+o,
(B) the range of T'(xo) is compact.

Then either T or —T is (e, 8)-uniformly increasing at x in D for some > o
and 8 > o. ‘
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Proof. Suppose neither T nor —T is (e, 8)-uniformly increasing at x,
for any e> 0 and 8> o. Then from Lemma 1.2. and Lemma 1.3. we conclude
the existence of numbers «; ( =1, 2) and elements x; ( = 1, 2) such that

TI(%) () =2, (0 =1,2) (1 >0,0,<0) and x;=1(G =1, 2).

But by condition (A) «; are non-zero, therefore o; > 0 and o, < o.
Since x; and x, are linearly independent we have

2() = (1 —18) 2, + tx, (o<e#<).

Now

(5) 2(0) =12 and z(1)=1,.
Finally we consider the continuous function defined by
? () =T @z (®),s @) o=<t=<u.

Then ¢ (0) = (I"(xy) (2 (0)) , # (0)) = (T' (%) (1) , #0) = (&1 241, ) = || 1, | > ©
and ¢ (1) = (T (%) (z (1)), 2 (1)) = (T (x0) (%) , 1) = (. 13, %) = s || 3, |[* < O,
Thus there exists ¢, in (0, 1) such that ¢ (7)) = o, i.e. (T(x) (2 (¢,) , 2 (¢,)) = o.
Since z (#) # o, a contradiction to (A). Hence the Theorem.

REMARK 1.2. Let X be a metric space. Let T: X — X be a continuous
mapping. T is said to be a &-contraction if d (T (x),T (v) < kd (x,y) for
all #, y in X. It follows from Proposition 7, p. 15 in (3) that every A-con-
traction is a A-set contraction.

EXAMPLE 1.1. An example of a mapping T such that both + T and —T
are L-set contractions with L. < 1 can be obtained by taking X = R, the reals,
and defining T: R-~R by T(x) = (3/4)(x). Then clearly T satisfies the Lipschitz
condition with Lipschitz constant L = (3/4). Hence by Remark 1.2. T is
L-set contraction with L < 1. Moreover

[=T@O—=TON=ITO =TI =IT@®—=TO)|=Gl4)|x—y|.

Thus — T also satisfies the Lipschitz condition with Lipschitz constant
L =(3/4). Therefore —T is also a L-set contraction with L.< 1. Furthermore
T () = 3/4 and (—T) (*)= — 3/4. Clearily T and —T  both are o-set
contraction, since both of them satisfy the Lipschitz condition with Lipschitz
constant L = o. Obviously the range of T, being finite dimensional, is compact.

DEFINITION 1.6. Let X and Y be two Banach spaces. Let D be a bounded
subset of X. A continuous mapping T : DX — Y is said to be compact if T (D)
is relatively compact.

REMARK 1.3. A compact mapping is a o-set contraction. Indeed, let
D be any bounded subset of X; then, since T is compact, T (D) is pre-compact.
Hence by property (2) of y we have y (T (D)) = o. Thus T is a o-set contraction.



754 Lincei ~ Rend. Sc. fis. mat. e nat. — Vol. LIX - dicembre 1975

COROLLARY 1.1. (Yamamuro). Let X be a real Hilbert space. Let D
be an open bounded subset of X. Let - T :D — X be completely continuous
vector fields on D. If T is Fréchet-differentiable at a in D and the Fréchet-
derivative T’ satisfies the jfollowing condition:

o T @@ ,5) #0 if x#o0

then T or —T s (¢, 8)-uniformly increasing at a in D for some ¢ > o and
3 > o.

DEFINITION 2.1. A mapping T: D — X is said to be strongly increasing
(or strongly nondecreasing) at x, in D if there exists a sequence {x,} such

that x, # o, lim x, = 0o and lim|| Tyy (Hn) — ey ||/l %5 || = o implies «> o
Nn—>00 n—-oo

(or & > o).

THEOREM 2.1. Let X be a real Banack space. Let D be an open, bounded
subset of X. Let T :D — X be a k-set contraction vector field with b < 1. Let
us assume that U is Fréchet-differentiable at xy in D. Furthermore suppose
that the range of T'(x,), the Fréchet-derivative of T at x4, is compact. Then T
is stromgly increasing (or strongly nondecreasmg) at xy if and only if every
eigenvalue of the Fréchet-derivative T, (0, x) is positive (or non-negative).

Proof. Let us assume that T is strongly increasing at x, and %; is an
eigenvalue of T, (o0, x). Therefore there exists x; in X such that

Ty (0, 2) = N 2y .
Since the Fréchet-derivative T,;O (o, x) is linear with respect to x, we have:
T;O (o, tx) = N #x, for any number ¢
Moreover by definition of Fréchet-derivative we have

lim || Ty, (t20) — Ty (0, ) | =0 or lim | Ty (201) — 2y 21 || = 0.
t—>00 . {—>00

Let us first observe that the mapping T is strongly increasing (or strongly
nondecreasing) at x, in D if and only if the mapping T, (x) =T (x + x,) —
— T (x,) is strongly increasing (or strongly non-decreasing) at zero (the zero
element of X). Since T, is strongly increasing at zero, it follows that 33> o.

Conversely let us assume that every eigenvalue of T, , (0, %) is positive
and there exists a sequence {x,} such that
() m#o, limx—o and lim [Ty () —azlflzal=o.

n—-oo n—>00

Without loss of generality we may assume that « # 1. Since by assump-
tion T, is A-set contraction vector field, we can write T, as Ty (x) = x —
— Fg, (x), where F, (x) is a 4-set contraction mapping. Hence from (1)
we have
(2) lim [[ (1 — o) 2, — Fy (@) Il 2 | = 0.

n—>oQ
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From (2) we conclude that

lim || (1 — o) 2 — Fg, @) Il 2] = 0
-0 .

where F, ,(0,%) is the Fréchet-derivative of T, (x) at zero. The existence of such
a derlvatlve is guaranteed by the ex1stence of Frecket—cz’emwz‘we of T, (%)

at zero. Let (v, = x,/| x,|). Using the linearity of F, , (0, x) with respect
to x we have

©) lim | (1 — ) y — Fyy (0, 7w [ = 0.
Sil’lce vl =l 2. M2l = 1, {¥.} is bounded. Now using the linearity of

5 (0, %) and the assumption that the range of the Fréchet-derivative is
compact we conclude the existence of a subsequence {y,.} such that

_lim on (0, yn,') =DXo

1—>00
for some y, in X. Using the continuity of the norm from (3) we have

lim (1 — o) ¥y, = ¥, -

Therefore || yoll =] 1 —a] # o and
;VO—T%<O y Vo) = F:;()(O y Vo) = (I — &) ¥

so that o is an eigenvalue of T;O (0, x), hence we conclude that « > o.

DEFINITION 2.2. Let X be a real Banach space. Let D be an open, boun-
ded subset of X. A mapping T:D — X is said to be (8)-increasing at x,
in D if theére exists a number § > o such that

(1) x+=x, in Dif |x]] <8
(2) Tlx 42y —T(xy) #Fax if a<<o and o<| x| <3.

In [30] we proved the following Theorem:

THEOREM K. Let X be a real Banach space. Let D be an open, bounded
subset of X. Let T:D — X be a k-set contraction vector field with k < 1. If
T is (8)-increasing at x, in D, then for any 8; > 0 such that 3, < 8 we have
Deg (0,B(0,8),T,) =1, where B (0, 8,) denotes the ball of radius 3, with
center at zero.

Since every (e, 8)-uniformly increasing mapping at z, in D is also
(8)-increasing at x, in D, as a corollary Theorem 1.1 we have

COROLLARY 2.1. Let X be a real Hilbert space. Let D be an open, bounded
subset of X. Let +T:D — X be k-set contraction with b < 1. Suppose that

53, — RENDICONTI 1975, Vol. LIX, fasc. 6.



756 Lincei — Rend. Sc. fis. mat. e nat. ~ Vol. LIX — dicembre 1975

T is Fréchet-differentiable at x, in D and T (%) satisfies conditions (A) and
(B) of Theorem 1.1, then there exists 8 > o such that

Deg(0,B (0,8, T) =1 for any ;> o0 such that o< §; <3
or Deg (0,B(0,8),—T,)=1 for any § > o0 such that o< 3, <3.

As a final result we deduce the following theorem of Yamamuro as a
Corollary of Theorem 2.1.

COROLLARY 2.2. Let E be a real Banach space. Let G be an open, bounded
subset of E. Let f: G—~E be a completely continuous vector field so that the
set F(G) is contained in a compact set, where ¥ (x) = x — f (x). Let us assume
that [ is Fréchet-differentiable at a in G. Then f is strongly increasing (or strongly

non-decreasing) at a if, and only if, every proper value of the Fréchet-derivative
is positive (or non-negative).
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