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Equazioni a derivate parziali. — Nownlinear stability problems
Jor a hyperbolic partial differential equation. Nota di ANNa Maria
MicHELETTI e FRANCESCO ZIRILLI, presentata ) dal Socio B. SEGRE.

RIASSUNTO. — In questa Nota preventiva si tratta della stabilith dinamica del pro-
blema 0.1, 0.2 (0.3), 0.4, 0.5 rispetto alle condizioni iniziali della soluzione banale e degli
stati stazionari %, (x , A). Si danno condizioni necessarie e sufficienti per la stabilitd dinamica.

INTRODUCTION
The equation

. |
(0.0) SSTEJFI‘%—AU—«xU 18U =0

has been used to describe the dynamics of a variety of problems. It can be
considered the time dependent Ginzburg-Landau equation in the presence
of a dissipation term (I' > 0) and in the absence of an electromagnetic field
describing a superconductor [7]. Moreover the mechanical model of 0.0 in
one space dimension is the following: a series of anharmonic oscillators with
a common axis. The axis is fixed in space, the oscillator oscillates in parallel
planes. Furthermore, the oscillators are interconnected by an axial torsion
spring. The spring resists the relative rotation of neighboring oscillators.
Finally, some friction force is active. We call this system continuous anhar-
monic oscillator.

We shall consider the linear dynamic stability of the static states of the
equation 0.0; more precisely;

Let Q CR™ be an open bounded connected set with aQ enough regular.

We shall study o.1, 0.2, 0.4, 0.5 (or 0.1, 0.3, 0.4, 0.4):

1) S —AU 4T U £80=0 on QX[o+oo),

(0.2) U=o on 3QX[o 4+ o0),
©3 S 4yU=o on 3QX [0+ c0)y > o0,
(0.4) U(x,0)=F(x) on Q,

©5) oz, 00=G@ on Q.

(*) Nella seduta dell’11 giugno 1975.
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There exists an Q* arbitrarily close to Q such that problem 0.6, 0.7
(or 0.6, 0.8).

(0.6) — Au—u + B = o on QF
(0.7) % =0 on QQ%,
(0.8) %‘ +yu=o0 on aQ° y>o

has ‘infinitely many branches starting from the eigenvalues of the correspon-
ding linearized problem. We call this solution static deflected states #, (x , A).
The #,(x,2) are equilibrium states and they can be interpreted as excited
states of the superconductor in the Ginzburg-Landau equation framework.
In the following we give necessary and sufficient conditions in order to have
the linear dynamic stability with respect to the initial data of the solution
#, (x,2) and # = o. Analogous work for the sine Gordon equation (Joseph-
son junction) is contained in [1].

§ 1. THE ELLIPTIC PROBLEM

The equilibrium states (static states) are the time independent solutions
U (x,? = u(x) of 0.1, 0.2, 0.4, 0.5 (0.1, 0.3, 0.4, 0.5), so that they satisfy
the nonlinear elliptic problem 1.1, 1.2 (or 1.1, 1.3):

(1.1) — Au— 2 + B =o0 on Q,
(1.2) u =0 on 2Q,
(1.3) %‘—l—yu:o on 3Q y>o.

Since problem 1.1, 1.2 (1.1, 1.3) is well known, we merely summarize some
of its properties.

THEOREM 1.1.  The first cigenvalue Ny of the the linearized problem corre-
sponding to 1.1, 1.2 (or I.I, I. 3) is a bifurcation point for 1.1, 1.2 (or 1.1, I1.3).
The bifurcation set is a regular branch concave in a suitable left neighborhood
of No and no bifurcation will occur for N <.

Proof. See reference [2]. Moreover:

THEOREM 1.2. The branch starting at N, of the nonlinear problem I.I,
1.2 (1.1, 1.3) exists in [Ny, N[ and |l = + oo as A —1,.

Proof. See reference [6].
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Problem 1.4, 1.5 (1.4, 1.6):

(1.4) —Au— =0 on £,
(1.3) u=o0 on 23Q,
(1.6) %%—l—yu:o on 23Q y>o,

where Q CR™ is an open bounded set, may in general have multiple eigen-
values.

In the study if the bifurcation problem 1.2, 1.2 (1.1, 1.3) it is very useful
to have only simple eigenvalues (odd multiplicity) [3].

So it is natural to ask if there exists a *little deformation’ of Q such
that on the resulting Q* problem 1.4, 1.5 (1.4, 1.6) has only simple eigenvalues.

THEOREM 1.3. Let QCR™ be an open bounded set of C* class. They in
any e-neighborhood of C® class there exists an open set QF such that problem
1.4, 1.5 (1.4, 1.6) has only simple eigenvalues \; with eigenfunctions ;.

Proof. For problem 1.4, 1.5, see [4]. For problem 1.4, 1.6, see [3].

Let C*(R™) be the Banach space of the continuous three times differen-
tiable functions vanishing with the first three derivatives at infinity, equipped
with the norm

|/ lo = sup max {|£ (@], | /' )| /" @) |/ ()]}

DEFINITION. Let Q CR™ be an open bounded set of Class C®. We call
e-neighborhood of class C* of Q the set

We={QCR" Q' =1+-(Q;yeC*R™; |d|o<e}
(I:R™—R™ is the identity).

THEOREM 1.4. Problem 1.1, 1.2, (1.1, 1.3) on the set QF has infinitely
many bifurcation points L, , A, — + oo corresponding to the eigenvalues of
1.4, 1.5 (1.4, 1.6) on QF. The bifurcation sets are regular branch u, (x,N).

Proof. It is an immediate consequence of Theorem 1.3 and of standard
results of bifurcation theory [3].

§ 2. THE STABILITY PROBLEM

We want to use the linear dynamic theory to test the stability of the trivial
solution # = o and of the static states s, (x ;) for fixed A (we write in the
following %, (x) for u, (x, ).

We consider the one parameter families of initial data F (x,7) and
G (x,n) and the corresponding solutions U (x,7,7) of 0.1, 0.2, 0.4, 0.5
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(0.1, 0.3, 0.4, 0.5) such that
U@;t;00=um(x) , Fx,0)=u,(x) , G(x;0) =o.
The linear stability problem for V (x,¢) = %% (x,¢,0) is the following:

(2.1) Viu—AV IV, — 2, VEBup V=0 on Q" X[o;+ oof,

(2.2) V=o on 2Q"x[o; 4 oo,
(2.3) %—{—*{V:O on QX [o; + oo,
) V)= @,0=F® on 0
(2.5)  V,(x,0) = %G (x,0) =G () on QF

We first test the stability of the trivial solution # = o. Because {{;}
is a complete orthonormal set of L?(Q*) we assume that F°, G° have a con-
vergent expansion

F'(0) = 3F 4 (v) G (x) = 2G" § (2.

The solution of 2.1, 2.2, 2.4, 2.5 (2.1, 2.3, 2.4, 2.5) with #,(x¥) =0 and

V (x2) = 25 (@) i~ (%)

where S, (#) are solutions of

(2.6) St (#) + I'Sp(2) + S, = o,
(2.7) S (0) = Fy,
(2.8) Si (0) = Gy.

Primes denote the differentiation with respect to z. An analysis of the solutions
of 2.6, 2.7, 2.8 shows that the state y = 0 is stable for any value of A (I", 2,
are positive).

We now test the stability of the deflected static states x, (x). Consider
the following eigenvalue problems:

(2.9)  — A9 (x) — (hpy t4n (x) — Brn (1) ¢ () = pop (x)  on  QF
(2.10) ¢ =0 on 30,
(2.11) %% +vp=o0 on aQ".

From the regularity properties of #, (x) (they are critical points of a vari-
ational problem) it follows that problem 2.9, 2.10 (2.9, 2.11) has an infinite
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sequence of eigenvalues w; bounded below with eigenfunction @; such that

lim p; = 4 oo and + oo is the only accumulation point of the sequence
J—=>+o0

{Mj}-

We suppose now that the initial data F° G° have expansions in terms
of {¢;}:
F'(x) =2Flo, , G°(x)=2G! P,

The solution V of 2.1, 2.2, 2.4, 2.5 (2.1, 2.3, 2.4, 2.5) will be of the following
form:

V= ZS] (t) P; <x>y

where S; satisfies the following differential equation

(2.12) S; +T'S; +u;S; =o,
(2.13) S; (0) = 3,

(2.19) Sj (@) =Gi,

that is

S;(8) = af exp pf ¢ + af exp 7.
where p¥ are the roots of
(2.15) P+Tp+uy;=o0

and a}h are fixed by the initial conditions 2.13, 2.14.

THEOREM 2.1. A static state u, (x ;1)) is linearly dynamically stable for
A if and only if ‘
; =0 J=0,1,--,m,

where m = max {7 |u, < o}. (Remarks: m is always finite).
n

Proof. The roots of 2.15 are

+_  —I'+ VP2—4W
bi = >

Re p¥ < 0 means linearly dynamically stable, when Re p¥ > o in order to
have stability is necessary and sufficient @f = o so we are done.

Concluding, the static deflected states #, (x , 2) such that the correspond-
ing problem 2.9, 2.10 (2.9, 2.11) has negative eigenvalues are not linearly
dynamically stable, for an arbitrary disturbance. However, following
Theorem 2.1 they are stable for suitable restricted disturbances.

The static deflected states , (x, %) such that the corresponding problem
2.9, 2.10 (2.9, 2.11) has not negative eigenvalues and the trivial solution
# =0 are linearly dynamically stable for an arbitrary disturbance.
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