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Analisi funzionale. — Some integral representation theorems for a
space of quasi—continuous functions and its dual. Nota di WILLIAM
D.L. AprrLiNg, presentata® dal Socio G. SANSONE.

RIASSUNTO. — Per a < 4 ¢ Q.C. [z, 4] insieme di tutte le funzioni da [@, 4] nel piano
complesso, quasi continue e nulle in & si ottengono rappresentazioni di integrali « destri»
per gli elementi di Q.C.[a, 4] e per gli elementi di (Q.C.,[a,4])* insieme con i corri-
spondenti teoremi di unicita.

I. INTRODUCTION

Suppose [@, 4] is a number interval, Q.C., [a, 4] is the set of all func-
tions from [a, 4] into the plane, quasi-continuous on [@, 4] and having value
o at @, and Jy and Jg are functions from [, 4] into Q.C.,[a, 4] defined
as follows:

o) if a<x<y

Ju() ®) = %

I if y<x<é

o if y=ua
Jr(y) (%) =

o

if e<<x<y

I if a<y<x.

In a previous paper [1] the Author demonstrated a theorem that gives
necessary and sufficient conditions that a real functional, defined on a set
S of real-valued bounded set functions defined on a given field F of sets, have
a certain kind of integral representation in terms of the real-valued bounded
finitely additive functions defined on F. This characterization, which we
forebear stating here in detail because it does not have a direct bearing on
the matters of the present discussion, furnishes motivation for the theorems
of this paper; the aferomentioned conditions involve an “ integral represen-
tation ”” for the functions of S. We adopt this point of view in showing the
following very explicit and elementary integral (see section 2 for the defini-
tion of integral) representation theorems for the elements of Q.C., [, 6]
and (Q.C.,[a, 8])%, respectively:

THEOREM 3.1 (Section 3). If for eack y in [a, 8], each of Q (y) and P (y)

s a function from [a, 8] into the plane, then the following two statements are
equivalent:

(*) Nella seduta del 13 dicembre 1975.
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1) Iffisin Q.C.ola, 8], then cach of the integrals written immediately

below exists and
b b

f=®[FE0dP @+ ® [ U@ —/ 10w,

and

) If a<y<b, then Q)= Tx(¥)—JL(), and if a<y=<bé.
then P (3) = —JL() + P ().

THEOREM 4.1 (Section 4). Suppose T is in (Q.C.q[a,b])". Then
{@, T(—Jo@)ia<x<< b} is in the set BN.[a,b] of all functions
from |a,b], into the plane having bounded wvariation on [a,b] and
{x, T(Jr (@) —Ju @) :a<x<b} is in the set Sla,b] of all functions
from [, 6] into the plane such that

{ZD: lf (@ |:[2,9] in D a subdivision of |a, b]}

is bounded. Furthermore, if each of g and is a function from [a,b] into the
Pplane, then the following two statements are equivalent:

1) If fisin Q.Cla, b), then cack of the integrals written immediately
below exists and

b b
T(f)=®R f f(x—)dg(x) + (R) [ [f (@) —f(x—)] % (%)
and " "
2) Ifa<y=<b then h(y) =T (Jr(¥)— JL (), and if a<y <4,
then g () =—"T (Ju () +& ().

2. PRELIMINARY THEOREMS AND DEFINITIONS

Suppose @ <7 < s < b. As usual, the statement that D is a subdivision
of [, s] means that D is a finite collection of nonoverlapping intervals filling
up [»,s]; and if H is a subdivision of [, s], then the statement that G is a
refinement of H means that G is a subdivision of [r,s], every member of
which is a subset of some member of H.

We shall not state formal definitions of the integrals we shall discuss,
but simply say that in this paper all integrals are limits, with respect to refi-
nements of subdivisions, of the appropriate sums, either for absolute value
in the case of integrals involving only functions from [, 4] into the plane,
or for absolute value supremum horm in the case of integrals involving func-
tions from [a, 6] into the set of all functions from [, 4] into the plane. As
usual, the symbol (R) preceding the integral sign denotes ‘‘ right hand”
integral. Thus, if each of f and g is a function from [z, 4] into the plane and
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Z is a function from [a, 8] into the set of all functions from [, 4] into the
plane, then

b
@ﬁ@@@,
ab
mﬁ}@g@,

(R) f f(x)dZ (x)
and ¢

b
ayﬂ@zw

denote the respective limits with respect to refinements of subdivisions, of
sums of the form, where [p,¢] is in E,

EE]f @) [g@—g D],
;f @g (9,
;f@ [Z(9) —Z (p)]

and

T/@7@,

the first two sums converging for absolute value, and the second two sums
converging for absolute value supremum norm.

For f in Q.C., [a, é] we shall let f= denote {(x,f(x —)):a<x<d};
it is understood that /(e —) = o.

We end this section with an elementary observation about Ji that we
shall use in subsequent sections. Suppose a < p < ¢<<é and x is in [a, 6].

Then
o if x<p

—JL(q)(x)————JL(p)(x):,I if p<x=g
Lo if g<x.

3. A REPRESENTATION THEOREM FOR Q.C., [z, 8]

In this section we prove Theorem 3.1, as stated in the introduction.

Proof of Theorem 3.1. Let g denote f~. Suppose 0 <¢. There is a sub-
division D of [a, 4] such that if [p,¢] is in D and p<u<<v<<g, then

| g () —g (@) | < ¢l
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Suppose E is a refinement of D. Suppose a <x < 4. If 2 =2, then

¢0—(Tr0Eho— —1o)®

- o—;g@ [—JL (@) (@) — — JL (£)a)]

= 0.

= 0—2¢(@[—1llo—o]

Suppose @ < x < b. There is exactly one [r,s] in E such tha » < x < s,
and exactly one [#,z] in D such that +<r<x<s<wu  Therefore

’g@ — (Ezg(q) [—Ju@——Ju (P)]) )

= I & (%) +§g(9) [Je (@ () — Ju (2)(#)]

=lg@W+g@O IO =L@ =|g@)—gE)| <.
Therefore

Hg—~§g(9) [—Ju(@— —JL(®)] HSC/2<6-

Therefore

£=®) f £@)d [ Tu (@]
b

Now, consider f—g. Suppose o < ¢. There is a subdivision D of [z, 4]
such that if [, ¢] isin D and p < u <(g, then |f () —f (. —) | < ¢/2. Sup-
pose E is a refinement of D and e <<x<<4. Then

s~ (SO ko~ ©1) @

@~ (EVO—r e @ @ — 1) @)
Now, if for some [p,¢] in E, x=g¢, then

‘f @) —f(x—) —-; [/ (@) —F (g Tr(g) () — JL () ()]

=/ —fxr—)—[f@)—fx—)][1]|=o.
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If for no [p,¢] in E, x = ¢, then either x = &, in which case
1]‘(@ —/ @) ”"AEY /(@) —/gNIr (g ®) —Julg) ®)]| =

O—EF.; [f(@)—S(g—[o] | =0,

or a < x, in which case there is exactly one [», s] in E such that » <x <,
and exactly one [Z,#] in D such that #<» <x < s <#%, so that

f(x)—F(x—) —; [f(@)— /(@ Ir (@) @ — Julg) )]

= /(@) —fx—)|<el2.

= ‘ fx)—fx—) —EE] [f (@) —f(g—)][o]

Therefore

\

Therefore b

fof = ® [ @)~/ - U D — L@,

a

F—r —EE] [/ (@) —/ (@) Jr(@)— Ju (9] H =cfz<c.

We now easily see that it is an immediate consequence of the above repre-
sentations for f~ and f—f~ that 2) implies 1).

Now suppose 1) is true. Suppose a <y << b. Let W = Jr () — J. (®).
Clearly b

b
W=® [WedP @+ ® [We—We—1ew =

b b
—® [0dp @ + ® [Wwew=00
Now suppose that ¢ <y < é. Then

b b
Ju (J/)=(R)fJL (9) (x—)dP (x)+(R)[[JL W@ =L EQE =

a b l)
~® [ @EP@+® [0@=® [ Lo @@+
b a a
b

to=® [ L@

a
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Now, if ¥ = &, then b
Ju(®) = (R) J‘JL@) (@) dP (x) =0o=P (6)—P (¥,

so that, in this case,

POy=—TL+P@.

If ¥ < 4, then for each subdivision D of [a, 8] such that for some #, [y, £
is in D,

2@ P@D—POI=2 T @[P@—P (] =
=2 P @—P@I=P®—P (),

where D'= {[p,9]:[p,¢] in D, y <g},
so that

JL(y) =P @) —P(y)
so that :

Py)=—1TJu(y) +P©®).

Therefore 1) implies 2).
Therefore 1) and 2) are equivalent.

4. THE DUAL REPRESENTATION THEOREM

We begin this section by stating a thorem, the proof of which the reader
can easily verify:

THEOREM 4.0. Suppose b is in BN.[a,b) and his in S [a,b]. Then,
if wis in QC.g[a,b), then ecach of the integrals

b

b
® [w@ds  and ® [wine

exists.  Furthermore, the function, T, from Q.C.,[a, b] given, for each f in
QC.ola,d], by

b b

~

T =® [fod@+® | F@—f ek,

a a

is in (Q.C.,[a, &))"

We now prove Theorem 4.1, as stated in the introduction.
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Proof of Theorem 4.1. First, suppose D is a subdivision of [«, &].
For each [p,¢] in D there is w [p,¢] in RXR such that

lwlp,gll=1 and w[p,g]T(Ju(®—Ju@) =|T Jr(®)— (@) ],
so that

TITE @) =TI |- 1 ) |T<JL<p>~JL<q>>J{=
=\ gw[p,q]T<JL<p>~JL<q>>|=’T(;w[ﬁ,q] <JL<ﬁ>—JL<q>)]g

<171 S0 0 — 1w I
where | T | denotes then norm of T.
Now, if @ <x <4, then there is at most one [r,s] in D such that

r<x<s and [JL () — JL ()] () = 1, so that

<lwlr,slllt]=r1,

{Zwv.anm—1e)

which implies that

Swis g h(n— @) H <1,
so that

21T h@—=T ()] <|T],
so that

T @) ia<z<é
is in B.V. [a, 4].
Similarly, for each [p, 4] in D there is o [p ,9] in RXR such that

lo[2,gll=1  and 2[2,0]T(Ur(@®—JL@) =|T Jr@—JL@) |,
so that

; |T(JR(§Z)—JL(9>>1=‘;”[P,Q]T(JR@)—JL@))‘—:

=*T(Zv[ﬁ,9] [JR(q)—JL(q)])lSITIHEDJW[P,Q] [Jr (9) — Ju(@)] H

D

Now, suppose @ <x < 4. If for no ¢ such that [p,9] isin D, x =g,
then

== 0.

J {5{)_‘, v[p,q] [Jr(g) — JL(q)]} €

If for some s such that [r, s]is in D, x = s, then

{%‘. v[2,9]Jr(@)— I <q>]} @)

=|v[r,s]1]|=r1.

49, — RENDICONTI 1975, Vol. LIX, fasc. 6.
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Therefore
“ 202, al r@— I ()] HS 1,
so that
DITIr@—T@)|<|T],
so that b
{&, Tr@) —JL@):a<x <4}
is in S [a, &].

Now, if D is a subdivision of [@, é], then
T —gf(g-—) [T(—Ju(@)—T( Ju(2)] 1 +
TG =B U@~/ N T U@~ 1@ =

= T(f“—;f(q_) [—Ju(g) — — JL(P)D\-F

-+ T(f—f_—%: [/ (@) —Sf(g—)][Jr(g)— JL (@] ‘ <
<|T| Hf"—ZD]f<9—~) [—Ju@— —Ju(2)] H+

+17T] Hf——f‘——%) /(@) —7 @)= (9) — Ju (@] H

which, by Theorem 3.1, clearly implies that

b
T =® [/ dT ()

and

b
TU—=/=® { [f (@) —f (=] T (Jr (x) — Ju ()

We now easily see that the above discussion implies that 2) implies 1).

Now, suppose 1) is true. Suppose a <y < b. Let W = Jr (») — Ji (¥).
Then '

b b
TW) =R [W e dg )+ ® [ W@ — W14 () =

b

~

b
®) [odg @ +® [We @ =0+ 4.

a
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Now suppose ¢ <y < 4. Then

b
TGN S® [10) e +

b b
H®) [ 1100) )~ 1) 14 ) = ) [ 1.0) @) dg (o) o

If y = 4, then ‘
b
=T =® [ LG @@ —o0=g®)—g @),

so that, in this case

£BW—g () =TOL).

If y <&, then for each subdivision D of [a, 4] such that for some ¢, [y, ¢]
is in D,

ED.‘, JLO) @ [g (@) — 2 ()] =4§.; LM @ g —g ] =
=2 11[e @) —¢ @) =g () —g (), where D'={[p,¢] in D:y<g},
so that in this case,

TL() =g ) —g ).

Therefore 1) implies 2).
Therefore 1) and 2) are equivalent.
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