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Analisi funzionale. — A nofe on rings all of whose semi-simple
cyclic modules are gquasi-injective. Nota @ di  JAvED AmHsAN, pre-
sentata dal Corrisp. A. ANDREOTTI.

RIASSUNTO. — Si studiano gli anelli soddisfacenti alla proprieta indicata nel titolo e si
mostra che, nel caso commutativo, tale proprietd caratterizza gli anelli che — modulo il radi-
cale — risultano artiniani e semisemplici.

It is well-known that rings all of whose modules are injective are semi-
simple artinian. Osofsky [8] proved that rings over which every cyclic module
is injective are also semi-simple artinian. In [2], Cateforis and Sandomierski
proved, in the commutative case, that a ring is semi-simple artinian even if
only its semi-simple (cyclic) modules are assumed’to be injective. Later,
Michler and Villamayor [7] proved that this characterization of semi-simple
artinian rings remains valid also in the general case. As regards the question
of classifying rings with similar conditions on modules in the quasi-injective
setting we recall that rings all of whose modules are quasi-injective are semi-
simple artinian (see [4], Cor. 2.4). Rings for which every cyclic module is
quasi-injective have also been studied (see eg. [1]). The purpose of this brief
note is to study rings all of whose semi-simple cyclic modules are quasi-injec-
tive. 'We shall prove, in the commutative case, that this property is charac-
terized by the fact that, modulo their radical, such rings are semi-simple
artinian. Before we prove this result, some preliminary definitions are included.

A module M over a ring R will be called semi-simple if the (Jacobson)
radical of M is zero, i.e. if the intersection of all maximal submodules of M
is zero. Socle of a module is defined to be the sum of all its simple submodules.
A module M is called finite dimensional (Goldie) if there do not exist infinitely
many non-zero submodules whose sum is direct. Generalizing the notion
of injective modules, Johnson and Wong [5] called an R-module M ‘ quasi-
injective ’ if every homomorphism from a submodule of M to M can be exten-
ded to an endomorphism of M. For various properties of these modules we
refer to [5] and [3]. Simple modules are trivially quasi-injective. Also, semi-
simple artinian modules are quasi-injective. A ring R is called self-injective
if Ry is an injective module. R is called regular in the sense of Von Neumann
if 2 € aRa, for each @ € R. R is said to be a local ring if R has a unique ma-
ximal (right) ideal. A ring R is called an FGS-ring if each cyclic R-module
over this ring has finitely generated (or empty) Socle. Kurshan [6] proved
that a ring R is FGS if and only if each finitely generated R-module is finite
dimensional. R is said to be a qc—ring if each cyclic R-module is quasi-injec-
tive (see [1]). '
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Throughout this note we shall assume that rings are commutative and
have the identity element and all modules are unitary. For an R-module M,
J (M) will denote the Jacobson-radical of M and J = J (R) will denote the
Jacobson-radical of the ring R.

We start with the following definition. A ring R will be called a genera-
lized ge—ring if each semi-simple cyclic R-module is quasi-injective. Clearly,
every qc-ring is generalized qc. However, generalized qc-rings need not be
qc. We support this statement with the following proposition.

PROPOSITION 1. Let R be a local ring. Then R is a generalized qc-ring.

Proof. ILet My be any cyclic R-module which is also semi-simple. Sup-
pose My = R/I; I an ideal of R. Since J(R/I) = o, it follows that ] _ I
but J is the unique maximal ideal of R; therefore ] = I. This implies that
R/l is a simple R-module and so quasi-injective. Thus R is a generalized
qc-ring. '

We next prove the following lemma.

LEMMA. Let R be any ring. Then R is generalized gc (=) each factor
ring of R is so.

Prof. Suppose R is generalized qc-ring. Let R = R/l be a factor
ring of R, where I is some ideal of R. Consider a semi-simple cyclic R-module
Mg. Clearly, My is also a semi-simple cyclic R-module. Since R is
generalized qc, My is quasi-injective. This implies that Mg is quasi-injective
(see Lemma 2 of [1]). Therefore R is a generalized qc-ring.

We now prove the main proposition of this note.

PROPOSITION 2. Let R be any commutative ring. Then the following state-
ments are equivalent:

(1) R is generalized gc;
(2) R[] is semi-simple artinian.

Proof. (1) Suppose that R is a generalized qc-ring. Since R/]J is a semi-
simple cyclic R-module, R/J is (R-—) quasi-injective. This implies that
R = R/J is a self-injective ring. Further, it follows from a result of Faith
and Utumi [4] (see Lemma 1 of [1]) that R is regular in the sense of Von
Neumann. Also, in view of the above lemma, R is a generalized qc-ring.
Since R is regular in the sense of Von-Neumann, each cyclic R-module is
semi-simple by Theorm 4 of [2]. Therefore, each cyclic R-module is (R —)
quasi-injective. This means that R is a qc-ring. Therefore by the corollary
on P. 428 of [1], R is semi-simple artinian.

(2) Now, suppose that R/J is semi-simple artinian. We prove that R is
a generaliéed qc-ring. Let My be any cyclic R-module which is also semi-
simple. Suppose My =~ R/I; I an ideal of R. Since ] (R/I) = o, it follows
that JCT so that I/JC R/]J (as an ideal). Since R/J/I/] =~ R/I;
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R/I, being a homomorphic image of a semi-simple artinian ring, is a
semi-simple artinian ring. This implies that R/I is (R/I —) quasi-injective.
Therefore R/I is (R —) quasi-injective. This proves the proposition.

Finally, we employ a standard argument to prove the following proposi-
tion. But first we remark that if oA —-B—C -0 is any short exact
sequence of R-modules with A and C finite demensional then it is a known
result (see eg. Kurshan [6]) that M is also finite dimensional.

PROPOSITION 3 Let R be a genzralized commutative ge-ring. Then R
is an FGS-ring.

Proof. The proposition will follow if we prove that each finitely generated
R-module is finite dimensional. We use inductive argument to prove this
fact. Let My be a module generated by one element. Then My is a cyclic
R-module, say, My ~ R/I (I an ideal of R). Now (R/I) is finite dimensional
if and only if R/I/J (R/I) is so. Since R/I is a generalized qc-ring,
R/I/J (R/T) is semi-simple artinian by Proposition 2 and hence finite dimen-
sional. This implies that (R/I); is finite dimensional. Let us now assume
that the result is true for » = %2 and show that the result is true also for
n=+r-+1. Let us write M = Rx, + -+ + Razyy. Suppose A = Rx; and
B = M/A. Then B is finite dimensional by the inductive hypothesis. Also,
since A is a cyclic R-module, A is finite dimensional. Now consider the exact
sequence 0 —+~A —- M —B-—0. Since A and B are finite dimensional, it
follows from the above remark, that M 1is also finite dimensional. This
completes the proof of the proposition.
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