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Analisi matematica. — Some measure theoretic properties of com-
pletely regular spaces. Nota 11 di A.G.A.G. BABIKER, presen-
tata ®? dal Socio B. SEGRE.

RIASSUNTO. — Ved. la Nota I qui citata in calce.

§3. THE TOPOLOGY ¢ AND SECOND CHARACTERIZATION
’ OF ESSENTIALLY LINDELOF SPACES

Under the uniform norm topology, C*(X) is isometrically isomorphic
to C (BX). So that, if X is not compact, the dual of C* (X) cannot be iden-
tified with the set of all signed measures on X. Furthermore, the topology of
X cannot be recaptured from the Banach space structure of C*(X). Since
our purpose is to use the topological linear structure of C* (X) to characterize
those spaces in which every Baire measure is net-additive, the uniform norm
topology is not adequate. So, we first define a locally convex topology o,
on C* (X), giving as dual the set of all signed Baire measures on X, and deter-
mining the topology of X uniquely for a wide class of completely regular
spaces.

Write

H={heC:0<h<1}.

For % €, let s, be the topology on C* defined by the norm || ||, where
1l = ll/%1 = sup |.f (%) & (%) | .
zE

Define o, to be the finest locally convex topology which agrees with s,
on uniformly bounded sets, and let

c=inf{o,: 2 €H},

where the infimum is taken in the lattice of locally convex topologies on
C*(X).

The following theorem follows from various results established in [3].
For completeness, we give a more direct proof.

THEOREM 3.1. The dual of (C*, 6) is the set of all norm bounded c-additive

linear functionals on C*, so that it can be identified with the set of all signed
Baire measures on X.

(*) Continuation of « Nota I », appeared in the same volume of these « Rendiconti »,
p. 362.
(*¥*) Nella seduta del 13 dicembre 1975.
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Proof. Let L be a linear functional on C* which is continuous with respect
to 6. Since ¢ is clearly coarser than the uniform norm topology, L is norm
bounded. Thus 3 a finitely additive set function p. defined on the algebra gene-
rated by all the zero sets of X such that

L(f)={fdy., for all feC*.

o

Let {Z,} be a sequence of zero sets such that:
@) Z,7 X, and,
(ii) for each 7 3 a positive set P, such that Z,CP,CZ,,,.

Such a sequeﬁce is called a regular sequence [14, p. 168] @. It follows from
[14, Th. 13] that, for some f €C*, we have:

|

1
nl

Zn:{x:/t(x)z

Clearly, 2 € #. Let € > o be given. Since L is gj-continuous, 37> o such

22

such that || f||<1 and f(Z,) = o, we have ffa’y., <e. It follows that

| | () < e for any zero set Z such that Z N Z,=@. Hence | | (X\ Z,) < e.

e |w|(X\Z,) —o. It follows from [14, th. 19] that u is c-additive. So L
is o-additive.

that

< ¢ whenever || f4||<7, and || /<1||. For any 7#>1/y, and any f€ C"

Conversely, suppose that L is a c-additive linear functional on C*. Let y
be the corresponding signed Baire measure on X. To show that L is conti-
nuous with respect to o, it is sufficient to prove that L is s,-continuous on
the unit ball for all 4 €.

 Let 4 € be given. For each positive integer, let,

an{x:h(x)z'%}:

clearly {Z,} is a regular sequence. Since p is a signed Baire measure,
] (XN\Z,) =0 as n — co.

Let ¢ > 0 be given. 3 such that || (X\Z,) < ¢/2. The set:

V={/ect:ifI<1 and | /2] < 5]

2m el

is an sz-neighbourhood of O in the unit ball. We want to show that
IL{f)|<e, for all f€V.

(1) Referred to literature given at the end of Part I of this Note (Nota I).
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If f eV, then:

L= [sel< [ 1710101 = [110001 4 [ 1714101 < £ 4 2=
X Z

o

So L is o-continuous and the proof is complete.

We know that the topology o is coarser than the uniform norm topology.
In the following theorem we characterize those spaces for which the two
topologies agree.

‘THEOREM 3.2. X 7s pseudocompact if and only if o agrees with the uniform
norm topology on c* (X).

This follows from the fact, shown in [3], that & is strongly Mackey. Here
we give a more direct proof.

Proof. Suppose that X is pseudocompact. To show that ¢ agrees
with the norm topology, it is sufficient to prove that the unit ball
B={feC":||f/II< 1} is a o-neighbourhood of O. TFor each %€, let
ap = inf {# (x); x € X}. Since 1/ is a continuous function on X and so
bounded, a; > 0. The set V = {f€C":|| f&|| < a3} is an s,-neighbourhood
of O which is contained in B. So B is an s,-neighbourhood of O, for all %z €,
and so a o-neighbourhood of O.

The converse follows from (3.1) and [10, Th. 3.1], and the proof is
complete.

Theorem (3.1) implies that the multiplicative linear functionals in the
dual of (C¥, 6) are precisely those induced by two-valued Baire measures
on X. When X is realcompact, these measures are unit-point-masses on X.
This establishes a bijection between X and the set & of all 6-closed maximal
ideals in C*(X). ., endowed with the Stone topology [7, p. 58], is clearly
homeomorphic to X. Therefore: Two realcompact spaces X and Y are homeo-
morphic if and only if (C*(X), o) and (C*(Y), o) are isomorphic. This
generalizes Gelfand-Kolmogoroff theorem [7, p. 57].

Using the algebraic and topological structure of (C*, s), we give the fol-
lowing characterization of essentially Lindelof spaces.

THEOREM 3.3. A completely regular space X is essentially Lindeldf if,
and onlv if, every closed ideal in (C* (X), o) is fixed.

For the proof, we need

LEMMA 3.4. Pointwise multiplication of functions in C* is separately
continuous with respect to o.

Proof. First, note that a o-neighbourhood base of O may be chosen to
consist of the family of convex hulls of sets of the form:

U O {feC | fIl<n and | /2] < cust
heX n=1
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where, for each 42€3#, {c,,} is a sequence of positive numbers which may
be chosen to be monotonically decreasing to o.

Let g €C*, and let V be a convex o-neighbourhood of O. For each
k€ ,3 a sequence {c,;} of positive numbers such that:

O {/:IIfI<nlgl and |/f%] < cu}CV.

n=1

Let,

W=0 C{f:lfI<n and [|f2] < cus}-
hed n=1 Tal

Clearly U = conv (W), the convex hull of W, is a s-neighbourhood of O, and
gUCV. It follows that, for each g €C*, the map: f—gf is o-continuous.

Proof of Theorem 3.3. Suppose that X is essentially Lindelf and let I be
a o-closed ideal in C*(X). By the Hahn-Banach theorem, I a o-continuous
linear functional L such that L (I) =0 and L &= o. It follows from (3.1)
and (2.1) that I (0) is a sequential hyperplane. As I CL-1(0), (2.2) implies
that I is fixed.

Conversely, suppose that X is not essentially Lindeléf. By (2.2) 3 a sequen-
tial hyperplane H containing a free ideal I. By (2.1) and (3.1), H=1L"1(0)
for some o-continuous linear functional L. Hence H is o-closed, and so I,
the closure of I with respect to 6, is contained in H. It follows from (3.4)
that I is an ideal which is clearly free. This completes the proof.

§ 4. LOCALLY COMPACT SPACES

Since locally compact spaces are open in their Stone-Cech compacti-
fications, the properties of being essentially Lindeléf and that of essential
compactness are equivalent for such spaces. Suppose that X is locally compact
and let C«(X) CC” (X) be the algebra of all functions admitting a continuous
extension to the one-point compactification of X, i.e. f€C,(X) if and only
if feC*(X) and 3 a real number 7; such that, for any & > o, 3 a compact set
K CX such that | f(x) —7;| <e for all x € X\ K. Define L on C,(X) by:

L(f)=r;.

L is a positive linear functional on C,(X). It induces a set function p,
on a sub-c-algebra of the Baire sets of X. This sub-c-algebra is the s-algebra
generated by those zero subsets of X which are either relatively compact
or have relatively compact complements. By the Hahn-Banach theorem,
L can be extended to a linear functional I, on C* (X). Any such an extension
L which satisfies i L | =1 L] is necessarily a positive functional, and hence
induces a positive finitely addition set function p. defined on all the Baire sub-
sets of X, which extends p,. The following proposition is immediate.



A. G. A. G. BABIKER, Some measure theoretic properties, ecc. 681

PROPOSITION 4.1. Let X be locally compact and let L be defined on Cy (X)
as above. Then X is essentially compact if and only if any extension of L to a
norm bounded linecar functional on C* (X) is purely finitely additive.

(We recall that a positive linear functional is purely finitely additive
if it has no s-additive minorant).

Next, we use the topology ¢ to characterize locally compact essentially
compact spaces. Let C; (X) denote the set of all continuous functions on X
with compact support. Whether X is locally compact or not, C; (X) is the
intersection of all the free ideals in C* (X), and Cj (X) is itself a free ideal if,
and only if, X is locally compact but not compact [7, p. 61].

THEOREM 4.2. A locally compact space X is essentially campact if and
only if Cp(X) is o-dense in C* (X).

Proof. Suppose that C; (X) is not c-dense. It follows from Lemma (3.4)
that C; (X), the o-closure of Cp (X), is an ideal in C*(X). Since X is locally
compact, C (X) is a free ideal. Thus C;(X) is a o-closed free ideal. It
follows from (3.3) that X is not essentially compact.

Conversely, suppose that X is not essentially compact. By (3.3) there
exists a g-closed free ideal I. Therefore C; (X)CI. As I is o-closed, C; (X)
is not o-dense. This completes the proof.

Local compactness in (4.2) is crucial. The one-point Lindel6fization
of an uncountable discrete space with non-measurable cardinal is clearly
essentially compact. Let L be the linear functional on C* (X) whose associated
Baire measure is the unit-point-mass at infinity. Clearly L is c-continuous
and Ci (X)CL™ (0), so that C (X) is not o-dense.

Finally, we settle a question raised by Kirk [9] by showing that a locally
compact realcompact space need not be essentially compact. The following
example have been used for different purposes in [4] and [5].

Example. Let 1 be the closed unit interval [0,1] and let X be the subset

of R? consisting of D={o} X I and the points {(712— ,i)} NIXI,n, £ positive

7
integers. For each (0,9) €D and each positive integer mz, let

T,n(y):—{(u,ﬂ)EX:uS% and ]v——ylﬁu},

Take {T, (3)},m =1,2,--- as a neighbourhood base for (o, y) € D;
and for x € X\ D, let {#} be a neighbourhood of x.

It is easy to verify that, for each » and each y, T,, (») is a compact metric
space. Hence X is locally compact and locally metrizable.

Since the natural injection 7: X — R? is continuous and sihce every
subspace of R? is realcompact, it follows from [6, Th. 8. 18] that every sub-
space of X is realcompact, and so X is realcompact. An argument used by
Moran in [11, p. 637] can be used to show that every Baire set in X is a Baire
set in R%. So, the linear Lebesgue measure on D induces a Baire measure on
X which is clearly without support. Therefore X is not essentially compact.



