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Analisi matematica. — Some measure theoretic properties of com­
pletely regular spaces. Nota II <* (**)> di A. G. A. G. B a b i k e r ,  presen­
t a t a ^  dal Socio B. S egre .

Riassunto. — Ved. la Nota I qui citata in calce.

§ 3. T h e  T o p o lo g y  g a n d  s e c o n d  c h a r a c t e r i z a t i o n  

o f  e s s e n t i a l l y  L i n d e l ö f  sp a c e s

U nder the uniform  norm  topology, C* (X) is isom etrically isomorphic 
to C (ßX). So that, if X is not compact, the dual of C* (X) cannot be iden­
tified w ith the set of all signed measures on X. Furtherm ore, the topology of 
X cannot be recaptured from the B anach space structure of C* (X). Since 
our purpose is to use the topological linear structure of C* (X) to characterize 
those spaces in which every Baire m easure is net-additive, the uniform  norm  
topology is not adequate. So, we first define a locally convex topology a, 
on C (X), giving as dual the set of all signed Baire measures on X, and deter­
m ining the topology of X uniquely for a wide class of completely regular 
spaces.

W rite
— {h € C* : o <  h <  1} .

For i e j f ,  let sh be the topology on C* defined by the norm  || ||Ä, where 
11/Hä =  I I#  II =  sup I f  (pc) h (x) I .

iceX
Define Gh to be the finest locally convex topology which agrees w ith sh 

on uniform ly bounded sets, and let

g =  inf { Gh : h 6 } ,

where the infimum is taken  in the lattice of locally convex topologies on
C*(X).

T he following theorem  follows from various results established in [3]. 
For completeness, we give a m ore direct proof.

THEOREM 3 •1 • The dual of (C , g) is the set of all norm bounded G-additive 
linear functionals on C , so that it can be identified with the set of all signed 
Baire measures on X.

(*) Continuation of « Nota I », appeared in the same volume of these « Rendiconti », 
p. 362.

(**) Nella seduta del 13 dicembre 1975.



678 Lincei -  Rend. Se. fis. mat. e nat. -  Vol. LIX -  dicembre 1975

Proof. Let L  be a linear functional on C* which is continuous with respect 
to <7. Since a is clearly coarser than  the uniform  norm  topology, L  is norm  
bounded. Thus 3 a finitely additive set function [x defined on the algebra gene­
rated  by all the zero sets of X such th a t

L  ( / )  — fd\L , for all /  e C*.

Let {Zn} be a sequence of zero sets such that:

(i) Z n /  X , and,

(ii) for each n  3 a positive set Pn such th a t ZwC P n C Z n+1.

Such a sequence is called a regular sequence [14, p. 168] (1). It follows from 
[14, Th. 13] that, for some /  e C*, we have:

Z» =  {* : h  ( x )  >  4 }  •

Clearly, h € Let s >  o be given. Since L  is ^-continuous, 3y]> o such

th a t J /d n < e  whenever \\fh\\<r\, and | | / < i | | .  For any  w > i/t) , and a n y /e C *

such th a t | | / | | < i  and f  (Zn) =  o, we have fd\J. <  s. It follows tha t

I fx I (Z) <  s for any zero set Z such that Z f i  ZJl= 0 .  Hence | fx | ( X \ Z n) <  £. 
i.e. I [x I ( X \ Z J  -> o. It follows from [14, th. 19] th a t [x is a-additive. So L 
is a-additive.

Conversely, suppose th a t L  is a a-additive linear functional on C*. Let fx 
be the corresponding signed Baire m easure on X. To show th a t L  is conti­
nuous with respect to a, it is sufficient to prove that L  is ^-continuous on 
the un it ball for all h €

Let h € J f7 be given. For each positive integer, let,

z » =

clearly { Z J  is a regular sequence. Since [x is a signed Baire measure, 
I [x? I Q C \Z n) o as n  -> 00.

Let s >  o be given. 3 m  such th a t | [x | ( X \ Z m) <  s/2. T he set:

V =  ( / e C * : l / | < ,  a n d H / i l K ^ j

is an ^-neighbourhood of O in the unit ball. W e w ant to show tha t 
I L  ( / )  I <  £, for all /  6 V.

(1) Referred to literature given at the end of Part I of this Note (Nota I).
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I f / e V ,  then:

I L  ( / )  I f / 4 1 j <  I I /  I d  I [X I
X X

j l / m n l + J l / l ^ l f x | < -  +  ~
X \Z m

£ .

So L is a-continuous and the proof is complete.
W e know th a t the topology a is coarser than  the uniform  norm  topology. 

In  the following theorem  we characterize those spaces for which the two 
topologies agree.

THEOREM 3.2.  X is pseudocompact i f  and only i f  g agrees w ith  the uniform  
norm topology on C (X).

This follows from the fact, shown in [3], tha t g is strongly M ackey. H ere 
we give a m ore direct proof.

Proof. Suppose th a t X is pseudocompact. To show th a t a agrees 
with the norm  topology, it is sufficient to prove tha t the unit ball 
B — { / €  C*: Il/ I!  <  1} is a ^-neighbourhood of O. For each h £ let 
ah =  in f {h (x) ; a* £ X}. Since 1 \h is a continuous function on X and so 
bounded, ah >  o. The set V  =  { /  € C*: || f h  || <  ocÄ} is an ^-neighbourhood 
of O which is contained in B. So B is an ^-neighbourhood of O, for all h GJf5, 
and so a a-neigh bourhood of O.

T he converse follows from (3 .1) and [10, Th. 3.1],  and the proof is 
complete.

Theorem  (3 .1) implies th a t the m ultiplicative linear functionals in the 
dual of (C*, <r) are precisely those induced by two-valued Baire measures 
on X. W hen X is realcom pact, these m easures are unit-point-m asses on X. 
This establishes a bijection between X and the set J l  of all cx-closed m axim al 
ideals in C*(X). J i , endowed w ith the Stone topology [7, p. 58], is clearly 
hom eom orphic to X. Therefore: Two realcom pact spaces X and Y are homeo- 
m orphic if, and only if (C* (X) , or) and (C* (Y) , a) are isomorphic. This 
generalizes Gelfand-Kolm ogoroff theorem  [7, p. 57].

U sing the algebraic and topological structure of (C , a), we give the fol­
lowing characterization of essentially Lindelöf spaces.

THEOREM 3.3.  A  completely regular space X is essentially L indelöf if\ 
and only i f  \ every closed ideal in  (C* (X) , a) is fixed.

For the proof, we need

LEMMA 3.4.  Pointwise multiplication o f functions in  C* is separately 
continuous w ith  respect to a.

Proof : First, note tha t a cr-neighbourhood base of O m ay be chosen to 
consist of the fam ily of convex hulls of sets of the form:

U U { / e C*: \ \ f \ \ < n  and \ \ f h \ \ < c n<h}
heSfC n= 1
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where, for each is a sequence of positive num bers which m ay
be chosen to be m onotonically decreasing to o.

L et g €  C*, and let V  be a convex a-neighbourhood of O. For each 
3 a sequence of positive num bers such that:

00
u  { / :  ll/ll <  n\ \g\ \  and \\fh\\ <  c„,h} C Y .

n=l
Let,

w  =  U U { / :  ll/ll <  n and ||f h  || <  cn,h} .
A e j r » = i  II fir I!

Clearly U  =  conv (W), the convex hull of W, is a a-neighbourhood of O, and 
^■U C V . It follows that, for e a c h ^ e C * ,  the map: f  —> g f  is ^-continuous.

Proof o f Theorem 3.3.  Suppose tha t X is essentially Lindelöf and let I be 
a a-closed ideal in C*(X ). By the H ahn-B anach theorem , 3 a a-continuous 
linear functional L  such th a t L  (I) =  o and L  ^  o. It follows from (3.1) 
and (2 .1) th a t L“1 (o) is a sequential hyperplane. As I C L“1 (o), (2 .2) implies 
th a t I is fixed.

Conversely, suppose th a t X is not essentially Lindelöf. By (2 .2) 3 a sequen­
tial hyperplane H containing a free ideal I. By (2.1) and (3 .1), H =  L“1 (o) 
for some a-continuous linear functional L. Hence H is a-closed, and so I, 
the closure of I with respect to a, is contained in H . It follows from (3.4) 
th a t I is an ideal which is clearly free. This completes the proof.

§ 4. L ocally  com pact spaces

Since locally com pact spaces are open in their Stone-Cech com pacti­
fications, the properties of being essentially Lindelöf and th a t of essential 
com pactness are equivalent for such spaces. Suppose th a t X is locally com pact 
and let C*(X) C C (X) be the algebra of all functions adm itting a continuous 
extension to the one-point compactification of X, i.e. f e  C*(X) if and only 
if /  € C* (X) and 3 a real num ber rf  such that, for any e >  o, 3 a com pact set 
K C  X such th a t | /(# )■ — rf | <  e for all x e X \ K .  Define L  on C*(X) by:

L  ( f )  =  rf .

L  is a positive linear functional on C*(X). It induces a set function (x0 
on a sub-a-algebra of the Baire sets of X. This sub-a-algebra is the a-algebra 
generated by those zero subsets of X which are either relatively com pact 
or have relatively com pact complements. By the H ahn-B anach theorem, 
L  can be extended to a linear functional L  on C* (X). A ny such an extension 
L  which satisfies |] L  || =  || L  || is necessarily a positive functional, and hence 
induces a positive finitely addition set function [i, defined on all the Baire sub­
sets of X, which extends pi0 . The following proposition is im mediate.
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PROPOSITION 4.1.  L et X be locally compact and let L  be defined on C* (X) 
as above. Then X is essentially compact i f  and only i f  any extension o f L  to a 
norm bounded linear func tiona l on C* (X) is purely fin itely  additive.

(We recall th a t a positive linear functional is purely finitely additive 
if it has no cr-additi ve m inorant).

N ext, we use the topology g to characterize locally com pact essentially 
com pact spaces. L et Ck (X) denote the set of all continuous functions on X 
w ith com pact support. W hether X is locally compact or not, Ck (X) is the 
intersection of all the free ideals in C (X), and Ck (X) is itself a free ideal if, 
and only if, X is locally com pact but not com pact [7, p. 61].

THEOREM 4.2. A  locally compact space X is essentially campact if  and 
only if  Ck (X) is G-dense in C* (X).

Proof. Suppose th a t (X) is not a-dense. It follows from Lem m a (3.4) 
th a t Ç;& (X), the <7-closure of Ck (X), is an ideal in C* (X). Since X is locally 
compact, Ck (X) is a free ideal. Thus Ck (X) is a a-closed free ideal. It 
follows from (3 .3) th a t X is not essentially compact.

Conversely, suppose th a t X is not essentially compact. By (3 .3) there 
exists a cr-closed free ideal I. Therefore Ck (X) C L As I is a-closed, Ck (X) 
is not (T-dense. This completes the proof.

Local com pactness in (4 .2) is crucial. The one-point Lindelöfization 
of an uncountable discrete space w ith non-m easurable cardinal is clearly 
essentially com pact. Let L  be the linear functional on C* (X) whose associated 
Baire m easure is the unit-point-m ass at infinity. Clearly L  is cr-continuous 
and Ck (X) C L-1 (o), so th a t Ck (X) is not a-dense.

Finally, we settle a question raised by K irk [9] by showing th a t a locally 
com pact realcom pact space need not be essentially compact. The following 
exam ple have been used for different purposes in [4] and [5].

Exam ple. Let I be the closed unit interval [0,1] and let X be the subset 
of R2 consisting of D —{0} X I and the points , —jj n  I X I , n , k  positive 

integers. For each (o , y )  € D and each positive integer m, let

T m (y ) =  I (u , v) 6 X : ^  — and \v  —  y  | <  u) ,

T ake {Tm (y)} , m  =  1 , 2 , • • • as a neighbourhood base for (o , y)  e D; 
and for x  € X \JD , let {x} be a neighbourhood of x.

It is easy to verify that, for each m  and each y,  T w (y) is a com pact m etric 
space. Hence X is locally com pact and locally m etrizable.

Since the natural injection i  : X -> R2 is continuous and since every 
subspace of R2 is realcom pact, it follows from [6, T h. 8. 18] tha t every sub­
space of X is realcom pact, and so X is realcom pact. A n argum ent used by 
M oran in [11, p. 637] can be used to show th a t every Baire set in X is a Baire 
set in R2. So, the linear Lebesgue m easure on D induces a Baire m easure on 
X which is clearly w ithout support. Therefore X is not essentially compact.


