Atti Accademia Nazionale dei Lincei
 Classe Scienze Fisiche Matematiche Naturali RENDICONTI

John H. Hodges

Note on some partitions of a rectangular matrix
Atti della Accademia Nazionale dei Lincei. Classe di Scienze Fisiche, Matematiche e Naturali. Rendiconti, Serie 8, Vol. 59 (1975), n.6, p. 662-666.
Accademia Nazionale dei Lincei
http://www.bdim.eu/item?id=RLINA_1975_8_59_6_662_0

L'utilizzo e la stampa di questo documento digitale è consentito liberamente per motivi di ricerca e studio. Non è consentito l'utilizzo dello stesso per motivi commerciali. Tutte le copie di questo documento devono riportare questo avvertimento.

> Articolo digitalizzato nel quadro del programma
> bdim (Biblioteca Digitale Italiana di Matematica)
> SIMAI \& UMI
> $\mathrm{http}: / / \mathrm{www}$. bdim.eu/

Teorie combinatorie. - Note on some partitions of a rectangular matrix. Nota di John H. Hodges, presentata ${ }^{(*)}$ dal Socio B. Segre.

Riassunto. - A complemento di risultati ottenuti da Porter in una precedente Nota lincea [5], si ottiene il numero delle soluzioni U, V per l'equazione matriciale $\mathrm{U}_{a} \ldots \mathrm{U}_{1} \mathrm{~A}+$ $B V_{1} \cdots V_{b}=C$ su di un campo finito, dove A e B sono matrici arbitrarie e si suppone $a=\mathrm{I}, b>\mathrm{I}$, oppure $a>\mathrm{I}, b=\mathrm{I}$.

i. Introduction

Let A be an $m \times n$ matrix of rank $r_{1}, \mathrm{~B}$ be an $s \times t$ matrix of rank r_{2} and C be an $s \times n$ matrix over a finite field F of q elements. In this Note we study the problem of enumerating the solutions $\mathrm{U}_{a}, \cdots, \mathrm{U}_{1}, \mathrm{~V}_{1}, \cdots, \mathrm{~V}_{b}$ over F of the matrix equation

$$
\begin{equation*}
\mathrm{U}_{a} \cdots \mathrm{U}_{1} \mathrm{~A}+\mathrm{BV}_{1} \cdots \mathrm{~V}_{b}=\mathrm{C} \tag{I.I}
\end{equation*}
$$

where the matrices $\mathrm{U}_{i}, \mathrm{~V}_{j}$ for $\mathrm{I} \leqq i \leqq a, \mathrm{I} \leqq j \leqq b$ are of arbitrary but specified sizes such that the products, sum and equality in (I.I) are defined. In [2], the Author solved the problem in the case $a=b=\mathrm{I}$ with A and B arbitrary. More recently, A. Duane Porter [5] has given a solution for all a and b, whenever $r_{1}=\operatorname{rank} \mathrm{A}=n$ and $r_{2}=\operatorname{rank} \mathrm{B}=s$. In this Note, by use of the same methods as used in these two earlier papers, the Author solves the problem for arbitrary A and B in the cases $a=\mathrm{I}, b>\mathrm{I}$ and $a>\mathrm{I}, b=\mathrm{I}$. The results obtained reduce to those given by Porter [5; Theorems II, III] under the stated conditions on A and B. For arbitrary A and B and both $a>\mathrm{I}$ and $b>\mathrm{I}$, the methods used here lead to difficulties which are not resolved in this Note.

2. Notation and preliminaries

Let $\mathrm{F}=\mathrm{GF}(q)$ denote the finite field of $q=p^{f}$ elements, p a prime. Except as noted, Roman capitals $\mathrm{A}, \mathrm{B}, \ldots$ will denote matrices over F . A (m, n) will denote a matrix of m rows and n columns and $\mathrm{A}(m, n ; r)$ a matrix of the same size with rank r. I_{r} will denote the identity matrix of order r and $\mathrm{I}(m, n ; r)$ will denote an $m \times n$ matrix with I_{r} in its upper left corner and zeros elsewhere.

If $\mathrm{A}=\left(\alpha_{i i}\right)$ is square, then $\sigma(\mathrm{A})=\Sigma \alpha_{i i}$ is the trace of A and whenever $A+B$ or $A B$ is square, then $\sigma(A+B)=\sigma(A)+\sigma(B)$ and $\sigma(A B)=\sigma(B A)$.
(*) Nella seduta del 13 dicembre 1975.

For $\alpha \in F$, we define

$$
\begin{equation*}
e(\alpha)=\exp 2 \pi i t(\alpha) \mid p \quad, \quad t(\alpha)=\alpha+\alpha^{p}+\cdots+\alpha^{p^{f-1}} \tag{2.I}
\end{equation*}
$$

so that for all $\alpha, \beta \in \mathrm{F}, e(\alpha) \in \mathrm{GF}(p), e(\alpha+\beta)=e(\alpha) e(\beta)$ and

$$
\sum_{\gamma \in F} e(\alpha \gamma)= \begin{cases}q, & \alpha=0 \tag{2.2}\\ o, & \alpha \neq 0\end{cases}
$$

where the sum is over all $\gamma \in \mathrm{F}$. By use of (2.2) and properties of σ it is easily shown that for $\mathrm{A}=\mathrm{A}(m, n)$

$$
\sum_{\mathrm{B}} e\{\sigma(\mathrm{AB})\}= \begin{cases}q^{m n}, & \mathrm{~A}=0 \\ 0, & \mathrm{~A} \neq 0\end{cases}
$$

where the sum is over all matrices $\mathrm{B}=\mathrm{B}(n, m)$.
The number $g(u, v ; y)$ of $u \times v$ matrices of rank y over F is given by Landsberg [3] as

$$
\begin{equation*}
g(u, v ; y)=\prod_{i=0}^{y-1}\left(q^{u}-q^{i}\right)\left(q^{v}-q^{i}\right) /\left(q^{y}-q^{i}\right) . \tag{2.4}
\end{equation*}
$$

Following [I ; (8.4)], if $\mathrm{B}=\mathrm{B}(s, t$; ρ) we define

$$
\mathrm{H}(\mathrm{~B}, z)=\sum_{\mathrm{C}} e\{-\sigma(\mathrm{BC})\},
$$

where the sum is over all matrices $\mathrm{C}=\mathrm{C}(t, s ; z)$. This sum is evaluated in [I , Theorem 7] to be
(2.6) $\mathrm{H}(\mathrm{B}, z)=q^{\rho z} \sum_{j=0}^{z}(-\mathrm{I})^{j} q^{j(j-2 \rho-1) / 2}\left[\begin{array}{l}\rho \\ j\end{array}\right] g(s-\rho, t-\rho ; z-j)$,
where $\left[\begin{array}{l}\rho \\ j\end{array}\right]$ denotes the q-binomial coefficient defined for nonnegative integers ρ and j by $\left[\begin{array}{l}\rho \\ 0\end{array}\right]=\mathrm{I},\left[\begin{array}{l}\rho \\ j\end{array}\right]=0$ if $j>\rho$ and

$$
\left[\begin{array}{l}
\mathrm{\rho} \\
j
\end{array}\right]=\left(\mathrm{I}-q^{\mathrm{\rho}}\right) \cdots\left(\mathrm{I}-q^{\rho-j+1}\right) /(\mathrm{I}-q) \cdots\left(\mathrm{I}-q^{j}\right), \quad 0<j \leqq \rho .
$$

3. The general case of (i.I)

Let A, B, C be matrices as in (I.I) and $\mathrm{U}_{a}=\mathrm{U}_{a}\left(s, m_{a-1}\right), \mathrm{U}_{i}=$ $=\mathrm{U}_{i}\left(m_{i}, m_{i-1}\right)$ for $\mathrm{I}<i<a, \mathrm{U}_{1}=\mathrm{U}_{1}\left(m_{1}, m\right)$ and $\mathrm{V}_{1}=\mathrm{V}_{1}\left(t, t_{1}\right), \mathrm{V}_{j}=$ $=\mathrm{V}_{j}\left(t_{j-1}, t_{j}\right)$ for $\mathrm{I}<j<b, \mathrm{~V}_{b}=\mathrm{V}_{b}\left(t_{b-1}, n\right)$. If N denotes the number of solutions of (I.I) over F , then in view of (2.3), N is given by

$$
\begin{equation*}
\mathrm{N}=q^{-s n} \Sigma_{a} \Sigma_{b} \sum_{\mathrm{D}(n, s)} e\left\{\sigma\left(\left(\mathrm{U}_{a} \cdots \mathrm{U}_{1} \mathrm{~A}+\mathrm{BV}_{1} \cdots \mathrm{~V}_{b}-\mathrm{C}\right) \mathrm{D}\right)\right\}, \tag{3.I}
\end{equation*}
$$

where Σ_{a} and Σ_{b} denote sums over all $\mathrm{U}_{a}, \cdots, \mathrm{U}_{1}$ and $\mathrm{V}_{1}, \cdots, \mathrm{~V}_{b}$, respectively. Applying various properties of σ and e from section 2 and interchanging the order of summation in (3.1) leads to
(3.2) $\mathrm{N}=q^{-s n} \sum_{\mathrm{D}} e\{-\sigma(\mathrm{CD})\} \Sigma_{a} e\left\{\sigma\left(\mathrm{U}_{a} \cdots \mathrm{U}_{1} \mathrm{AD}\right)\right\} \Sigma_{b} e\left\{\sigma\left(\mathrm{DBV}_{1} \cdots \mathrm{~V}_{b}\right)\right\}$.

Let $P_{1}, Q_{1}, P_{2}, Q_{2}$ be arbitrary but fixed nonsingular matrices such that $\mathrm{A}=\mathrm{P}_{1} \mathrm{I}\left(m, n ; r_{1}\right) \mathrm{Q}_{1}$ and $\mathrm{B}=\mathrm{P}_{2} \mathrm{I}\left(s, t ; r_{2}\right) \mathrm{Q}_{2}$. If these values are substituted into (3.2), D is replaced by $\mathrm{Q}_{1}^{-1} \mathrm{DP}_{2}^{-1}, \mathrm{U}_{1}$ is replaced by $\mathrm{U}_{1} \mathrm{P}_{1}^{-1}, \mathrm{U}_{a}$ is replaced by $P_{2}^{-1} \mathrm{U}_{a}, \mathrm{~V}_{1}$ is replaced by $\mathrm{Q}_{2}^{-1} \mathrm{~V}_{1}$ and V_{b} is replaced by $\mathrm{V}_{b} \mathrm{Q}_{1}^{-1}$, then (3.2) becomes

$$
\begin{align*}
\mathrm{N}=q^{-s n} & \sum_{\mathrm{D}(n, s)} e\left\{\sigma\left(\mathrm{C}_{0} \mathrm{D}\right)\right\} \Sigma_{a} e\left\{\sigma\left(\mathrm{U}_{a} \cdots \mathrm{U}_{1} \mathrm{I}\left(m, n ; r_{1}\right) \mathrm{D}\right\} .\right. \\
\cdot & \Sigma_{b} e\left\{\sigma\left(\mathrm{DI}\left(s, t ; r_{2}\right) \mathrm{V}_{1} \cdots \mathrm{~V}_{b}\right)\right\},
\end{align*}
$$

where $\mathrm{C}_{0}=-\mathrm{P}_{2}^{-1} \mathrm{CQ}_{1}^{-1}$. If an arbitrary matrix $\mathrm{D}=\mathrm{D}(n, s)$ is partitioned as $\mathrm{D}=\left(\mathrm{D}_{u v}\right)$ for $u, v=\mathrm{I}, 2$ where D_{11} is $r_{1} \times r_{2}, \mathrm{D}_{12}$ is $r_{1} \times\left(s-r_{2}\right), \mathrm{D}_{21}$ is $\left(n-r_{1}\right) \times r_{2}$ and D_{22} is $\left(n-r_{1}\right) \times\left(s-r_{2}\right)$, then

$$
\begin{aligned}
& \mathrm{I}\left(m, n ; r_{1}\right) \mathrm{D}=\mathrm{A}_{0}=\left(\mathrm{A}_{u v}\right) \quad \text { for } \quad u, v=\mathrm{I}, 2 \quad \text { where } \\
& \mathrm{A}_{11}=\mathrm{D}_{11}, \mathrm{~A}_{12}=\mathrm{D}_{12}, \mathrm{~A}_{21}=0 \quad \text { and } \quad \mathrm{A}_{22}=0
\end{aligned}
$$

and

$$
\begin{aligned}
& \mathrm{DI}\left(s, t ; r_{2}\right)=\mathrm{B}_{0}=\left(\mathrm{B}_{u v}\right) \quad \text { for } \quad u, v=\mathrm{I}, 2 \quad \text { where } \\
& \mathrm{B}_{11}=\mathrm{D}_{11}, \mathrm{~B}_{21}=\mathrm{D}_{21}, \mathrm{~B}_{12}=\mathrm{o} \quad \text { and } \quad \mathrm{B}_{22}=\mathrm{o}
\end{aligned}
$$

Applying these results to the two inner sums in (3.3), it follows in view of (2.2) that these sums are given by

$$
\begin{align*}
& = \begin{cases}q^{s m_{a-1},} & \text { if } \mathrm{U}_{a-1} \cdots \mathrm{U}_{1} \mathrm{~A}_{0}=\mathrm{o}, \\
0, & \text { otherwise, }\end{cases} \\
& \Sigma_{b} e\left\{\sigma\left(\mathrm{~B}_{0} \mathrm{~V}_{1} \cdots \mathrm{~V}_{b}\right)\right\}=\left\{\begin{array}{lll}
q^{n t}, & \text { if } \mathrm{D}_{11}=0 \quad \text { and } \mathrm{D}_{21}=\mathrm{o}, \\
0 \quad, & \text { otherwise, } & (b=\mathrm{I}),
\end{array}\right. \\
& = \begin{cases}q^{n t_{b-1}}, & \text { if } \quad \mathrm{B}_{0} \mathrm{~V}_{1} \cdots \mathrm{~V}_{b-1}=\mathrm{o}, \\
0, & \text { otherwise. }\end{cases}
\end{align*}
$$

Now, let $\mathrm{C}_{0}=\mathrm{C}_{0}(s, n)$ in (3.3) be partitioned as $\mathrm{C}_{0}=\left(\mathrm{C}_{u v}\right)$, for $u, v=1,2$, where C_{11} is $r_{2} \times r_{1}, \mathrm{C}_{12}$ is $r_{2} \times\left(n-r_{1}\right), \mathrm{C}_{21}$ is $\left(s-r_{2}\right) \times r_{1}$ and C_{22} is $\left(s-r_{2}\right) \times\left(n-r_{1}\right)$. In case $a=b=\mathrm{I}$, in view of (3.4) and (3.5) the only terms in (3.3) which are possibly nonzero correspond to matrices D for which $\mathrm{D}_{11}=0, D_{12}=0, D_{21}=0$ and D_{22} is arbitrary and for all such D, $\sigma\left(\mathrm{C}_{0} \mathrm{D}\right)=\sigma\left(\mathrm{C}_{22} \mathrm{D}_{22}\right)$. Therefore, summing in (3.3) over only such D and applying (2.3) again leads to the result

$$
\begin{equation*}
\mathrm{N}=q^{s\left(m-r_{1}\right)+n\left(t-r_{2}\right)+r_{1} r_{2}} h\left(\mathrm{C}_{22}\right), \tag{3.6}
\end{equation*}
$$

where $h\left(\mathrm{C}_{22}\right)=\mathrm{I}$ if $\mathrm{C}_{22}=\mathrm{o}$ and $h\left(\mathrm{C}_{22}\right)=\mathrm{o}$ otherwise. This is the result given previously in [2, Theorem 7].

In case $b>\mathrm{I}$, the value of the sum (3.5) is just $q^{n t_{b-1}}$ times the number of solutions V_{1}, \cdots, V_{b-1} over F of the equation $B_{0} V_{1} \cdots V_{b-1}=o$. This number $\mathrm{N}_{b-1}(z)$, which depends on the sizes of the matrices involved and on the rank z of B_{0}, has been determined explicitly by Porter [4, Theorem II]. His formula, which involves sums of the function $g(u, v ; y)$ given by (2.4), will not be repeated here. A similar comment applies to (3.4) and rank w of $\mathrm{A}_{\mathbf{0}}$ in case $a>\mathrm{I}$.

4. The case $a=\mathrm{I}, b>\mathrm{I}$

In this case, we can prove
Theorem i. For $a=\mathrm{I}, b>\mathrm{I}$ and matrices A, B,C as in (I.I), the number of solutions of (1.I) over F is

$$
\begin{equation*}
\mathrm{N}=q^{e} h\left(\mathrm{C}_{22}\right) \sum_{z=0}^{\left(n-r_{1}, r_{2}\right)} \mathrm{N}_{b-1}(z) \mathrm{H}\left(\mathrm{C}_{12}, z\right), \tag{4.I}
\end{equation*}
$$

where $e=s\left(m-r_{1}\right)+n\left(t_{b-1}-r_{2}\right)+r_{1} r_{2}, h\left(\mathrm{C}_{22}\right)=1$ or o according to whether $\mathrm{C}_{22}=\mathrm{o}$ or $\neq 0, \mathrm{~N}_{b-1}(z)$, the number of solutions $\mathrm{V}_{1}, \cdots, \mathrm{~V}_{b-1}$ over F of the equation $\mathrm{B}_{0} \mathrm{~V}_{1} \cdots \mathrm{~V}_{b-1}=0$ depends on the sizes of the V_{j} and the size and rank of $\mathrm{B}_{0}, \mathrm{C}_{22}$ and C_{12} are submatrices of C_{0} as defined above, $\left(n-r_{1}, r_{2}\right)$ denotes the minimum of $n-r_{1}$ and r_{2}, and $\mathrm{H}\left(\mathrm{C}_{12}, z\right)$ is given explicitly by (2.6) with B replaced by C_{12}.
(An analogous result holds for the case $a>\mathrm{I}, b=\mathrm{I}$ with C_{12} replaced by C_{21}).

Proof. Assume that $a=\mathrm{I}, b>\mathrm{I}$ in (3.3) and so in (3.4) and (3.5). By (3.4), the inner sum in (3.3) over U_{1} is nonzero if and only if $\mathrm{D}_{11}=0$ and $\mathrm{D}_{12}=0$, in which case the sum is equal to $q^{s m}$. Thus, restricting $\mathrm{D}(n, s)$ in (3.3) to those matrices that satisfy this condition, it follows that rank $\mathrm{B}_{0}=\operatorname{rank} \mathrm{D}_{21}=z$, where $\mathrm{o} \leqq z \leqq \min \left(n-r_{1}, r_{2}\right)$. For each D_{21} of a given rank z, the number $\mathrm{N}_{b-1}(z)$ of solutions of the equation $\mathrm{B}_{0} \mathrm{~V}_{1} \cdots \mathrm{~V}_{b-1}=0$ depends only on the sizes of the matrices involved and on z.

Also, for all such restricted $\mathrm{D}=\mathrm{D}(n, s)$ it follows that $e\left\{\sigma\left(\mathrm{C}_{0} \mathrm{D}\right)\right\}=$ $=e\left\{\sigma\left(\mathrm{C}_{12} \mathrm{D}_{21}\right)\right\} e\left\{\sigma\left(\mathrm{C}_{22} \mathrm{D}_{22}\right)\right\}$, where D_{22} is not involved in the two inner sums in (3.3) and so is arbitrary. Therefore, to sum (3.3) over all restricted D, one may sum independently over all D_{22} and all D_{21} of rank z for all $\mathrm{o} \leqq z \leqq \min \left(n-r_{1}, r_{2}\right)$. If this is done in (3.3), in view of (2.3), (3.5) and the definition (2.5), after some simplification we obtain (4.I) with the explanations given in the statement of the theorem.

5. The case $a>1$ AND $b>1$

If A and B are arbitrary and both $a>\mathrm{I}$ and $b>\mathrm{I}$, then the involvement of D in the two inner sums in (3.3) is more complicated and interrelated and the simplification that led to Theorem I does not occur. At this time, the author is unable to resolve the difficulties presented in obtaining a more explicit form for N from (3.3) in this general case. For rank $\mathrm{A}=n$ and rank $\mathrm{B}=s$ in (I. I), (3.3) leads to Porter's results [5].

References

[r] John H. Hodges (1956) - Representations by bilinear forms in a finite field, «Duke Math J.», 22, 497-510.
[2] John H. Hodges (1957) - Some matrix equations over a finite field, "Annali di Mat.», 44, 245-250.
[3] Georg Landsberg (1893) - Über eine Anzahlbestimmung und eine damit zusammenhängende Reihe, "Journal f.d. Reine u. Ang. Math.», 3, 87-88.
[4] A. Duane Porter (1970) - Generalized bilinear forms in a finite field, "Duke Math. J.", 37, 55-60.
[5] A. Duane Porter (1974) - Some partitions of a rectangular matrix, «Rend. Acc. Naz. dei Lincei», 56, 667-671.

