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Teorie combinatorie. — Notz on some partitions of a rectangular
matriz. Nota di Joun H. Hopges, presentata ® dal Socio B. SEGRE.

RIASSUNTO. — A complemento di risultati ottenuti da Porter in una precedente Nota
lincea [5], si ottiene il numero delle soluzioni U,V per I'equazione matriciale U, ---UA+
BV; -+ V, =C su di un campo finito, dove A e B sono matrici arbitrarie e si suppone
@a=1, 6>1, oppure @ > 1,56 = 1.

I. INTRODUCTION

Let A be an m X #n matrix of rank »;, B be an s X# matrix of rank », and
C be an s X7 matrix over a finite field F of ¢ elements. In this Note we study
the problem of enumerating the solutions U,,---,U,,V,, -+, V, over F
of the matrix equation

(1.1) Uy~ UyA 4BV, -+ V, =C,

where the matrices U;,V; for 1 £/ =<a,1 <7 <6 are of arbitrary but
specified sizes such that the products, sum and equality in (1.1) are defined.
In [2], the Author solved the problem in the case ¢ = 4 = 1 with A and B
arbitrary. More recently, A. Duane Porter [5] has given a solution for all
a and &, whenever 7, = rank A = » and », = rank B = 5. In this Note, by
use of the same methods as used in these two earlier papers, the Author solves
the problem for arbitrary A and B inthecasesea =1, >r1anda > 1,4 = 1.
The results obtained reduce to those given by Porter [5; Theorems II, III]
under the stated conditions on A and B. For arbitrary A and B and both
@ >1 and 4 > 1, the methods used here lead to difficulties which are not
resolved in this Note.

2. NOTATION AND PRELIMINARIES

. Let F = GF (¢9) denote the finite field of ¢ = pf elements, p a prime.
Except as noted, Roman capitals A, B,--- will denote matrices over F.
A (m , n) will denote a matrix of 7 rows and # columns and A (m,n;7) a
- matrix of the same size with rank ». I, will denote the identity matrix of order
7 and I (m , % ;7) will denote an » X » matrix with I, in its upper left corner
and zeros elsewhere.

CIf A= (xi) is square, then ¢ (A) = Zay; is the trace of A and whenever
A4B or AB is square, then 6 (A + B) = ¢ (A) + ¢ (B) and 6 (AB) = ¢ (BA).

(*) Nella seduta del 13 dicembre 1975.
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For « € F, we define
(z.1) e(w) =exp2mit(w)p , t(0)=aFoa? +-. .+ a”f‘l,
so that for all «,B €F, ¢(x) €GF (p), ¢ (o + B) = ¢ («) ¢ (B) and

q, o*L =0,

(2.2) 3 ) =

o, x=Fo,

where the sum is over all Yy € F. By use of (2.2) and properties of ¢ it is
easily shown that for A = A (m , »)

g™, A=o,
(2.3) ¢e{c (AB)} =
; BB o A==o0,
where the sum is over all matrices B = B (#, ).

The number g (#,v;y) of uXwv matrices of rank y over F is given by
Landsberg [3] as
y—1

(2.4) gu,v;y) = H)(q"—q‘") (¢ —gDl(g" — ¢ .

Following [1; (8.4)], if B =B (s, ¢; p) we define
(25 H(B,2) =3 e{—o(BO},

where the sum is over all matrices C = C (¢, s;2). This sum is evaluated
in [1, Theorem 7] to be

2 c ] 1(7—920 P o
(2.6) H(B,2) =4 Z} (— 1)f gii2e l)lg[j]gO_P’f—p;Z_/)’
=

where [5] denotes the g-binomial coefficient defined for nonnegative integers

e and j by [g]zl,[;]=o if 7 >p and

[;] == (1= —g) - (1 —¢), o<j=<op.

3. THE GENERAL CASE OF (I.1)

Let A,B,C be matrices as in (1.1) and U, = U, (s, me,),U; =
=U;(mi,miy) for 1 <i<a,U =U (m,m and V; =V (¢,4),V; =
=V;({t,2) for 1 <j<b,Vy =Vy(#,,%). If N denotes the number
of solutions of (1.1) over F, then in view of (2.3), N is given by

(3.1) N=g=3%,5% 3 ¢{c(U, --UA+BV, .- V,—C)D)},

D(n,s)
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where %, and Z, denote sums over all U,,- -+, U, and Vi, -+, Vy, respectively.
Applying various properties of ¢ and ¢ from section 2 and interchanging the
order of summation in (3.1) leads to

(3.2) N=4‘”‘DZ e{—0o(CD)}Zse{c(U,- - U AD)} Zye {o (DBV; - - -V,)}.

Let Py, Qy, Py, Qp be arbitrary but fixed nonsingular matrices such that
A=P I(m,n;n)Q, and B=P, 1 (s,2;7)Q,. If these values are sub-
stituted into (3.2), D is replaced by Q;* DP; %, U; is replaced by U, P;%, U,
is replaced by P;* U, , V, is replaced by Q; 'V, and V, is replaced by V, Q7Y
then (3.2) becomes o

(3-3) N =9_snD(E ¢{s (C, D)} Zpe{c (U, --- U1 (m,n;r)D}-

n,s)

'Zbg{G<DI<5’l‘;”2)V1 - Vot

where Cy=—P;'CQ;*. If an arbitrary matrix D =D (%, s) is partitioned
as D = (Dy,) for #,v=1,2 where Dy, is X7, Dy is nX(s—7y), Dy
is (n—7r) X7y and Dy, is (2 — )X (s —7,), then

Ln,n;rn)D = A= (A) for w,v=1,2 where
Ay=Dy , Apy=Dy , Ay=o0 and A, = o,

and
DI(s,#;7) = By = (By) for w,v=1,2 where

Bu=Dy , By=Dy , Bpy=o and By =o0.

Applying these results to the two inner sums in (3.3), it follows in view of
(2.2) that these sums are given by

o , otherwise,

qmb-l" if BoVy: -V =o,
6>,

S g™ , if Dy=o0 and Dy =o,
(3-4) Zoe{c(U, - U Ap} = | (@=1),
? o} , otherwise,
S qsma—l’ lf Ua—-l [N U1 A‘O = 0,
= (a > 1),
8 o , otherwise,
S g" , if Dy=o and D, = o,
3-5) Zye{o(Bo Vi ---V,,)}=( | 6=r),

o otherwise.
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Now, let Co=C,(s,n) in (3.3) be partitioned as C,= (C,,), for
u,v=1,2, where Cyy is 73 X7y, Cyp is 73X (n—1ry), Cy is (s —7y) X7y and
Cyp is (s—7) X (2 —7y). In case @ =4 =1, in view of (3.4) and (3.3) the
only terms in (3.3) which are possibly nonzero correspond to matrices D
for which Dy, = o, Dy, = 0, D,; = 0 and D, is arbitrary and for all such D,
6 (CyD) = 6 (Cyp Dy). Therefore, summing in (3.3) over only such D and
applying (2.3) again leads to the result

<3 .6) N — qs(m—r1)+n(t—ra)+h g (C22> ,

where % (Cy) =1 if Cy =0 and /% (Cy) = 0 otherwise. This is the result
given previously in [2, Theorem 7].

In case 6 > 1, the value of the sum (3.5%) is just ¢™~1 times the number
of solutions Vy,---,V,_, over F of the equation B,V --- V,, =o0. This
number N, (2), which depends on the sizes of the matrices involved and on
the rank z of By, has been determined explicitly by Porter [4, Theorem IIJ.
His formula, which involves sums of the function g («,v; y) given by (2.4),
will not be repeated here. A similar comment applies to (3.4) and rank w
of A, in case @ > I.

4. THE CASE a=1,6 > 1

In this case, we can prove

THEOREM 1. For a= 1,6 > 1 and matrices A, B ,C as in (1.1), the
number of solutions of (1.1) over F is

(n—11,73)

(4.1 N =¢°% (Co) Z_;) Nyt () H (Cee, 2),

where e =s(m—nry) +n(ty,—ry) +nry,h(Cy) =1 or 0 according to
whether Cy = 0 or F=0, Ny 4 (2), the number of solutions V,,---, Vi over
F of the equation BV, - -+ Vyy = 0 depends on the sizes of the V; and the
size and rank of By, Cyy and Cyy are submatrices of C, as defined above, (n—r7y,75)
denotes the minimum of n—ry and ry, and H (Cyy, 2) is given explicitly by
(2.6) with B replaced by Cy, .

(An analogous result holds for the case ¢ > 1,6 = 1 with C;, replaced
by Ca).

Proof. Assume that @ = 1,4 > 1 in (3.3) and so in (3.4) and (3.3).
By (3.4), the inner sum in (3.3) over Uj is nonzero if and only if D;; = o
and Dy, = o, in which case the sum is equal to ¢*®. Thus, restricting D (, )
in (3.3) to those matrices that satisfy this condition, it follows that rank
B, = rank Dy, = 2, where 0 =<2 < min (z —7;,7,). For each Dy, of a given
rank 2, the number Ny, (2) of solutions of the equation ByV; -+ V,; = o0
depends only on the sizes of the matrices involved and on z.
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Also, for all such restricted D = D (7, ) it follows that e {c (C, D)} =
= ¢ {06 (Ci2 Dy)} ¢ {6 (Cyy Dyy)}, where Dy, is not involved in the two inner
sums in (3.3) and so is arbitrary. Therefore, to sum (3.3) over all restricted
D, one may sum independently over all Dy and all D,, of rank z for all
0 =z =min(z—7y,7). If this is done in (3.3), in view of (2.3), (3.3
and the definition (2.5), after some simplification we obtain (4.1) with the
explanations given in the statement of the theorem.

5. THE CASE @ > 1 AND & > 1

If A and B are arbitrary and both @ > 1 and 4 > 1, then the involvement
of D in the two inner sums in (3.3) is more complicated and interrelated and
the simplification that led to Theorem 1 does not occur. At this time, the author
is unable to resolve the difficulties presented in obtaining a more explicit
form for N from (3.3) in this general case. For rank A = 7 and rank B = s
in (1.1), (3.3) leads to Porter’s results [3].
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