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Teorie combinatorie. — Combinatorial graph complexity. Nota
di DanieL MinoL1, presentata @ dal Socio B. SEGRE.

RIASSUNTO. — Qui si ottiene una misura della complessitd di un grafo non orientato;
varie misure sono gia state proposte, ma esse non soddisfano ad alcune proprieta fondamen-
tali che una siffatta funzione dovrebbe avere, date essenzialmente dal carattere monotonico
della complessita rispetto al numero dei vertici, dei lati, e del grado di connessione del grafo.
Ecco la nostra definizione: Un cammino tra due vertici ; and v;, ; % v;, dicesi proprio se
1) contiene z; e v; esattamente una volta, rispettivamente come vertice inziale e finale, e
2) contiene ogni particolare lato al massimo una volta; la complessithy % (G) di un grafo G
viene quindi cosi definita:

ne
1@ =7 X oy
©5,97),1<J
dove ¢ = numero dei lati, » = numero dei vertici, 6;; = numero dei cammini propri tra i

vertici v; e ;. Proprieta di questa complessitd vengon qui investigate.

I. INTRODUCTION AND DEFINITIONS

An intrinsic character of a linear graph is its relative ‘complexity ’.
Various measures of complexity have been given, mostly dealing with the
information content, and based on certain invariant partitions of the vertex
set. See [1], [2], [3] for discussion and further references. However, the
measures so far presented fail to satisfy certain fundamental conditions which

we would like to have. We construct here a measure which has many appealing
properties.

DEFINITION 1. A complexity functions is a positive functional
y:C—=R
[C being the class (category) of graphs].

A complexity function should enjoy the following properties:

1) it should be monotonically increasing on the number of vertices
of the graph;

2) it should be monotonically increasing on the number of edges of
the graph;

3) it should reflect the degree of connectedness of the graph;

4) it should satisfy our intuitive ‘feel’ of complexity, assighing a
high number to a graph which ‘looks’ complicated, and viceversa.

These are exactly the conditions that the available measures of com-
plexity fail to satisfy.

(*) Nella seduta del 15 novembre 1975.
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Our paper is anti-climactic, establishing the most important result with
Definition 4 below and then proceeding to show how the characterizing pro-
perties presented above are satisfied.

V and E denote, throughout, the vertex and the edge set respectively.
In the present work, complexity will be defined only for normal graphs, but
extensions are possible.

DEFINITION 2. A connected, undirected graph with no multiple edges
and no self loops, and with V having more than two points, is called a normal

graph.

DEFINITION 3. A path between two vertices v;,7; (with v; # v;) is
proper if *

@) it contains v; and »; exactly once, and as initial and final vertex
respectively;

) it contains any particular edge no more than once.

Let # =|V],V the vertex set; ¢e=|E|,E the edge set; A ={(v;,7,),v;€V}.

DEFINITION 4. Let G = (V , E) be a normal graph. We define

e
ne
X<G> - n—l—e (1),'21{,‘)75:
i>7

Yk (Z. y]) )
1

with v (7, 7) = number of proper paths of length % from v; to v;, and the outer
summation taken over all (v;,7;) € (VX V)—A, to be the combinational
complexity function, or, in short, the complexity function.

Naturally we could lump together all proper paths between a pair of
vertices (v;,v;) as o; and write

ne
LG =0 (v;vj)cij
i>j

but the former approach is easier to work with to obtain closed form expressions
for particular graphs.

From now on, unless there is danger of confusion, we shall abbreviate
Y# (?,7) by v1, and whenever we say ‘ path’ we mean ‘ proper path’ . If a
graph Gy is isomorphic with a graph G, we denote this as G; ~ Gy; if they
are not isomorphic, we denote this as Gy o~ G,. By ‘graph’ we always mean
a 'mormal graph.

THEOREM 1. Gy ~ G, dmplies that y (Gy) = y (Gy).

Proof. Since e; = ¢3 = ¢ and n; = n, = n, we need only stud
1 2 1 2 y y

e
G G G . .
L, = Zcijl ) Gi]'l:ZYkl<Z’f> )
@) =1
7>
e
G. G, G
T, = 2 o ooe = 2 ve2 (£,8)
(@p,?g) k=1
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To every term of the form (v;,, v;,) in the sum for [, there corresponds a
term involving (sp, , s4,) in the sum for I'g,, with s, the image of v;, under the
isomorphism, and s, the image of v;,; (if po > ¢, this term does not actually
appear in the second sum but (s, , $p,) appears and Spoge = Ogepy ; Without loss
of generality we take py < g,). Similarly, for every term involving (S, , Sgo)
in T, there corresponds a term for (v;, , v;,) in Ig,.

The discussion above implies that working with reference to [, it suffices
to show

Gy _ Go
Gigio = %pogo

for all (z,,/,). Assume that

Gy Gy
Gigio # Opo 90

e e
this means kz_] Yi (o s Jo) # k};l % (Lo, &0)

or, in other words, there is a £ such that v, # 9. Without loss of generality
assume

™ YE > O
Now, say ;) = v, , 0y, 0, -+, 0 = vj, determines a proper path in Gy; there
are vy, (79, /) such paths G,. But then Spo = S0, 51, S2," "1, St = Sy, Sw being

the image of v,, also determines a proper path in G,, since isomorphism pre-
serves incidence at all vertices. Consequently,

akZchy

but this is a contradiction with assumption (*); hence,

G _ G

Sigio = Spogo -
This is true for all (7,,7,), which establishes the theorem. The converse is
not true, as we show later.

THEOREM 2. The fundamental theorem on graph complexity. Let G be a
graph on n vertices and e edges, H a subgraph on n' vertices and o' edges. If
the complexity of H is y (H), then

n+ e n'e

L) = I [ ) 4 e— o]
Progf.  Since H has complexity y (H) it contains, by definition of com-
plexity

MX(H)

n'e'

proper paths. The remaining edges, e—e¢', provide af least ¢—e' other paths.
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2. PROPERTIES OF THE COMPLEXITY FUNCTION

We now want to see if and how the four properties listed above for the
defined complexity function hold. We can settle property three at once, since
the definition obviously takes into account connectedness of the graph. We
investigate now properties one and two.

First we analyse Y (n,e) = /_Z‘f -

Consider Y (%, ¢) as a continuous function in R2— {(o, 0)}.

8 ne  (ntee—ne &
Vﬂ—ke - (7 + e)? - (ﬂ-|—€)2>0 for all e.

Consequently Y (7, ¢) is increasing for all fixed eg:

8 ne _ (nteom—ne P
B nfe (n + e BCEYL > o for all zn.

Consequently Y (7, ¢) is increasing for all fixed 7,. Finally, for 7, < #,,¢; < e,

g ey Ml - M
Nyt ey T myt+e T on e

with strict inequality if at least ohe of the above conditions on 7 or e is a strict
inequality.

THEOREM 3. Let G be a given graph with n vertices and e edges. Let G
be a graph obtained from G by adding edges. Then

2 (G =7(G).

Proof. Since ¢ increases and #z remains constant by construction Y (7, e)
increases. I'gr exceeds I'g since

@) we are taking the outer sum over the same set;
b) we have added edges hence, since G’ is obtained from G, in addition

to the proper paths contained in G, we must have some new proper paths.
This proves the statement.

COROLLARY 1. Let G be a graph with n vertices and e edges. Let G' be
obtained from G by adding vertices such that the resultant graph is connected (we
have not defined complexity for disconnected graphs). Then

2 (G =1 (G).

Proof. n has increased; since we require connectedness, ¢ must also
have increased. Invoke Theorem 4, whence the result.

Let #, and s, be two non-isomorphic trees on 7 vertices; we show later
that y (#,) = % (s,). We can then state
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THEOREM 4. K, is the most complex graph on n vertices; t,, a tree on n
vertices, is the least complex graph on n vertices.

Proof. K, must necessarily have the largest number of proper paths,
since every possible edge is present.. On the other hand, #, has the least number
of paths. Finally

ek, =a = e, = b

implies that Y (#, @) > Y (%, 6). Putting all of this together we get the result.

We may now want to know what happens as we go from ¢, to K,,. For a
detailed analysis of this problem, we refer the reader to [4]; the final result
is as follows:

As a result of Theorem 3 we know that if we take a spanning subiree on
n vertices and we successz'z)ely add edges we increase the complexity (hence Theo-
rem 4), but we cannot, in general, establish the relationship between the com-
plexity of a graph obtained by adding e, edges to a spanning subtree and the

complexity of a graph obtained by adding ey edges, e;<<e, to a a’zﬁerent spanning
subtree on n vertices.

3. CLOSED FORM FORMULAE

We now present exact formulae for the complexity of well known graphs.

THEOREM 5. Let G be a tree on n vertices. Then

x(G)=2e=

An—2

Proof. Without loss of generality we work with a string.

1 2 3 4 5 n-1 n
Fig. 1.

Vertices : #. — Edges : # — 1. — Proper paths: as for the following Table I.

TaABLE I.
I 2 3 4---n—1 < £
12| 1 o o o---0
13 o I
14 o o 1 o---0
23 I o o 0--:0 <~ Y
n—1,n
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Every row contributes one path; thre are § 7 (# — 1) rows, hence

X<G>: ne EZYk= n(n—1) (n-—l)n.

n-+e 7+ n—1 2

With this theorem we can prove the assertion we have made before that
the converse of Theorem 1 is false: simply take two non-isomorphic trees on
n vertices. In a similar way we prove

THEOREM 6. If G is a cycle on n vertices then

Bt (n—1)
x(G)=20=1.

THEOREM 7. For the complete graph on n wvertices,

1 74— 24 4 22 ~ 1
= — —_ | —_—
X (Kn> 2 n 41 (ﬂ 2> 1;} (n—zr- 2)] '

Proof. Vertices: n. — Edges: § (7 — 1) . — Proper paths: as in Table 11

TABLE II.
I 2 3 4 5 . o <~ £
12 (n—2)! (n—2)! (n—2)! (n—2)! (2 — 2)!
m—2—1)! (H—2—2)1 (m—2-—3)1 (n—2—24)! ol

(12 — 2)! (n—2)!
13 ! (n—2—1)! (n—2—2)!

(. — 2)!
1 (n—2—1)!
23 S _  — <Yz

n—1,n I —_ R -

Obviously every row is identical since we have symmetry, hence we
consider only paths between the pair (1, 2). The first entry in this row is
clearly 1. To determine the second entry we must determine how many paths
of length two there are between vertex 1 and vertex 2. Let

X —>2—>t—> =0 >y

stand for the path from vertex x to vertex y through the vertices z,¢,---, v,
in the given order. Then, in the case above we would have

I >3—=>2, I1—>4-—>2, 1-—>5->2,-+1—>%u->2.
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This is equivalent to determine in how many Ways we can pick one symbol
—the middle symbol in the above formal description of a path—out of
n—2 (we have to exclude 1 and 2); this is

s = (n— 2)!

T i—2—nl
Similarly, for paths of length three we have

I—>4-—>5-—>2, I ->5->4-—>2, 1->3-—>4-—>2, I->4->3—>2,

I >3 -—>5->2, 1->§->3->2, ..

That is, how to take two symbols out of » — 2, or

(n— 2)!

Yo = o —a1

—2—M)
In general, we get Tivn = %
The total number of paths contributed by eack row in Table 11 is

"3 (n— 2-—7)!

=~ (n—2)!

There are {7 (z— 1)/2 rows. It follows that

n”(ﬂ—l_) n—2
- 2 (n—1)n I
1O= Ty 1 T B e

2

from which the result can be obtained by algebraic simplification.
Note that for » = 2 the formulas for 4, and K, coincide; similarly for ¢,
and K;. The following theorem may be established:

THEOREM 8. For a bipartite graph Kym,

v (K _ 22 ‘9 N2 "’22_1—[1_‘__1—]
X.( mnn)‘— 2 tm m +(m> [ — 2 — )1 m—j—1 :

i=o

4. UPPER AND LOWER BOUNDS

The complexity of a graph G admits in a natural way lower and upper
bounds. Some of these bounds will be very insensitive, but they are useful
either to prove other theorems, or to give an absolute bound just in term of
very little information on G, say #. The next theorem is of this type.

THEOREM 9. For any normal graph G on n vertices

3
L@ = 5py (B
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Proof. A normal graph is connected, hence 2 ¢ > #%. Since a normal
graph has no multiple edges

nn—1)

e <<
- 2

It follows that

1(G) =5 BBy = G (Enyy

But the sum of all proper paths is az least the number of edges e (an abundant
oversimplification). Finally

2 2 3
G 2 7 82 VA . ”n 7 .
L 2 =
n®+n ) 2 2 (12 + n)

COROLLARY 2.
LG =—""_, (Ba).

"+ n

While B 1 gives a lower bound for y (G) by knowing # only, B2 also uti-
lizes the information contained in ¢; hence is a better lower bound. Note that
for large 7, B1 ~ /2.

THEOREM 10. For any normal graph G on n vertices
2 (n—1)?
1@ = 22=0 ().
Proof. Since G is connected,

w2 —n

e>n—1 , e < 3 s

1@ = 2y = U ey =

n 7+ (BB—n
_2n(n—1) 2(n—1) 2 (n—1)?
= amEn CEW 2 0= Ty

Note that for large 7, B 3 ~ 2 (# — 1), which is better than the asymp-
totic behavior of B 1.

COROLLARY 3.
G) (n+ 1) B
x (@) = —xe Ba.

2(n—1)
B1, B2, B3, B4 are attained for K,.
THEOREM 1T.

1@ =2 {ze—nt1y (B

Proof. Let ¢ (G) be the cyclomatic number; every edge e provides a
proper path, and every independent cycle provides a# Jeast another path, which
differs from the one above. At this point we can only say ‘ at least another
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path’ since the other ‘ half’ cycle, which we would like to count, may already
have been counted as a single edge. For exemple, in fig. 2, the cycle only
provides one new path between vertex 1 and 2 (it provides two new paths

between. vertex 1 and 3). Hence

4 (G) = ne {e+c(G)} = m’e{e_g_(e—n—l—l)}n—’f:?:(ze~n+1).

n+e n +

4
5

3

6

1 2

Fig. 2
Bs is attained for K, — We now derive a better bound.

THEOREM 12. If ¢ > n, then

1@ =2 (U5t e—n 1)) Bo).

Proof: The graph in question is a supergraph of a spanning tree on 7
vertices; a subtree of this kind provides (z—1) z /2 proper paths, as we saw
in Section 3; but there are (¢ —# + 1) other edges providing proper paths.
Using the principle of the Fundamental Theorem, we obtain the desired result.

The condition ¢ > 7 is only required to insure that the second term is

reasonably large, otherwise the bound is poor.

The following bounds may also be established (see [4]). Let ¢ be an

integer. Define
d,=o0 if ¢=o0, do=1 if @>1.

Let ¢ = 3% —2¢— 3 be larger than zero, and let

& = min 3 [(3+<Pi'—1)(3‘|‘<Pi) —1] So;

2

where the minimum is taken over all partitions P = { ¢, ¢, - - -

@ into at most ¢ (G) summands. Then

(B 7) 1@ = [P e—nt )+ 4],
(B8 X(G)Zn—?-;(}(e—ﬂ—l—l),

z*—1
(B o) x(G)zn’f:e [2z*+522’+1(z*—j)],

Jj=1

47. — RENDICONTI 1975, Vol. LIX, fasc. 6.

,CP[} Of
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where 2z = min (¢, y,) whith ¢ the cyclomatic number and

. S [g] if % odd,

( [—Z—] — 1 if # even.

We compare these bounds for a particular example, along with the actual
complexity.

EXAMPLE:
3
1 2
4
5
Fig. 3.
Pair (v;,9)), 7> ¢ Number of proper paths = oy
12 I
13 3
14 3
15 3
23 3
24 3
25 3
34 3
35 3
45 3
) — € 3
X(G)—”'l"evzcw 5+6 ZG (28>—_763
Bound Bx Value
B1 2.08
B2 5.00
B3 5.33
B4 8.00
Bs 21.80
B6 30.00
B7 Does not apply: ¢ =0
B8 32.70
Bog 65.45

Notes: # = 5; ¢ = 6; ¢ (G) = 2 ; 9, = 2; & = 2. — The situation with upper
bounds is much simpler.
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THEOREM 11. Let G be a normal graph on n vertices. Then

1 A —2n® - ? o3 I .
o e e L Y e e TIL

Proof. 3 (G) <% (Ky), and y (K,) =/.
COROLLARY 4. For a normal graph G

4_ .3 2
LG <5 ESEEES (n—2) | (oxmn) -

Proof.

n—2
1 1 I 1 I I .
Té, =T = T T a—gr T Tar F o <enee=2.718. ..

CONCLUSION

The objective of producing a measure of complexity satisfying the requi-
rements outlined above has been accomplished. This complexity enjoys other
useful properties not discussed here. The definition can be extended to non-
normal, non-oriented graphs, and, also, to oriented graphs; such a comple-

xity on oriented graphs can then be used to define an appealing measure
for entropy.
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