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Teorie com binatorie. — Combinatorial graph complexity. Nota 
di D a n i e l  M i n o l i , presentata (*} dal Socio B . S e g r e .

RIASSUNTO. — Qui si ottiene una misura della complessità di un grafo non orientato; 
varie misure sono già state proposte, ma esse non soddisfano ad alcune proprietà fondamen­
tali che una siffatta funzione dovrebbe avere, date essenzialmente dal carattere monotonico 
della complessità rispetto al numero dei vertici, dei lati, e del grado di connessione del grafo. 
Ecco la nostra definizione: Un cammino tra due vertici vi and , vi dicesi proprio se
1) contiene vi e Vj esattamente una volta, rispettivamente come vertice inziale e finale, e
2) contiene ogni particolare lato al massimo una volta; la complessità % (G) di un grafo G 
viene quindi così definita:

X  (G) =
ne 

n +  e 2 'ij >

dove e =  numero dei lati, n =  numero dei vertici, =  numero dei cammini propri tra i 
vertici Vi e Vj. Proprietà di questa complessità vengon qui investigate.

i .  In t r o d u c t io n  a n d  d e f in it io n s

A n intrinsic character of a linear graph is its relative ‘ com plexity ’. 
Various measures of com plexity have been given, m ostly dealing with the 
inform ation content, and based on certain invariant partitions of the vertex 
set. See [1], [2], [3] for discussion and further references. However, the 
measures so far presented fail to satisfy certain fundam ental conditions which 
we would like to have. We construct here a m easure which has m any appealing 
properties.

D e f i n i t i o n  i .  A com plexity functions is a positive functional

Z : C -> R

[C being the class (category) of graphs].
A com plexity function should enjoy the following properties:

1) it should be m onotonically increasing on the num ber of vertices 
of the graph;

2) it should be m onotonically increasing on the num ber of edges of 
the graph;

3) it should reflect the degree of connectedness of the graph;
4) it should satisfy our intuitive ‘ fe e l’ of complexity, assigning a 

high num ber to a graph  which ‘ looks ’ complicated, and viceversa.

These are exactly the conditions that the available measures of com­
plexity fail to satisfy.

(*) Nella seduta del 15 novembre 1975.
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O ur paper is anti-climactic, establishing the most im portant result with 
Definition 4 below and then proceeding to show how the characterizing pro­
perties presented above are satisfied.

V and E denote, throughout, the vertex and the edge set respectively. 
In  the present work, com plexity will be defined only for norm al graphs, but 
extensions are possible.

DEFINITION 2. A connected, undirected graph with no m ultiple edges 
and no self loops, and w ith V having more than two points, is called a normal 
graph.

DEFINITION 3. A path  between two vertices , v3 (with vi v f  is 
proper if

a) it contains vi and Vj exactly once, and as initial and final vertex 
respectively;

b) it contains any particular edge no more than  once.

Let n =  I VI , V the vertex set; e == | E | , E the edge set; A =  {{vi , z/4) , vi e V}. 

Definition 4. Let G =  (V , E) be a norm al graph. We define

X(G) n 4- e 2  S n 0'
i>j

j )

with Y* (i , j )  =  num ber of proper paths of length k from to v3, and the outer 
sum m ation taken over all (z/4 , v f  e (V X V) — A, to be the combinational 
complexity fu n c tio n , or, in short, the complexity function.

N aturally  we could lum p together all proper paths between a pair of 
vertices (yi , v f  as g^  and write

X(G) =
ne 

n e
i>j

but the form er approach is easier to work with to obtain closed form expressions 
for particu lar graphs.

From  now on, unless there is danger of confusion, we shall abbreviate 
Yk (i >j) by Tk> and whenever we say ‘ path ’ we m ean ‘ proper path  A  If a 
g raph Gj is isomorphic with a graph G2 we denote this as Gx ~  G2; if they 
are not isomorphic, we denote this as Gj G2. By ‘graph ’ we always m ean 
a "normal graph.

T h e o r e m  i .  Gx ~  G2 implies that % (G^ =  % (G2).

Proof. .Since ex =  e% — e and nx =  n% =  n, we need only study

rGi x tgi
(Vi.Vj)
j>i

rG2 X JPQ
(?P>vg)
g>p

=  X  y*1 (*■ J )Jc=1

=  X  P  u> >g)
1s =  1
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To every term  of the form  (vig , vjg) in the sum for TGl there corresponds a 
term  involving (sPg, s9g) in the sum for Tg2 , with sPg the image of v ig under the 
isomorphism, and sgg the image of Vjg; (if p 0 >  q0 this term  does not actually 
appear m the second sum but (sf0  , sPg) appears and aPglJg == aggPg ; w ithout loss 
of generality  we take p ü <  ç 0). Sim ilarly, for every term  involving (sPg, sgg) 
in r Gl there corresponds a term  for (vig , vjg) in r Gl.

T he discussion above implies th a t working with reference to TGl it suffices 
to show

G* __ G2
Gioio ~  GPo0o

for all (70 y j 0). Assume tha t
G-i . Go

Gioh ^  gPoQo

e e

this means 2  Y* Go Jo ) *  2  h  ( p 0 , g 0)
k=l Jc=l

or, in other words, there is a k  such th a t #  dk. W ithout loss of generality
assume

(*) Y* >  3* .

Now, say vig =  vg , vl , v2 , • • •, vt =  vjg determ ines a proper path  in Gx; there 
are yk (*0 , j u) such paths G,. But then sPg =  s0 , s1 , s2 ,■ ■ ■, st =  s9g, being 
the image of vw, also determ ines a proper path in G2, since isomorphism pre- 
serves incidence at all vertices. Consequently,

3* >  Yk ,

but this is a contradiction with assum ption (*); hence,

Gj G2
Gio Jo == GPo ffo •

This is true for all (z0 ,Jq), which establishes the theorem. The converse is 
not true, as we show later.

T h e o r e m  2. The fundam en ta l theorem on graph complexity. L et G be a 
graph on n vertices and e edges, H a subgraph on ri vertices and e’ edges. I f  
the complexity o f H is % (H), then

X(G) > ne 
n +  e

n' +  e' 
n' e' X (H) +  G —  e’) ] .

Proof. Since H has com plexity x  (H) it contains, by definition of com- 
plexity

n’ +  e’ 
n'e' / ( H )

proper paths. T he rem aining edges, e — e*, provide at least e —  e! other paths.
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2. Properties of the complexity function

W e now w ant to see if and how the four properties listed above for the 
defined com plexity function hold. We can settle property three at once, since 
the definition obviously takes into account connectedness of the graph. We 
investigate now properties one and two.

First we analyse Y (n , e) — ——— .J K y n -fi e

Consider Y (n , e) as a continuous function in R 2 — {(o , o)}.

§ ne {n -j- e) e — ne
Sn n -fi e {n -j- e)2

*2
(n -fi e)2 >  O for all e.

Consequently Y (n , e) is increasing for all fixed eQ:

S ne _ (n-\- e)n — ne _ ?z2
Sn n -fi e (n -fi e)2 (n -fi e)2 for all n.

Consequently Y (n , e) is increasing for all fixed n 0. Finally, for , ex <  e%-

n%e% ^  2̂ ei >  ^1^1 .
n2 +  e2 — n2 +  e1 ~  nx +  ex

with strict inequality if at least one of the above conditions on n  ̂ or e is a strict 
inequality.

THEOREM 3. Let G be a given graph with n vertices and e edges. Let G ; 
be a graph obtained fro m  G by adding edges. Then

X (G') >  X (G) .

Proof. Since £ increases and n remains constant by construction Y (n , e) 
increases. To' exceeds Fq since

a) we are taking the outer sum over the same set;
b) we have added edges hence, since G' is obtained from G, in addition 

to the proper paths contained in G, we m ust have some new proper paths. 
This proves the statem ent.

COROLLARY i . Let G be a graph w ith n vertices and e edges. Let G ' be 
obtained fro m  G by adding vertices such that the resultant graph is connected (we 
have not defined complexity fo r  disconnected graphs). Then

X ( G 0 > X ( G ) .

Proof, n  has increased; since we require connectedness, e m ust also 
have increased. Invoke Theorem  4, whence the result.

Let tn and sn be two non-isomorphic trees on n vertices; we show later 
tha t x  (?n) — X 0*»)• W e can then state
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Theorem 4. Kn is the most complex graph on n vertices:; tni a tree on n 
vertices, is the least complex graph on n vertices.

Proof. K n m ust necessarily have the largest num ber of proper paths, 
since every possible edge is present. On the other hand, tn has the least num ber 
of paths. Finally

eK =  a >  et =  b— f'fi

implies th a t Y (n , a) >  Y (n , b). Pu tting  all of this together we get the result.
We m ay now w ant to know w hat happens as we go from t0 to K^. For a 

detailed analysis of this problem, we refer the reader to [4]; the final result 
is as follows:

As a result of Theorem  3 we know tha t if we take a spanning subtree on 
n vertices and  we successively add edges we increase the complexity (hence Theo­
rem  4), but we cannot, in general, establish the relationship between the com­
plexity of a graph  obtained by adding ex edges to a spanning subtree and the 
complexity o f a graph obtained by adding e2 edges, ex <  to a different spanning  
subtree on n vertices.

3. Closed form formulae

We now present exact formulae for the com plexity of well known graphs. 

Theorem 5. Let G be a tree on n vertices. Then

=  * ( « - 1)1 _
A v y 4 n — 2

Proof. W ithout loss of generality we work with a string.

Fig. I.

Vertices : n. — Edges : n  ■— 1. — Proper paths: as for the following T able I.

Table I.

I 2 3 4 * • . n — I < -  k

12 I 0 0 0  • < • 0

13 0 I 0 0 -, • • 0

14 0 0 I 0 • • • 0

23 I 0 0 0 • •■ • 0  Y k

n — 1 , n



6 s 6 Lincei — Rend. Se. fis. mat. e nat. — Vol. LIX — dicembre 1975

Every row contributes one path; thre are \ n { n — 1) rows, hence

n{n — 1) {n— i)nX(G) = n -j- e n +  n-

W ith this theorem  we can prove the assertion we have m ade before that 
the converse of Theorem  1 is false: sim ply take two non-isomorphic trees on 
n  vertices. In a sim ilar way we prove

THEOREM 6. I f  G is a cycle on n vertices then

n2, (n — 1)
x(G)

Theorem 7. For the complete graph on n vertices,

X (K .) = I nA ■— 2 ns +  ; tb-û
0 ~  2)! 2n F  I v " ~ 0 (n — r • 2)1

Proof. Vertices: n. —  Edges: \ { n  —  1) . ■— Proper paths: as in T able II.

Table II.

13

14

23

n — I , n

5

■2)! 0n — 2)\ (n — 2)1 (n — 2 )l (n~—2 )l
[n — 2 — 1)! ( n ~  2 — 2)1 0 —2 — 3)! (n — 2 — 4)!

(n — 2) ! (n —-2) !
(n — 2 — 1)! (n — 2—2)!
__(n — 2) !
{n — 2— 1)!

o!

O bviously every row is identical since we have sym m etry, hence we 
consider only paths between the pair (1 , 2). The first entry  in this row is 
clearly 1. To determ ine the second entry we m ust determ ine how m any paths 
of length two there are between vertex 1 and vertex 2. Let

x  > t > v —>y

stand for the path  from vertex x  to vertex y  through the vertices z  , £ , • • • ,  v t 
in the given order. Then, in the case above we would have

i - > 3 - > 2 ,  i - > 4 - > 2 ,  I 5 —> 2 , • • •, I —> n —>  2 .
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This is equivalent to determ ine in how m any ways we can pick one symbol 
— the m iddle sym bol in the above formal description of a path— out of 
n — 2 (we have to exclude 1 and 2); this is

(n-— 2 — 1)!

Sim ilarly, for paths of length three we have

1 -> 4 5 2 , i - > 5 - > 4 ~ > 2 ,  1 -> 3 4 2

I 5 -> 3 2 , • ■

T hat is, how to take two symbols out of n — 2, or

(n — 2) !

In  general, we g*et

Ï3 =

Ïï+i =

in-— 2— 2)! 
(n — 2 — i)\

I - > 4

(n-—,2)!

The total num ber of paths contributed by each row  in T able II is
n —2 /  ̂ v,^  {n — 2 — r) !

(n —• 2) !

There are \ n ( n •—- i)/2 rows. It follows that 

n (n — I )
n

X(G)
( n  —■ I ) n

2n k ( n -—■ 1) 0 2)! Eèo (n ~ 2 — r)\

from  which the result can be obtained by algebraic simplification.
Note th a t for n — 2 the form ulas for t2 and K 2 coincide; sim ilarly for c3 

and K 3. The following theorem  m ay be established:

THEOREM 8. For a bipartite graph  ,

x 2r  
2 +  m

[ / m~ 2
n?  +  ( I 2 [ï + ------ — -]) .L m — j —  I Jj

4. U pper and lower bounds

The com plexity of a graph  G adm its in a natural way lower and upper 
bounds. Some of these bounds will be very insensitive, bu t they are useful 
either to prove other theorems, or to give an absolute bound just in term  of 
very little inform ation on G, say n. The next theorem  is of this type.

Theorem 9. For any norm al graph  G on n vertices

(B I).X(G) > 2 (;n2 +  n)
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Proof. A  norm al g raph  is connected, hence 2 e >  n. 
graph has no m ultiple edges

It follows th a t

e n (n •— 1) 
2

Since a normal

* <G> -  (S S  ?*> -  ,, + {Ì - n ) B  <E S  T*) •

But the sum of all proper paths is at least the number of edges e (an abundant 
oversimplification). F inally

X (G) >  —— —  e >
n n

n n3
2 2 (fp1 n)

Corollary 2.

X(G) >
n2

rft -f- n
e (B 2).

W hile B I gives a lower bound for y (G) by knowing n only, B2 also u ti­
lizes the inform ation contained in e\ hence is a better lower bound. Note that 
for large n  , Bi ^  n \2.

T h e o r e m  10. For any normal graph  G on n vertices

2 (n — i)2
X(G) >

Proof. Since G is connected, 

e !> n  — I

n +  I (B 3).

« <

X (G) =  —  (SS  Yic) >  — ( SS y, ) =n +  e

2 n{n  — 1) 
n (n -p i )

n +  (n2— n)j 2

( s s ÏÆ) >  V " ; \ T) g >  2 («— i)2
in +  i) +  i)

Note th a t for large w , B 3 ^  2 (% —  1), which is better th an  the asym p­
totic behavior of B 1.

Corollary 3.

* <G> a t | ^ T )  ‘

B I,  B 2, B 3, B 4 are attained for K 2.

T h e o r e m  i i .

X (G) >  — f — {2e ■ n -\- 1} (B 5).

Proof. Let c (G) be the cyclomatic num ber; every edge e provides a 
proper path, and every independent cycle provides at least another pa th , which 
differs from the one above. A t this point we can only say ‘ at least another
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path  ’ since the other ‘ half ’ cycle, which we would like to count, m ay already 
have been counted as a single edge. For exemple, in fig. 2, the cycle only 
provides one new path  between vertex 1 and 2 (it provides two new paths 
between vertex 1 and 3). Hence

X(G) + * ( G ) }  = ^ — {* + (e —  n +  i ) } - ~ =  (2e —  n f  i).

3

Fig. 2

B5 is attained for K2. ■—■ W e now derive a better bound.

T h e o r e m  12. I f  e > n ,  then

X ( G ) a ^ ( ^ + < > " - >  +  . ) )  <B«>.

Proof: T he graph  in question is a supergraph of a spanning tree on n 
vertices; a subtree of this kind provides (n — i) n j 2 proper paths, as we saw 
in Section 3; but there are (e —  n +  1) other edges providing proper paths. 
U sing the principle of the Fundam ental Theorem, we obtain the desired result.

The condition e >  n  is only required to insure tha t the second term  is 
reasonably large, otherwise the bound is poor.

The following bounds m ay also be established (see [4]). Let 9 be an 
integer. Define

S«p =  o if 9 =  0 ,  S<p =  I ■ i f  9 >  I .

Let 9 =  3 n  —  2 e —  3 be larger th an  zero, and let

w  =  m in X  t ë -à - V - *> (3 +  T.-) _  J  & .
<pz-eP L 2 J

where the m inim um  is taken over all partitions P  — { 9 1 ,9 2 , * • * , 9/} of 
9 into at most c (G) sum m ands. T hen

(B 7 ) X (G) >  —  +  (e -  n +  0  +  w] ,

(B 8) X (G) >  ^ G (e — n  +  i) ,

(B 9) X (G) >  [2 «* +  s J )  2i + 1  (e* — y )] ,

47. — RENDICONTI 1975, Voi. LIX, fase. 6.
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where =  m in (c , y*) w hith c the cyclomatic num ber and

» ( £ ]  if « odd,
y» =  [ .

M — —  i if n even.

We com pare these bounds for a particular example, along with the actual 
complexity.

E x a m p l e :

3

Pair (yi , Vj), j  >  i Number of proper paths =  o,y

12 I

13 3
14 3
15 3
23 3
24 3
25 3
34 3
35 3
45 3

X(G) =
5 - 6
5 + 6 2  ~  ■77' (2^) =  76.3

(Vi,Vj)

Bound Bx Value

B I 2.08
B 2 5.00

B 3 5-33
B 4 8.00
B 5 21.80
B 6 30.00
B 7 Does not apply : ç =  o
B 8 32.70
B 9  65.45

Notes: n =  5; e =  6; c (G) =  2 ; yC =  2; z* =  2. -— T he situation with upper 
bounds is m uch simpler.
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T h e o r e m  i i . Let G be a normal graph on n vertices. Then

* (° )  S I  * = & *  <« -  *) > %  - / ■

Proof. X (G) <  X (K»), and z (K„) =  / .

C o r o l l a r y  4. For a normal graph G

X(G) <
I r r  —■ 2 n r  »2

(n —  2) ! (Vnep) •

Proof.
«—2

r=0 (»• -r)\ ( n  —  2 ) 1  ~  ( n  —  3)!
I

2!
I

Tr o! <  ^NEP =  2.718/

C o n c l u sio n

T he objective of producing a m easure of com plexity satisfying the requi­
rem ents outlined above has been accomplished. This com plexity enjoys other 
useful properties not discussed here. The definition can be extended to non- 
norm al, non-oriented graphs, and, also, to oriented graphs; such a comple­
x ity  on oriented graphs can then be used to define an appealing m easure 
for entropy.
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