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Matematica. — Compact operalors on spaces of inlegrable func-
tions on homogeneous spaces. Nota di OLUsOLA AKINYELE, presen-
tata ® dal Corrisp. G. ZAPPA.

RIASSUNTO. — Vengono caratterizzate alcune classi di operatori compatti su certi
spazi di funzioni integrabili su spazi omogenei.

INTRODUCTION

Let S be a £-dimensional sphere (£ > 2) and SO (£ + 1) be the special
orthogonal group of rotations on S. If SO (#) is the closed subgroup of SO (£-1)
leaving a point of S fixed then it is well-known that S ~ SO (£ + 1)/SO (&)
and S is a special compact homogeneous space. Let L’ (S) be the Banach space
of integrable functionson S and L/ (S; p) ={f€L'(S): Ry f = f,x € SO (£-+1}
where p is the north pole of S and R, is the rotation operator defined by
Ro f(x) = f (x2) x €S; then L' (S ; p) is a closed Banach subalgebra of L' (S).
In section 2, we characterize the compact operators on L’ (S) which commute
with the rotation operators R, « € SO (£ + 1) as convolution with elements
of L' (S, #). A similar characterization is also obtained for compact operators
on C (S), the space of continuous functions on S. In section 3, we consider a
general type of homogeneous space namely; G|z where G is a compact group
and H is closed subgroup of G. We define

Lit (G) = {f €L/ (G): f(hx) = h (x) ,x €G , h € H}

and Lyggy G) = {fEL’ G): fUexA)y=f(x),,€H,x€G}. It is known
that L’ (Glg) ~ Ly (G) [cfr.,, 3]. We characterlze in section 3, the compact
operators which are G-operators on Ly (G) as convolution with elements of
Lin (G). A similar characterization is obtained for Cy (G) ~ C (Glu). The
results of this paper thus generalize the result of [1] for compact groups to
compact homogeneous spaces. For harmonic analysis on homogeneous spaces
we use [3] as our main reference.

§ 2. COMPACT OPERATORS ON L' (S)

We state and prove the main result of this section:

THEOREM 2.1. Let T:L'(S)—L'(S) be a bounded linear operator
which commutes with the rotation operators on' S. Then T is a compact operator
if and only if there exists g € L' (S ; p) such that for each f € L' (S), Tf = g* f.

(*) Nella seduta del 13 dicembre 1975,

44. — RENDICONTI 1975, Vol. LIX, fasc. 6.
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Proof. Assume that ge€L/’ (S;§>’ then given e>03LIJ;1 Ph, - m=
=0,1,2,,NeC(S;2)2|g—2, ty " anH<s[cfr., 2].
m=0

Hence for f€L'(S), assume that Tf=g* f, and choose s<ﬁ then
(cfr. 2], o
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Thus T is an operator of finite rank and hence compact.

Assume now that T is compact, then by [2] there exists pe M (S; p)
such that Tf = f* p. for each f €L’ (S). Let U, be an approximate identity
in L' (S; p), then for g€C(S),U,*g—g in the norm topology of C (S)
and in particular for g€C(S;p),U,*g—g. For e M (S;p),ux*U,€
€L (S; p) [2] and TU, = pn* U, so that || TU,| < co. Hence {TU,} is a
bounded net in M (S; ) and there exists v € M (S; ) such that p*xU,—>v
in the weak* topology, that is if, f€C (S; p)

Sf £ d @) =( £ d @eUY @ =f | f U, () doets () a.

Since w €M (S; p), let « €SO (£ + 1) such that ap = p, then

!f(x)dv(x)=sff(x) {JUv(J’)dRaM(y)} dy —

=ff(x) UU (%) dp. (x)} d (x) =ff(x) dp (#).
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So v = ae. Since {u* Uy} is a bounded net in L’ (S; 2) then there
exists a subnet which converges to some g €L’ (S; p) in the L’-norm. The
convergence of u* U, to u in the weak -topology implies that ¢ = p and
Tf =g* f for all f €L’ (S).

COROLLARY 2.2.  Let T:C(S)—~C(S) ébe a bounded Ilinear operator
which commutes with the rotation operator on S. T is a compact operator if and
only if there exists a g €L (S ; p) such that Tf = g f for all f €C S).

Proof. 1f g €L’ (S; p) such that Tf = g* f for all f€C. (S), a similar
argument to the first part of Theorem 2.1 shows that T is compact. Assume
that T is compact, then by [2], 3u €M (S; p) such that Tf = p * £ for all
/S €C(S). Proceeding in a similar way as in the theorem, p € L’ S p).

§ 3. COMPACT OPERATORS ON L' (G [).

In this section G is a compact group and H a closed subgroup of G. De-
fine Can (G) = {f€C(G):f (hxXA)=f(x),x€G ,h FeH} and Cy G) =
={f€C(G):f(hx) =f(x),x €C, / € H} where C(G) is the Banach algebra
of continuous functions on G. Let the Haar measure of H be my and denote
by G the dual of G. Fora€ G, let T, be some element of the equivalent class
of continuous unitary irreducible representation of G denoted by «, and define
%o (%) = T, (To (x)) = ZT4 (x)i; where T, denotes the usual trace. Then the
spherical functions for G|y are the functions ¢, defined by @u = yu * m2y
for « €G. The properties of ¢, are similar to the properties of ), P}, , 72 =
=0,1,2, - of section 2 (the so called Gegenbauer polynomials) [cfr. 2, 3]

DEFINITION 3.1. Suppose (T, X) is a representation of G on a Banach
space X. Then we call an operator S € # (X) a G-operator if ST (x) = T (x) S
for all x € G, where # (X) is the Banach algebra of bounded linear operators
on X.

We now state and outline the proof of the main result of this section.

THEOREM 3.2. Zet T: Ly (G)— Ly (G) be a G-operator. Then T is a
compact operator if and only if there exists a g € Lyn (G) such that Tf=gx*f
Sfor each fely(G).

Progf.  Since finjte linear combinations of the spherical functions Pe
are dense in Cy (G) the same arguments of Theorem 2.1 show that T is compact.

Suppose T is a compact G-operator, then Theorem 9.3.6 of [3] im-
plies the existence of p € Myg (G) such that Tf = p* f for all fe€Ly G).
Let V be a neighbourhood of the identity ¢ €G such that HVH = V, then
my* Uy * my = Uy and Uy €Lyy (G) with [|Uy|| = 1. We can show by
a similar argument in Theorem 2.1 that there exists v € Mgy (G) such that
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w* Uy —v in the weak*-topology and so for

/€Can (G) , | f(®)d@*Uy) = |/ (x)dv ().
l l

It is routine to show that

Y

G

Jr@a@ =[x o9 mawm.

Now f*Uy—f in the norm topology of Cug (G) and so |f(x)—
—(/*Uy) (@) | o0 for cach x€G and |(/*Uy) @) |=|/* Uvllo </l
lUvly =1 fllo- Hence by the Lebesgue dominated convergence theorem

f (F Uy) (@) du (3) — f £(3) du ()
G G

hence

Jr@aw=[rmao
G

G

and so v =y a.e. with p* Uy —u in the weak™-topology. Again {p* Uy}
forms a bounded net in Lyg (G) so a subsequence of it converges to g € Ly (G)
in the L’-norm. Hence g = p. and Tf = g * f for all f € Ly (G).

COROLLARY 3.3. Let T:Cy(G)—>Cu(G) be a G-operator. Then T
is compact if and only if there exists g € Luy (G) such that Tf = g * f for all
f€Cqx (G).

Progf. We proceed in the same way as in Theorem 3.2.
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