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M atem atica. —  Lattice Measures, Realcompactness and Pseudo­
compactness. N ota II di M a r t i n  K e r n e r ,  presentata (*} dal Corrisp. 
G. Z a p p a .

RIASSUNTO. — Nella Nota I avevamo introdotto una topologia nello spazio delle 
misure ^-regolari. La base per gli insiemi chiusi in questo spazio è un reticolo e noi mostriamo 
che questo reticolo è T — 2 se e solo se è normale. Consideriamo poi misure fissate in punti, 
e mostriamo che sotto certe condizioni esse forniscono un’immagine omomorfa dello spazio. 
Quindi, estendiamo i nostri risultati a prodotti di reticoli. I principali risultati del lavoro sono 
teoremi riguardanti la pseudocompattezza e realcompattezza reticolare che generalizzano 
risultati di Glicksberg a Varadarajan.

In  the first part of this paper we discussed properties of lattice regular 
m easures-m easures, p., with the property that p, (A) sup p. (L) , A D L ,  
L c JP} IP a lattice.

The regularity  of our measures ties properties of the m easure to properties 
of the lattice. We now give a m easure theoretic characterization of norm al 
lattices.

THEOREM 3.4. Let IP be a norm al lattice. Suppose that p. is  a measure
on sé  (fiP) and  v and  p are IP-regular measures on sé  (IP). I f  p, v on lè i ,
and  p, <  p on IP y then v =  p.

Proof. Suppose v f i  p. T hen there exists B e sé (IP) such th a t v (B )= o  , 
p (B) -  o, and p (B ') =  1. B D D e ^  with v (D) =  1 , B ' D C € IP with 
P (C) =  ï. By norm ality, there exists H , G 6 IP w ith H 'D  D , G ' D C  and 
H ' n  G '=  0 . T aking complements, H u G = X  and p ,(H )= i o r p , ( G ) = i .  
If  p.(H) — I , v (H) — ï , but v (HO — ï • Contradiction. Similarly, if p. (G) =  1 
than  p (G) — 1 but p (GO =  1. Contradiction.

COROLLARY. Let IP be a normal lattice. I f  F, a prim e IP filter is
contained in both H and  G , H , GIP ultrafilters, then H =  G.

Proof. By Theorem s 2.1 and 2.3, there exists a measure p. a n d IP regular 
m easures v and p such tha t F  =  {A | p. (A) =  1}, H =  {B [ v (B) =  1} 
and G =  {C [ p (C) =  1}. Since p - < v , p . < p ,  H — G.

T h e o re m  3.5. I f  ( p . < v , p . < p , v , p  IP-regular) =» v =  p , then IP is 
normal.

Proof. Assum e th a t IP is not norm al. There exist A , B 6 IP such th a t 
(* ' A  , y  B) => x ' n y f f i  0 .  Let G =  {x f e <P'\ x r D A }  and
let H =  { y ' e IP* I y  D B}. G U H is a filter and so 3^-u ltrafilter, K D G U H. 
A ssociated 'w ith  K is an J^-regular measure, t . Let F  =  {y  e LP | r  (y) =  1}.

(*) Nella seduta del 13 dicembre 1975.
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F is prim e and associated with it is a measure, (x. It is straightforw ard to show 
th a t F  U {A} and F U {B} are filters and they are therefore contained in u ltra ­
filters K x and K 2 with associated ^ -re g u la r  measures v and p. Now (x <  v , 
[x <  p and v ^  p since v (A) =  1 , p (A) =  o. But this is equivalent to the 
claim of the theorem .

If  we let { i f  =  {W (A) | A  e Sf') we notice th a t i f  is itself a lattice in 
IR (<£*). T he next results use the characterization of norm al lattices just discussed 
to derive properties of this lattice and relate it to properties of Jgf. We need 
two prelim inary lem m as.

LEMMA 3.1. There exists a I  : I  correspondence between IR (J2?) and  IR(#~).

Proof. The correspondence between [x e IR (if") and fx € IR (ST) is given 
by v  (W  (A)) =  [x (A) , A  € sd Ç&).

LEMMA 3.2. Let fx 6 I ( i f ) .  (fx is a measure, but not necessarily i f  -regular). 
Than  t € _ n  W  (A) i f f  [x <  t on ST, and  r e i  (JT).

[x(W(A))=l

Proof, a) If t  € _ n  W  (A), than  t  € I (JT) and fx (A) — 1 =>
__ [x(W(A))=l

=» [JL (W (A)) =  I =» T e w  (A) =» T (A) =  1; '
b) If  (x <  t  on , t  € IR (jg?), then if (x (W (A)) =  1 then [x (A) =  1 ’ => 

=» t  (A) =  I =» t € W (A).

T heorem  3.6. bT* T  —  2 i f f  i f  is normal.

Proof, a) Assum e i f  is normal. If pq pi2 € IR (& ) , 3 A  e ST with 
PH (A) — I and B A ' D B  with pq (B) = 1 .  By the norm ality  of i f  there 
exists (W (C)y D W  (A) , W  (D ))'O  W  (B), non intersecting, with pq € (W (C))A, 
[x2 € (W (D)), and is T  ■— 2.

___ Æ) Assum e i f  is T  ■— 2. Suppose [x <  Tj , jx <  t 2 o n # " , with pi € I ( # ’) , 
Ti , t 2 € IR ( i f ) .  (W (A)) =  I => t ,  (W (A)) =  Tj (A) =  t 2 (W (A)) =
=  (t 2(A) =  I. (We are using Lem m a 3.1) We now use a characterization of 
T  — 2 lattices due to Frolik. A  lattice, JT, is T  ■— 2 iff, for all o •— 1 measures, 
[x, on s d ( f f )  , n { A C ^ | [ x ( A ) = :  1} =  0  or a point. iq , t 2 e n  W  (A)

Ü(W(A))=1

and by this characterization =  t 2 . By Theorem  3.5, i f  is norm al.

THEOREM 3.7. Suppose the lattice, has the fo llow ing  property'. VA € 
e ^ ( J ^ ) 3L e i f : L C A .  Then (IR (JT) , Ow) T  ■— 2 => A normal.

Proof. Suppose fx € I (JS?) , v1 , v2 e IR (f£) , [x <  Vj , v2 on i f .  Consider 
[x , v, and v2 as in Lem m a 3.1. For W  (A) , A  € , [x (W (A)) =  1 => (x(A) =
~  I => (A)) =  I =» Vj (W(A)) =  I. So [x <  Vj and (x <  v2 on #". (IR(«£?) ,
Ow) T  —  2 ^  i f  is T  — 2. By Theorem  3.6. i f  norm al => by Theo­
rem  3.4 Vj — v2 => Vj =  v2, and f f  is norm al by Theorem  3.5.

Lastly, we consider measures fixed at points, i.e. measures which evaluate 
to I if a  set includes a  certain ponit, and to zero if a set excludes it. The next 
results show th a t when a  lattice is related to the topology of a space, measures
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fixed at points yield a hom eom orphic image of the space. Brooks [4] has 
considered sim ilar questions using filters. O ur approach is m easure theoretic 
and, using the m easure-filter correspondence, the results on filters are obtained 
as corollaries. On our discussion, [ix will be the measure fixed at the point x. 

Id  is assumed atom  disjunctive.

Lemma 3.3. I f  Id  is atom disjunctive, than =  {L e H  | x  € L} is an 
ultrafilter.

Proof. I f  U x is not an ultrafilter, 3G D U x , L  e G , L  € U x => x  € L. 
By disjunctive property, BL1 e J d , x e L 1) L r i L 1 =  0 .  But G D U ^ L j e G .  
L , L 1 e G = > L n L 1 e G=^ >0  eG.  Contradiction.

C o r o l l a r y .  I f  SR is atom disjunctive, [ix is Id-regular.

Proof. [Lx is the m easure associated with the ultrafilter U x.

T h eo rem  3.8. &  is T  —  1 i f f  9 : X -► IR (Id) by 9 (*) -  ^  is 1 : 1 .

Proof. Assum e x x f i  x 2. By T — 1 property  3A  with x %€ A  , x 2 e A . \ixlf i \ i X2 

since they take different values on A. Conversely, if 9 is 1 : 1 , x 1 f i  x 2=> 3A 
such th a t \lXi (A) f i  pX2 (A) => one of the points is in A, the other is not 

is T - i .

T h eo rem  3.9. {fx̂ .} m  the Ow topology =  IR (fid') i.e. measures fix e d  at 
a po in t are dense in  the space o f o —- 1 Id-regular measures.

Proof. For fx € IR (fid), a basic open set containing fx =  (W  (A))'. Choose 
x e A .  By the atom  disjunctive property 3Li 6 Jd such th a t L1n A  =  0 .  
This implies tha t y,x € (W (A))'. Since [x was arbitrary, {[lx } =  IR (Id).

T h eo rem  3.10. 9 : x  [ix is continuous i f f  each L e i f  is closed in  X.

Proof. A basic open set containing \px — (W (A))' p, 9 (X). 9-1 of this
set is A ' , A € Id , which is open in X by assumption. Conversely, assume 9 is 
continuous. Then cp-1 (W (A) n  cp (X)) is closed in X. But this is just A.

T h eo rem  3.1 i. 9 is a homeomorphism : X —>■ IR (Jd) i f f  Id  is a T —  1 
base lattice (A  base fo r  the closed sets in  X).

Proof. 9 is I : I and continuous by 3.8 and 3.10. Choose F, closed in X. 
F =  n  L $ , Lj e Jd . 9 (F) = 0 9  (L|) =  O (W (Li) n  9 (X)). (This is obtained
by applying 9 to the form ula 9 ” 1 ((W (A))' n  9 (X)) =  A ' which we used 
in the proof of "theorem 3.10). This set is closed, so 9 is bijective, continuous 
and closed which is equivalent to homeomorphic.

Conversely, if 9 is a hom eom orphism , than Id  is T  — 1 by 3.8, above. 
Choose F, closed in X. 9 (F )  is closed. 9 (F) =  p  (W (A<) p  9 (X)) , A* € 

This implies th a t F  =  fi A^, and Id  is a, base for the closed sets of X.
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4. P roducts

W e have already discussed, in section 2, how a m ultiplicative system 
m ay be extended to a lattice. A n intuitive exam ple of a m ultiplicative system 
iSo^jXJ^V In this section we show how to extend m easures on and J^2 to 
a m easure on the product space. For a filter approach to sim ilar questions, 
see Kost [9]. O ur approach is measure theoretic and, using the measure- 
filter correspondence, we get K ost’s results as corollaries. Given X 1 , ß  
and [i, defined on sé  ( ß f ,  and X2 ,JSf2 and v, defined on sé  (j£?2), let 

=  IA X B C X j  X X2 , A e , B e J  is a m ultiplicative system.
n

Let J2P (AT) =  {UA, x  B, A t e sex , B« e jS?2}. For K =  A X B, define p (K) =
I n n

=  (a(A) v (B). Define p (UA*X B 4) =  2 „ (A<)v(B4) ,A i f iA :,- =  0 , B* n  =  0
1 1

for i  f i  j .  We note th a t any union in (J^) m ay be written as a disjoint 
union. We now have defined a measure on SZ (V#), and by  the discussion 
preceding Theorem  2.3 we can extend this m easure to a m easure, p, defined
on j* ’ f iZ ( J f f .

T h e o re m  4.1. For every pa ir  o f o — 1 measures, p. on sé  (ZZf) and  v 
on sé  (J?2), there corresponds a measure, p, on sé  (JZ (V#)) and conversely.

Proof. We have already described the correspondence in one direction. 
Assume th a t we are given p ox\ sé  (fiZ ÇÆ)). For A  e sé (JZf,  define p, (A) =

n
=  P (A x X2). If A ; 0  A j =  0  , i  , (JL (U A 4) =  P ((UA;) x X2) =

1

=  X; (A; X X2) ~  Ep, (A;) • p. is therefore a m easure on sé  (fiZ-f.
In an entirely sim ilar m anner, we can define v (B) — p (X x X B ) , B e sé (fiZf.
H aving topologized IR (ZZf , IR ( ß 2) and IR (JS?(^)), we can refine 

our result.

T h e o re m  4.2. Let  f :  lR ( ß ) x l R( ß )  - * I r (jS? ( ß ) )  by / ( pi, v)= p 
p is defined as above. Then f  is a homeomorphism .

n n
Proof. A  basic closed set in IR (JZ (JCf) is W  (UA; X B;) =  U W  (A; X B;) •

•/-1(U W (A ;X B;)=U (/“1(W(A;XB;)). Now W (A x B )=  {p I p (A x B )= i}  =
1 1

-  {[X I p. (A)■= 1} X {v ! V (B) =  1} -  W (A)xW (B) • / - ! ( W(A;XB;) is 
therefore W (A ;)xW (B ;), a closed set in IR ( JZ f X IR ( JZ2) and /  is 
continuous.

Since f - 1 (W  (AxB)) =  W (A) X W  (B), apply  f  to both sides to get 
/ (W (A) X W  (B)) =  W (A x B ) / ,  therefore, takes basic closed sets into closed 
sets and is a closed m ap. f  is now closed, continuous and bijective, equivalent 
to being a hom eom orphism .
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5. L a ttice  P sedocompactness

In this chapter we generalize certain results of V aradarajan  and Glick- 
sberg. All lattices in this section will be normal, atom  disjuctive S-lattices.

DEFINITION. A real valued function is lattice-continuous if the inverse 
image of a closed set in R is in the lattice.

L emma 5.1. / /  =  0  , L x , L2 € Id  , 3: a bounded, -continuous
/,  o < /  <  I, L ,  = / - *  (o) , L2 = / - ’ ( I) .

Proof. This is U rysohn’s lem m a applied to norm al lattices. For a com­
plete proof, see [1], p. 317 ff.

D E F I N I T I O N .  A sequence {L^} is i^-regular i f  a) f  X b) For all n,
there exists 11n =  L** , L* € such th a t L WC U WC L n+1. A regular sequence
is called term inating if 'Ln — X for some

THEOREM 5.1. Aé?/ {LJ  ^  ^  Sd-regular sequence. Let t ( jST) =  { n  Lj. | L*.
G € T (iT) i f f  C n  L A  t (J£G) fo r  all L^ m  the Id-regular sequence. A s  a 

result, /  A t (fid) continuous i f f  it  is t (fid) continuous on each L^ in  the Sd-regular 
sequence.

Proof. In one direction the result is clear. Assume C n  L^ c t  (Sd). 
If L n C U n,C L n+1, choose x  € X •— C, .r c U n for some n. x  ë C f i  L w+3 € t  (JâP). 
Let C n  L w+1 — n_Lfc. ^ e fi (L^)' — UL*' => 3 L^/ e {L&'} with x  e L ^ . Let 
G± — L ;' n  U w =  L ' c Sdr. It is easy to show that G1n C  — 0 .  For each 
x  € X •— C, generate G with r  6G  , G f i C  =  0

X — C =  U G  , C =  ( UG) , = n G , = n L i €T(i?).

T h e o re m  5.2. L et {Ln} be an Sd-regular sequence, and let {tn} be an 
increasing sequence o f numbers. Then 3g  : a t (Jd f  continuous fu n c tio n , defined 
on X, that, fo r  each n ,~Ln =  {x \ g  (x) <. tn}.

Proof. W e d e f i n e b y  induction satisfying: 1)yj =  tx on Lp 2) f n =  tx 
on L l f tn on L n —  U n^  and on U* —  , t { < f n <  t i+1; 3) f i  is ^ -c o n ti­
nuous on L^ ; 4) f n extends f n- x ' f i  is easily constructed. Assume tha t

/i*  " fn  satisfy i)-4).
Then g ; continuous on L n+1, =  tn on L n and tn+1 on L w+1 —  U w exists 

by an application of Lem m a 5.1. L et f n+1 =  f n on L n and g  on L n+1 — L n. 
Define g  on X by  g  ~ f i  on L n. I t is clearly t  (fid) continuous on L %, and by 
Theorem  5.1 it is t  (fid) continuous on X. By construction, L n =  (x  :g  (x ) <  tn}.

T h e ORÈM 5.3. I f  {L, f i  is a sequence j  0 ,  there exists an Sd-regular sequence, 
{Ln} such that L ^ C L n fo r  each n.

Proof. Let f n be bounded, ^ -co n tin u o u s, o < f i  <  1 and L n =  f i - 1 (o).
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Define / „  =  m ax (A  , • • •, f n). L et L* =  {x : f *  (x) >  i /»} and U„ =  
=  {x ■ A  (x) >  i j (n +  1)}. It is straightforw ard to show th a t {L^} is the 
desired sequence.

D e f i n i t i o n .  Given a space, X, and an associated lattice, F , X is 
-Sf-pseudocompact if every real valued, ^ -co n tin u o u s function is bounded. 
The next result is the m ajor one in this section. It generalizes a Theorem  of 
Glicksberg th a t is cited by V aradarajan  and relates pseudocompactness to 
properties of lattice regular sequences.

THEOREM 5.4. I f  X  is T ( F )  pseudocompact, then the fo llow ing  equivalent 
conditions hold'. I) Each F -regular sequence in  X terminates. II) Each countable 
covering o f X  by Vs sets has a fin ite  subcovering. I l l )  F or  X, D in i’s theorem holds. 
A l l  the above im ply the follow ing. IV) X is FI-Pseudocompact.

Proof, t  (F )  pseudocompact —» I) .  L et {Lj} be F  regular. By Theorem  
5.2 3: l i f e )  continuous g  with L„ =  {x : g ( x )  <  t„). Since X is r ( F )  pseu­
docom pact, g  is bounded. If  g  is bounded, {L J m ust term inate. I <-> I I )  
II m ay  be restated: The intersection of any  decreasing sequence of sets is 
not em pty. By Theorem  5.3 this is equivalent to every F -regular sequence 
term inating. /  <-> I I I ) Let {/„} be bounded, F  continuous, \  o. If  L n =  
{.x • fn  (x) I ' s} , {Lb} j. 0 .  Since I —> 11 , V n =  0  for n  >  n 0 —> f n <  s 
for n > n 0. T hus f n |  o uniform ly and II I  holds. Conversely, if {Ln} is 
non-term inating and regular, 3 {/„} , f n bounded, F  continuous w ith o <  
< / »  <  1 and f n \  o such that L n+1 C / n~l (i). W e can choose x n e L +1 
for each n. Since f n (xn) — 1, /  cannot converge uniform ly and II I  1. 
I  I V )  L et g  be bounded, F  continuous. =  {x : g  (x) <  i  , i  =  1 , 2 ■ • •} 
is an F  regular sequence. I implies th a t such a sequence term inates which 
implies th a t g  is bounded and IV  is true.

C o r o l l a r y .  X is 1 (F )  pseudocompact if f  each t  (F )  regular sequence 
term inates.

Proof. W e note th a t t ( t (F) )  =  t  (F) .  I f  the lattice in Theorem  5.4 is 
replaced by x ( F )  we get: t ( F )  pseudocompact v ( F )  regular sequences 
term inate -> IV) X is t  I F )  pseudocompact.

6 . L a t t ic e  R ealcom pactness

The m ajor result of this section is to generalize a theorem  of V aradarajan , 
which we obtain  as a corollary.

DEFINITION. X  is F  realcom pact iff every F -regular, c-sm ooth o — 1 
m easure is fixed at a point.

W e note th a t the m easure m ay be defined on either s i  ( F )  or a ( F) .  I t 
can be shown [8] th a t every a smooth F  regular o —  1 m easure on s i  ( F )  
is fixed at a point iff such measures defined on g ) F )  are also fixed at a point.
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O ur result concerns lattice realcom pact properties of subsets. O ur setting 
for these results is the following: A space X, a la t t ic e d  on X, a subset A  C X 
and a l a t t i c e o n  A. ÜP is an o rm al base lattice for a topology on X, and J*PA 
is a norm al base lattice for a topology on A. We assume th a t t (JöPa)==t (j£P) p  A. 
This is equivalent to the topology on A  being the same as the topology A 
inherits from X.

NOTATION, p (fP) is the smallest collection o f sets, containing which 
is closed under countable intersection and  union.

T h eo rem  6.1. A ssum e the conditions on , j£PA discussed above. Let 
X be LP-reodcompact. Suppose that p (JSP) =  <y (J2P). 7/ A C X ,  0 sufficient con­
dition fo r  A  to be j£Pa realcompact is: \ /x e X — A 3 :  E e a  (JÖP) 3 : E  D A  
i é X - E .

THEOREM 6.2. Assum e the conditions on J£P , j£PA discussed above. I f  
A  has the property that A  p  L  € JSP, whenever L  6 Jgf Az m & r fo r  A  C X
to be realcompact, # sufficient condition is: \ fx e X ■— A3 : E  6 a (j£P) 3 : E D  A  

^  e X •— E.

The different conditions in the theorems are each sufficient to 
guarantee th a t a certain m easure is regular. The following proof establishes 
both theorem s.

N o ta t io n .  (SP) A set o f a-smooth, SR regular, o — 1 measures.

Proof. Let m Q € 1° («£P n  A). For K e cr (J£P), define m by m ( K) =  
=  w 0 ( K n A ) .  Since cr (JSPp A) =  cr (jgP) n  A, our m easure is defined on the 
appropriate set.

W e claim th a t m  € 1° (j£P). It is easy to show tha t m  is J^P-smooth. To 
prove the oèP-regularity we consider two cases: a) A  p  L  e j£P, whenever L  € IP.

_Proof. m ( K ) = i = > m 0 ( K p  A )= i  = > 3 : L p A C K p A  and w 0 ( L p A ) = i .  
If  L p A e i ^ P ,  then, since K D L p A , m  (K) =  sup m  (L);

KDL,LeJ§?
case 3) If  A  is a rb itra ry  bu t cr (JSP) — p (ffi).

Consider K  =  the collection of subsets of cr(j£P) on which m  is IP regular. 
It is not difficult to show th a t K  contains ÜP and is closed under countable 
unions and countable intersections. This collection therefore D p (jgP) =  a (ffi).

Since K C o- (j£P) , m  is J^P-regular on g(j£P).
Since X is realcom pact, m  is fixed at a point x 0 e X .
Claim: * 0 € A. proof: if € X — A  than  3 : E € cr (JSP) with x 0 e X  —  E. 

T han  m  (X —  E) — m 0 ((X —  E) p  A) =  m 0 (0 )  =  o. Contradiction.
T he definition of m 0 guarantees tha t m 0 is also degenerate at x 0 which 

shows th a t A  is IP C\ A  realcom pact. Claim : A is JâPA realcom pact.

Proof. , W e show th a t w  (K) =  1 iff € K, for K € c? (ffif). I t is sufficient 
to show th a t m  (U 0) =  1 if x 0 e U 0 and U 0 =  L A , LA € PPK.

Let x 0 e U 0 • U 0 is open in A  which implies th a t U 0 =  G p A ,  where 
G is open in X. (H ere we are using the restriction on the topologies). Since
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x 0 e G, U  =  L ' , L  € l e  , o : x 0 e U  C G. x 0 is then i n U f l A C  U 0. Since U n  A  e 
€ a (A n & ) ,  and x 0 e U n  A, m  (U n  A) =  1. (m, restricted to a n  A)) m ust 
degenerate at x 0 by the above discussion. Consequently, m  (U 0) =  1, and the 
theorem  is proved.

Given a space X, assum ed completely regular, Hausdorff, let Z (X) =  
=  {x : f  (x) =  0} for some continuous, real valued / .  We note th a t Z (X) 
is a lattice, and g (Z (X)) — Baire sets of the space.

C o r o l l a r y  (V a rad a ra jan ). Let X be Z (ffi)-realcompact. {Varadarajan 
calls such a space a Q space). In  order that X 0 be Z (X) realcompact, A A 
sufficient that fo r  any po in t x  e X —  X 0, <2 subset o f X,
E, such that X 0C E  and x  6 X —  E.

Proof, g (Z (X)) =  p (Z (X)). All the conditions of Theorem  6.1 now 
hold.
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