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Matematica. — Lattice Measures, Realcompactness and Pseudo-
compactness. Nota I di MarTIN KERNER, presentata @ dal Corrisp.
G. Zappa.

R1ASSUNTO. — Nella Nota I avevamo introdotto una topologia nello spazio delle
misure #-regolari. La base per gli insiemi chiusi in questo spazio & un reticolo e noi mostriamo
che questo reticolo ¢ T — 2 se e solo se & normale. Consideriamo poi misure fissate in punti,
e mostriamo che sotto certe condizioni esse forniscono un’immagine omomorfa dello spazio.
Quindi, estendiamo i nostri risultati a prodotti di reticoli. I principali risultati del lavoro sono
teoremi riguardanti la pseudocompattezza e realcompattezza reticolare che generalizzano
risultati di Glicksberg a Varadarajan.

In the first part of this paper we discussed properties of lattice regular
measures-measures, (., with the property that w(A)=supp(L),ADL,
Le? ¥ alattice.

The regularity of our measures ties properties of the measure to properties
of the lattice. We now give a measure theoretic characterization of normal
lattices.

THEOREM 3.4. Let & be a normal lattice. Suppose that u is a measure
on A (L) and v and ¢ are L-regular measures on A (£). If p<vonZ,
and p. < o onZ, then v = p.

Proof. Suppose v # p. Then there exists B € &/ (&) such that v(B)=o),
p(B)=o0, and p(B)=1. BDIDDe€Z with v(D)=1,B DC €L with
e (C) = 1. By normality, there exists H,G € % with H'DD,G'DC and
H'NG'=g@. Taking complements, HUG=X and p(H)=1 or u(G)=1.
If pH)=1, v(H)=1, but v(H")=1. Contradiction. Similarly, if w(G) =1
than o (G) =1 but p (G') = 1. Contradiction.

COROLLARY. Let & be a normal lattice. If ¥, a prime & filter is
contained in both H and G ,H ,GL ultrafilters, then H = G.

Proof. By Theorems 2.1 and 2.3, there exists a measure p. and & regular
measures v and p such that F={A|pn(A)=1}, H={B|v(B) =1}
and G={C|p(C)=1}. Since p<v,u<p, H=G0G.

THEOREM 3.5. If (w<v,u<op,v,p Lregular)=v=yp, then &L is
normal.

Proof. Assume that & is not normal. There exist A, B €% such that
(" €ZL'DA,yeZ’DB)=2' Ny #3. Let G={x € |#" DA} and
let H={y" €% |y’ DB}. GUH is a filter and so 3L-ultrafilter, KD G UH.
Associated 'with K is an #-regular measure, . Let F = {y € & | (y) =1}

(*¥) Nella seduta del 13 dicembre 1975.
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F is prime and associated with it is a measure, p. It is straightforward to show
that F U {A} and F U {B} are filters and they are therefore contained in ultra-
filters K; and K, with associated #-regular measures v and p. Now u <v,
<< p and v~ p since v(A) =1, p (A) = 0. But this is equivalent to the
claim of the theorem.

If we let {# = {W (A) | A €%} we notice that #" is itself a lattice in
I (£). The next results use the characterization of normal lattices just discussed
to derive properties of this lattice and relate it to properties of . We need
two preliminary lemmas.

LEMMA 3.1. There exists a I:I correspondence between 1y (L) and 1y(W").

Proof. The correspondence between weE Ig(#) and u €1, (&) is given
by B (W (A) = u(A),Ac & (£).

LEMMA 3.2. Let p. € L(W). (u is @ measure, but not necessarily W -regular).
Thanc€_ N WA iff u<tron?, and ~ €1 (L.
wWW(A)=1

Proof. ) If v€_ N W(A), than €l (¥) and pA)=1=
wW(A)=1

Sp(WEA)=1=7eW(A) = t(A) =1
) fu<ton?,tel, (&), then if w (W(A) =1 then u(A)=1 =
=21A)=1=>1€W(A).

THEOREM 3.6. # T —2 iff W is normal.

Proof. @) Assume #° is normal. If y, #u, €1, (¥),JA e ¥ with
i (A) =1 and B €2 A’D B with y, (B) = 1. By the normality of #  there
exists (W (C))’ D W (A), W (D))’ D W (B), non intersecting, with y, € (W (C))/,
e € (W (D)), and #" is T — 2.

) Assume # is T — 2. Supposep. < T, u < ton? ,withp €1 (%),
TR €R ). (WA =121 WA))=nQ)="W(@A) =
=/1,(A) =1. (We are using Lemma 3.1) We nhow use a characterization of
T — 2 lattices due to Frolik. A lattice, &, is T — 2 iff, for all 0 — 1 measures,

w, on (L), N{ACZ|n(A)=1} =g orapoint. 7,m€_ N WA
w(W(A)=1
and by this characterization 7y = 1,. By Theorem 3.5, #" is normal.

THEOREM 3.7. Swuppose the lattice, £, has the following property: YA €
€A (L)AL e L LCA.  Then (1,(ZL),0w)T —2 =L is normal.

- Proof. Suppose p€I1(ZL), v, %€l (L), u<v,v, on £ Consider
i,v, and v, as in Lemma 3.1. For W(A),A €%, n(W(A)=1=pA) =
=12y A)=1=2y(WA)=1. Sop<vand p<v,on #. (I,(&),
Ow) T—2=% is T—2. By Theorem 3.6. # normal = by Theo-
rem 3.4 V;=v, = v; = v, and & is normal by Theorem 3.5.
Lastly, we consider measures fixed at points, i.e. measures which evaluate
to 1 if a set includes a certain ponit, and to zero if a set excludes it. The next
results show that when a lattice is related to the topology of a space, measures
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fixed at points yield a homeomorphic image of the space. Brooks [4] has
considered similar questions using filters. Our approach is measure theoretic
and, using the measure-filter correspondence, the results on filters are obtained
as corollaries. On our discussion, p, will be the measure fixed at the point .
& is assumed atom disjunctive.

LEMMA 3.3. If L is atom disjunctive, than U, = {L € 2 |x €L} is an
wultrafilter.

Proof. 1f U, is not an ultrafilter, 3GDU,,L€G,L ¢U, = x ¢L.
By disjunctive property, IL,€ % ,x€L,,LNL,= 3. But GOU,= L, eG.
L,L,eG=LNL,€G =g e€G. Contradiction.

COROLLARY. If L is atom disjunctive, p, is L-regular.

Proof. . is the measure associated with the ultrafilter U,.
THEOREM 38. £ s T—1 iff ¢: X > 1, (L) by o (¥) =, s 1:1.

Proof. Assume x; % x,. By T—1 property JA with XL €A, Xy € Al g 7 Uy
since they take different values on A. Conversely, if @ is 1:1, 2 %+ x,= 3A
such that w, (A) 7w, (A) = one of the points is in A, the other is not
=% is T—1.

THEOREM 3.9. {u,} in the Ow topology = R (&) i.e. measures fixed at
a point are demse in the space of 0-— 1 PL-regular measures.

Proof.  For p €1 (&), a basic open set containing u = (W (A))’. Choose
x €A. By the atom disjunctive property 3L, €. such that LN A = g.
This implies that p, € (W (A))". Since p was arbitrary, {u,} = Ix (&).

THEOREM 3.10. @ :x —u, is continuous iff each 1.€ L is closed in X.

Proof. A basic open set containing p, = (W (A))' N ¢ (X). ¢! of this
set is A, A €2, which is open in X by assumption. Conversely, assume @ is
continuous. Then ™" (W (A)N ¢ (X)) is closed in X. But this is just A.

THEOREM 3.11. @ is a homeomorphism: X — (&) if L isaT—1
base lattice (A base for the closed sets in X).

Proof. ¢ is 1:1 and continuous by 3.8 and 3.10. Choose F, closed in X.
F=nL;,LieZ oFE)=neL)=nW(L)Neo(X). (This is obtained
by applying ¢ to the formula ¢ (W (A)) N o (X)) = A’ which we used
in the proof of Theorem 3.10). This set is closed, so ¢ is bijective, continuous
and closed which is equivalent to homeomorphic.

Conversely, if ¢ is a homeomorphism, than £ is T — 1 by 3.8, above.
Choose F, closed in X. ¢ (F) is closed. ¢ (F) =N (W (A)N ¢ (X)), A,; €Z.
This implies that F =N A;, and & is a base for the closed sets of X.
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4. PRoDUCTS

We have already discussed, in section 2, how a multiplicative system
may be extended to a lattice. An intuitive example of a multiplicative system
is Z;X%,. In this section we show how to extend measures on.%; and %, to
a measure on the product space. For a filter approach to similar questions,
see Kost [9]. Our approach is measure theoretic and, using the measure-
filter correspondence, we get Kost’s results as corollaries. Given X, %,
and p, defined on & (%)), and X,,%, and v, defined on o (%), let

={AXBCX, X X,,A€¥,,BeS}. A is a multiplicative system.
n
Let;?(%) = {UA.,L X B,,;Ai egl s B'L Egz}. FOr K :A X B, deﬁne p (K) ==
1 n n
= w(A)v(B). Define p (UA; X By) = D1, (A)v(B),AinA;=2 ,B;NB;=0
1 1

for 7 % 7. We note that any union in & (.#) may be written as a disjoint
union. We now have defined a measure on % (/#), and by the discussion
preceding Theorem 2.3 we can extend this measure to a measure, p, defined

on o (L (MY).

THEOREM 4.1. For every pair of o— 1 measures, u on & (£, and v
on A (,?2), there corvesponds a measure, o, on A (&L (M) and conversely.

- Proof. We have already described the correspondence in one direction.
Assume that we are given p on o (& (M)). For A € o (&)), define p.(A) =
n

=p(A X Xy I AnA;=0,077, uUA) = o((UA) X X,) =
1
= Z;(A; X Xp) = Zu (Ay) - u is therefore a measure on & (&).
In an entirely similar manner, we can definev (B) = p (X; X B), B € &7 (%,).

Having topologized I, (%)), I (%, and I (& (#)), we can refine
our result.

THEOREM 4.2. Let f: Ip (L)X (L) =1, (L (M) by f(u,v)=p where
o s defined as above. Then f is a homeomorphism.

Proof A basic closed set in I (& (A)) is W(UA X By = U W (A; X By)-
S (UW(A XBy= U(f“l(W(A X By). Now W(AXB) {el P(AXB)—X}"*

— {ulB ) = 1} X {v v (B) = 1} = W (A)x W (B) - /3 (W (A;xB) is
therefore W (A)XW (B;), a closed set in (L)X (&) and [ is
continuous.

. Since (W (AXB)) =W (A)XW (B), apply f to both sides to get
F (W A)XW (B)) = W (AXB) #, therefore, takes basic closed sets into closed
sets and is a closed map. fis now closed, continuous and bijective, equivalent
to being a homeomorphism.
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5. LATTICE PSEDOCOMPACTNESS

In this chapter we generalize certain results of Varadarajan and Glick-
sberg. All lattices in this section will be normal, atom disjuctive 3-lattices.
rg ]

DEFINITION. A real valued function is lattice-continuous if the inverse
image of a closed set in R is in the lattice.

Lemma 510 [f Linlya=90,1,,1,€%,3 a bounded, L-continuous
f, o ng I, Ll :f_d(o)»LZ :f'—] (I>

Proof. This is Urysohn’s lemma applied to normal lattices. For a com-
plete proof, see [1], p. 317 ff.

DEFINITION. A sequence {L;} is Z-regular if @) L;1 X 4) For all #,
there exists U, = L, L; € &, such that L, CU,CL,,;. A regular sequence
is called terminating if L, =X for some .

THEOREM 5.1. Let {L;} be an L-regular sequence. Let v(L)={N L;|L, €&}
Then C €~ (L) iff COL; €x(L) for all L; in the L-regular sequence. As a
result, | is © (L) continuous iff it is v (L) continuous on eack L; in the L-regular
sequence.

Proof. In one direction the result is clear. Assume CNL;€x(2).
If L,CU,CL,y, choose x € X—C, x€U, for some n. x ¢CN L, €1 (Z).
Let CNL,n=0Lp xen(ly) =ULp = 3L, €{lp} with x €L;. Let
G,=LynU,=L"€%". 1t is easy to show that G;NC = ». For each
x € X —C, generate G with x€G,GNC = o

X—C=UG , C=UG'=nG =nL;ex(2).

THEOREM 5.2. Let {L,} be an L-regular sequence, and let {t,} be an
increasing sequence of numbers. Then 3g : a v (L)-continuous function, defined
on X, such that, for each n,L, = {x|g (x) <¢,}.

Proof. We define f; by induction satisfying: 1) /4 =124 on L;; 2)f, =14
on Ly,#, on L,—U,_; and on U;—L;,# <f, <ty 3) f; is Z-conti-
nuous on L;; 4) f, extends f,_, - f; is easily constructed. Assume that
Ji+ - fu satisfy 1)-4).

Then g, continuous on L, , =1#, on L, and #,, on L,; — U, exists
by an application of Lemma 5.1. Let f,,; =f, on L, and § on L,; —L,.
Define g on X by g = f, on L,. It is clearly 7 (&) continhuous on L,, and by
Theorem 5.1 it is © (&) continuous on X. By construction, L, = {x : g () < #,}.

THEOREM 5.3. If{L,} ¢s a sequence |, @, there exists an L-regular sequence,
(L3} such that L, CL, for each n.

Proof. Let f, be bounded, #-continuous, o <f, <1 and L, = f,71 (0).
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Define f, = max (f;, -+, f). Let Ly = {x:f (x) > 1/n} and U, =
={x:f,(x) > 1/(n + 1)}. It is straightforward to show that {Ly} is the
desired sequence.

DEFINITION. Given a space, X, and an associated lattice, &, X is
Z-pseudocompact if every real valued, #-continuous function is bounded.
The next result is the major one in this section. It generalizes a Theorem of
Glicksberg that is cited by Varadarajan and relates pseudocompactness to
properties of lattice regular sequences.

THEOREM 5.4. If X is ©(£) pseudocompact, then the following equivalent
conditions hold: 1) Each £-regular sequence in X terminates. 11) Each countable
covering of X by U sets has a finite subcovering. 111) For X, Dind’s theorem holds.
All the above imply the following. IN) X is L-Pseudocompact.

Proof. = (Z) pseudocompact — I). Let {L;} be & regular. By Theorem
5.2 3: 7(&) continuous g with L, = {x: ¢ (x) <7,}. Since X is 7 (&) pseu-
docompact, g is bounded. If ¢ is bounded, {L;} must terminate. 7+« I7)
Il may be restated: The intersection of any decreasing sequence of sets is
not empty. By Theorem 5.3 this is equivalent to every #-regular sequence
terminating. /<> /77) Let {f,} be bounded, & continuous, | o. If L, =
Zifax) =<}, {L,} | o. Since 1—>11,L, =0 for x = ny—> fr, <€
for n > n, Thus £, | o uniformly and III holds. Conversely, if {L,} is
non-terminating and regular, 3 { f,L} Jn bounded, & continuous with o <
<fu <1 and f, | o such that Ln+1 C /it (1). We can choose #, €L,
for each ». Since f, (x,) = 1, f cannot converge uniformly and IIT — 1.
£ - 1V) Let g be bounded, & continuous. L;={r:g(x) <7,i=1,2---}
is an % regular sequence. I implies that such a sequence terminates which
implies that g is bounded and IV is true.

COROLLARY. X is © (%) pseudocompact iff each ~(¥) regular sequence
terminates.

Progf. We note that 7 (1 (%)) = 7 (&). If the lattice in Theorem 5.4 is
replaced by (%) we get: (&) pseudocompact — t (&) regular sequences
terminate — IV) X is (%) pseudocompact.

6. LATTICE REALCOMPACTNESS

The major result of this section is to generalize a theorem of Varadarajan,
which we obtain as a corollary.

DEriNITION. X is & realcompact iff every Z-regular, c-smooth o—1
measure is fixed at a point.

We note that the measure may be defined on either &7 (%) or ¢(%). It
can be shown [8] that every o smooth & regular 0 — 1 measure on < (&)
is fixed at a point iff such measures defined on o (%) are also fixed at a point.
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Our result concerns lattice realcompact properties of subsets. Our setting
for these results is the following: A space X, a lattice # on X, a subset A C X
and a lattice 4 on A. £ is anormal base lattice for a topology on X, and %,
is a normal base lattice for a topology on A. We assume that v (£s)=1(%) N A.
This is equivalent to the topology on A being the same as the topology A
inherits from X.

NOTATION. (%) is the smallest collection of sets, containing £ which
is closed under countable intersection and union.

THEOREM 6.1. Assume the conditions on £ , La discussed above. Let
X be L-realcompact. Suppose that ¢ (F) = o (¥£). If ACX, a sufficient con-
dition for A to be &L realcompact is: Vx € X —A3:E€6(L)3: EDA and
x € X —E.

THEOREM 6.2. Assume the conditions on £, L discussed above. If
A has the property that AN L € L, whenever 1. € & than, in order for A C X
to be realcompact, a sufficient condition is: Vx € X —A3:E €6 (¥)2:EDA
and x € X — K.

Note. The different conditions in the theorems are each sufficient to
guarantee that a certain measure is regular. The following proof establishes
both theorems.

NOTATION. I} (&) is the set of c-smooth, ¥ regular, 0 — 1 measures.

Proof. Let my€Ig(£NA). For Keo(Z), define m by m(K) =
= my (KN A). Since 6 (LNA)=0c(L)NA, our measure is defined on the
appropriate set.

We claim that 7 € I} (&). It is easy to show that m is Z-smooth. To
prove the Z-regularity we consider two cases: @) AN L €.%, whenever L € 2.

_Proof. m(K)=1=m,(KNA)=1=13: LNACKNA and mo (LN A)=1.
If LNA €%, then, since KDL A, m(K)= sup m (L)
KJDOL,Le®

case 6) If A is arbitrary but ¢ (Z) = p (£).

Consider K = the collection of subsets of ¢ (&) onwhich # is & regular.
It is not difficult to show that K contains # and is closed under countable
unions and countable intersections. This collection therefore D p (&) = ¢ (&).

Since K Co (&), m is L-regular on ¢(%).

Since X is realcompact, 7 is fixed at a point x, € X.

Claim: x, € A. proof: if x,€ X — A than 3: E €6 (&) with x,€ X —E.
Than m (X —E) = my (X —E)NA) = my (@) = o. Contradiction.

The definition of #2, guarantees that #, is also degenerate at x, which
shows that A is £ N A realcompact. Claim: A is £» realcompact.

Proof. . We show that m(K)=1iffz,€K, forK €c (Za). Itis sufficient
to show that # Uy =1 if €U, and U, = La,La € L.

Let €U, - U, is open in A which implies that Uy = G A, where
G is open in X. (Here we are using the restriction on the topologies). Since



610 Lincei — Rend. Sc. fis. mat. e nat. — Vol. LIX ~ dicembre 1975

7%€G,U=L",LeZ ,2:x,€UCG. x,is thenin UNACU,. Since UnAce
€c(ANY), and x, € UNA, m (UNA)=1. (m, restricted to o (Z N A)) must
degenerate at x, by the above discussion. Consequently, » (U,) = 1, and the
theorem is proved.

Given a space X, assumed completely regular, Hausdorff, let Z (X) =
= {x: f(x) = o} for some continuous, real valued /. We note that Z (X)
is a lattice, and o (Z (X)) = Baire sets of the space.

COROLLARY (Varadarajan). Let X be Z (X)-realcompact. (Varadarajan
calls such a space a Q space). In order that X, be 7 (X) realcompact, it is
sufficient that for any point x € X—X,, there exists a Baire subset of X, say
E, such that XoCE and x€ X —E.

Proof. 6 (Z (X)) = p (Z (X)). All the conditions of Theorem 6.1 now
hold.
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