ATTI ACCADEMIA NAZIONALE DEI LINCEI

CLASSE SCIENZE FISICHE MATEMATICHE NATURALI

RENDICONTI

MARTIN KERNER

Lattice Measures, Realcompactness and Pseudocompactness

Atti della Accademia Nazionale dei Lincei. Classe di Scienze Fisiche, Matematiche e Naturali. Rendiconti, Serie 8, Vol. **59** (1975), n.6, p. 603–610. Accademia Nazionale dei Lincei

<http://www.bdim.eu/item?id=RLINA_1975_8_59_6_603_0>

L'utilizzo e la stampa di questo documento digitale è consentito liberamente per motivi di ricerca e studio. Non è consentito l'utilizzo dello stesso per motivi commerciali. Tutte le copie di questo documento devono riportare questo avvertimento.

Articolo digitalizzato nel quadro del programma bdim (Biblioteca Digitale Italiana di Matematica) SIMAI & UMI http://www.bdim.eu/

Atti della Accademia Nazionale dei Lincei. Classe di Scienze Fisiche, Matematiche e Naturali. Rendiconti, Accademia Nazionale dei Lincei, 1975.

Matematica. — Lattice Measures, Realcompactness and Pseudocompactness. Nota II di MARTIN KERNER, presentata ^(*) dal Corrisp. G. ZAPPA.

RIASSUNTO. — Nella Nota I avevamo introdotto una topologia nello spazio delle misure \mathscr{L} -regolari. La base per gli insiemi chiusi in questo spazio è un reticolo e noi mostriamo che questo reticolo è T — 2 se e solo se è normale. Consideriamo poi misure fissate in punti, e mostriamo che sotto certe condizioni esse forniscono un'immagine omomorfa dello spazio. Quindi, estendiamo i nostri risultati a prodotti di reticoli. I principali risultati del lavoro sono teoremi riguardanti la pseudocompattezza e realcompattezza reticolare che generalizzano risultati di Glicksberg a Varadarajan.

In the first part of this paper we discussed properties of lattice regular measures-measures, μ , with the property that $\mu(A) = \sup \mu(L), A \supset L$, $L \in \mathscr{L}, \mathscr{L}$ a lattice.

The regularity of our measures ties properties of the measure to properties of the lattice. We now give a measure theoretic characterization of normal lattices.

THEOREM 3.4. Let \mathscr{L} be a normal lattice. Suppose that μ is a measure on $\mathscr{A}(\mathscr{L})$ and ν and ρ are \mathscr{L} -regular measures on $\mathscr{A}(\mathscr{L})$. If $\mu \leq \nu$ on \mathscr{L} , and $\mu \leq \rho$ on \mathscr{L} , then $\nu = \rho$.

Proof. Suppose $\nu \neq \rho$. Then there exists $B \in \mathscr{A}(\mathscr{L})$ such that $\nu(B)=o$, $\rho(B)=o$, and $\rho(B')=I$. $B \supset D \in \mathscr{L}$ with $\nu(D)=I$, $B' \supset C \in \mathscr{L}$ with $\rho(C)=I$. By normality, there exists $H, G \in \mathscr{L}$ with $H' \supset D, G' \supset C$ and $H' \cap G' = \emptyset$. Taking complements, $H \cup G = X$ and $\mu(H) = I$ or $\mu(G) = I$. If $\mu(H) = I$, $\nu(H) = I$, but $\nu(H') = I$. Contradiction. Similarly, if $\mu(G) = I$ than $\rho(G) = I$ but $\rho(G') = I$. Contradiction.

COROLLARY. Let \mathscr{L} be a normal lattice. If F, a prime \mathscr{L} filter is contained in both H and G, H, G \mathscr{L} ultrafilters, then H = G.

Proof. By Theorems 2.1 and 2.3, there exists a measure μ and \mathscr{L} regular measures ν and ρ such that $F = \{A \mid \mu(A) = I\}, H = \{B \mid \nu(B) = I\}$ and $G = \{C \mid \rho(C) = I\}$. Since $\mu \leq \nu, \mu \leq \rho, H = G$.

THEOREM 3.5. If $(\mu \leq \nu, \mu \leq \rho, \nu, \rho \, \mathscr{L}\text{-regular}) \Rightarrow \nu = \rho$, then \mathscr{L} is normal.

Proof. Assume that \mathscr{L} is not normal. There exist A, $B \in \mathscr{L}$ such that $(x' \in \mathscr{L}' \supset A, y' \in \mathscr{L}' \supset B) \Rightarrow x' \cap y' \neq \emptyset$. Let $G = \{x' \in \mathscr{L}' \mid x' \supseteq A\}$ and let $H = \{y' \in \mathscr{L}' \mid y' \supseteq B\}$. $G \cup H$ is a filter and so $\exists \mathscr{L}$ -ultrafilter, $K \supset G \cup H$. Associated with K is an \mathscr{L} -regular measure, τ . Let $F = \{y \in \mathscr{L} \mid \tau(y) = 1\}$.

(*) Nella seduta del 13 dicembre 1975.

F is prime and associated with it is a measure, μ . It is straightforward to show that $F \cup \{A\}$ and $F \cup \{B\}$ are filters and they are therefore contained in ultra-filters K_1 and K_2 with associated \mathscr{L} -regular measures ν and ρ . Now $\mu \leq \nu$, $\mu \leq \rho$ and $\nu \neq \rho$ since ν (A) = I, ρ (A) = o. But this is equivalent to the claim of the theorem.

If we let $\{\mathscr{W} = \{W(A) \mid A \in \mathscr{L}\}\$ we notice that \mathscr{W} is itself a lattice in $I_{\mathbb{R}}(\mathscr{L})$. The next results use the characterization of normal lattices just discussed to derive properties of this lattice and relate it to properties of \mathscr{L} . We need two preliminary lemmas.

LEMMA 3.1. There exists a I:I correspondence between $I_{R}(\mathscr{L})$ and $I_{R}(\mathscr{W})$.

Proof. The correspondence between $\overline{\mu} \in I_R(\mathscr{W})$ and $\mu \in I_R(\mathscr{L})$ is given by $\overline{\mu}(W(A)) = \mu(A)$, $A \in \mathscr{A}(\mathscr{L})$.

LEMMA 3.2. Let $\mu \in I(\mathcal{W})$. (μ is a measure, but not necessarily \mathcal{W} -regular). Than $\tau \in \bigcap_{\mu(\mathcal{W}(A))=1} \mathcal{W}(A)$ iff $\mu \leq \tau$ on \mathcal{L} , and $\tau \in I_R(\mathcal{L})$.

Proof. a) If $\tau \in \bigcap_{\overline{\mu}(W(A))=1} W(A)$, then $\tau \in I_R(\mathscr{L})$ and $\mu(A) = I \Rightarrow \overline{\mu}(W(A)) = I \Rightarrow \tau \in W(A) \Rightarrow \tau(A) = I$;

 $\begin{array}{l} \textit{b)} \ \text{If} \ \mu \leq \tau \ \text{on} \ \mathscr{L} \ , \ \tau \in I_R \ (\mathscr{L}), \ \text{then} \ \text{if} \ \overline{\mu} \ (W \ (A)) = \ \text{I} \ \text{then} \ \ \mu \ (A) = \ \text{I} \ \Rightarrow \\ \Rightarrow \ \tau \ (A) = \ \text{I} \ \Rightarrow \ \tau \ \in W \ (A). \end{array}$

THEOREM 3.6. W T — 2 iff W is normal.

Proof. a) Assume \mathscr{W} is normal. If $\mu_1 \neq \mu_2 \in I_R(\mathscr{L})$, $\exists A \in \mathscr{L}$ with $\mu_1(A) = I$ and $B \in \mathscr{L} A' \supset B$ with $\mu_2(B) = I$. By the normality of \mathscr{W} there exists $(W(C))' \supset W(A)$, $W(D))' \supset W(B)$, non intersecting, with $\mu_1 \in (W(C))'$, $\mu_2 \in (W(D))$, and \mathscr{W} is T - 2.

b) Assume \mathscr{W} is T - 2. Suppose $\overline{\mu} < \overline{\tau_1}$, $\overline{\mu} < \overline{\tau_2}$ on \mathscr{W} , with $\overline{\mu} \in I(\mathscr{W})$, $\overline{\tau_1}$, $\overline{\tau_2} \in I_R(\mathscr{W})$. $\overline{\mu}(W(A)) = I \Rightarrow \overline{\tau_1}(W(A)) = \tau_1(A) = \overline{\tau_2}(W(A)) = = \tau_2(A) = I$. (We are using Lemma 3.1) We now use a characterization of T - 2 lattices due to Frolik. A lattice, \mathscr{L} , is T - 2 iff, for all o - I measures, μ , on $\mathscr{A}(\mathscr{L})$, $\cap \{A \subset \mathscr{L} \mid \mu(A) = I\} = \emptyset$ or a point. $\tau_1, \tau_2 \in \bigcap_{\overline{\mu}(W(A))=1} W(A)$ and by this characterization $\tau_1 = \tau_2$. By Theorem 3.5, \mathscr{W} is normal.

THEOREM 3.7. Suppose the lattice, \mathscr{L} , has the following property: $\forall A \in \mathscr{A}(\mathscr{L}) \exists L \in \mathscr{L} : L \subset A$. Then $(I_R(\mathscr{L}), O_W) T - 2 \Rightarrow \mathscr{L}$ is normal.

Lastly, we consider measures fixed at points, i.e. measures which evaluate to I if a set includes a certain ponit, and to zero if a set excludes it. The next results show that when a lattice is related to the topology of a space, measures

604

fixed at points yield a homeomorphic image of the space. Brooks [4] has considered similar questions using filters. Our approach is measure theoretic and, using the measure-filter correspondence, the results on filters are obtained as corollaries. On our discussion, μ_x will be the measure fixed at the point x. \mathscr{L} is assumed atom disjunctive.

LEMMA 3.3. If \mathscr{L} is atom disjunctive, than $U_x = \{L \in \mathscr{L} \mid x \in L\}$ is an ultrafilter.

Proof. If U_x is not an ultrafilter, $\exists G \supset U_x$, $L \in G$, $L \notin U_x \Rightarrow x \notin L$. By disjunctive property, $\exists L_1 \in \mathscr{L}$, $x \in L_1$, $L \cap L_1 = \emptyset$. But $G \supset U_x \Rightarrow L_1 \in G$. $L, L_1 \in G \Rightarrow L \cap L_1 \in G \Rightarrow \emptyset \in G$. Contradiction.

COROLLARY. If \mathcal{L} is atom disjunctive, μ_x is \mathcal{L} -regular.

Proof. μ_x is the measure associated with the ultrafilter U_x .

THEOREM 3.8. \mathscr{L} is T - i iff $\varphi: X \to I_R(\mathscr{L})$ by $\varphi(x) = \mu_x$ is i:i.

Proof. Assume $x_1 \neq x_2$. By T—I property $\exists A$ with $x_1 \in A$, $x_2 \notin A$. $\mu_{x_1} \neq \mu_{x_2}$ since they take different values on A. Conversely, if φ is I:I, $x_1 \neq x_2 \Rightarrow \exists A$ such that $\mu_{x_1}(A) \neq \mu_{x_2}(A) \Rightarrow$ one of the points is in A, the other is not $\Rightarrow \mathscr{L}$ is T—I.

THEOREM 3.9. $\{\overline{\mu_x}\}$ in the O_W topology = I_R(\mathscr{L}) i.e. measures fixed at a point are dense in the space of 0 — I \mathscr{L} -regular measures.

Proof. For $\mu \in I_R(\mathscr{L})$, a basic open set containing $\mu = (W(A))'$. Choose $x \in A$. By the atom disjunctive property $\exists L_1 \in \mathscr{L}$ such that $L_1 \cap A = \emptyset$. This implies that $\mu_x \in (W(A))'$. Since μ was arbitrary, $\{\overline{\mu_x}\} = I_R(\mathscr{L})$.

THEOREM 3.10. $\varphi: x \to \mu_x$ is continuous iff each $L \in \mathscr{L}$ is closed in X.

Proof. A basic open set containing $\mu_x = (W(A))' \cap \varphi(X)$. φ^{-1} of this set is A', A $\in \mathscr{L}$, which is open in X by assumption. Conversely, assume φ is continuous. Then $\varphi^{-1}(W(A) \cap \varphi(X))$ is closed in X. But this is just A.

THEOREM 3.11. φ is a homeomorphism: $X \to I_R(\mathscr{L})$ iff \mathscr{L} is a T - I base lattice (A base for the closed sets in X).

Proof. φ is I : I and continuous by 3.8 and 3.10. Choose F, closed in X. $F = \bigcap L_i, L_i \in \mathscr{L}$. $\varphi(F) = \bigcap \varphi(L_i) = \bigcap (W(L_i) \cap \varphi(X))$. (This is obtained by applying φ to the formula $\varphi^{-1}((W(A))' \cap \varphi(X)) = A'$ which we used in the proof of Theorem 3.10). This set is closed, so φ is bijective, continuous and closed which is equivalent to homeomorphic.

Conversely, if φ is a homeomorphism, than \mathscr{L} is T - I by 3.8, above. Choose F, closed in X. $\varphi(F)$ is closed. $\varphi(F) = \bigcap (W(A_i) \cap \varphi(X)), A_i \in \mathscr{L}$. This implies that F

4. PRODUCTS

We have already discussed, in section 2, how a multiplicative system may be extended to a lattice. An intuitive example of a multiplicative system is $\mathscr{L}_1 \times \mathscr{L}_2$. In this section we show how to extend measures on \mathscr{L}_1 and \mathscr{L}_2 to a measure on the product space. For a filter approach to similar questions, see Kost [9]. Our approach is measure theoretic and, using the measurefilter correspondence, we get Kost's results as corollaries. Given X_1 , \mathscr{L}_1 and μ , defined on $\mathscr{A}(\mathscr{L}_1)$, and X_2 , \mathscr{L}_2 and ν , defined on $\mathscr{A}(\mathscr{L}_2)$, let $\mathscr{M} = \{A \times B \subset X_1 \times X_2, A \in \mathscr{L}_1, B \in \mathscr{L}_2\}$. \mathscr{M} is a multiplicative system. Let $\mathscr{L}(\mathscr{M}) = \{\bigcup_{i=1}^{n} X_i \in \mathscr{L}_i, B_i \in \mathscr{L}_2\}$. For $K = A \times B$, define $\rho(K) =$ $= \mu(A)\nu(B)$. Define $\rho(\bigcup_{i=1}^{n} X_i \in \mathscr{L}_i) = \sum_{i=1}^{n} \mu(A_i)\nu(B_i), A_i \cap A_j = \emptyset, B_i \cap B_j = \emptyset$ for $i \neq j$. We note that any union in $\mathscr{L}(\mathscr{M})$ may be written as a disjoint union. We now have defined a measure on $\mathscr{L}(\mathscr{M})$, and by the discussion preceding Theorem 2.3 we can extend this measure to a measure, ρ , defined on $\mathscr{A}(\mathscr{L}(\mathscr{M}))$.

THEOREM 4.1. For every pair of 0 - 1 measures, μ on $\mathcal{A}(\mathcal{L}_1)$ and ν on $\mathcal{A}(\mathcal{L}_2)$, there corresponds a measure, ρ , on $\mathcal{A}(\mathcal{L}(\mathcal{M}))$ and conversely.

Proof. We have already described the correspondence in one direction. Assume that we are given ρ on $\mathscr{A}(\mathscr{L}(\mathscr{M}))$. For $A \in \mathscr{A}(\mathscr{L}_1)$, define $\mu(A) = \rho(A \times X_2)$. If $A_i \cap A_j = \emptyset$, $i \neq j$, $\mu(\bigcup A_i) = \rho((\bigcup A_i) \times X_2) = \sum_i (A_i \times X_2) = \sum_i (A_i \times X_2) = \sum_i (A_i) \cdot \mu$ is therefore a measure on $\mathscr{A}(\mathscr{L}_1)$.

In an entirely similar manner, we can define ν (B) = ρ (X₁×B), B $\in \mathscr{A}(\mathscr{L}_2)$.

Having topologized $I_{R}\left(\mathscr{L}_{1}\right)$, $I_{R}\left(\mathscr{L}_{2}\right)$ and $I_{R}\left(\mathscr{L}\left(\mathscr{M}\right)\right)$, we can refine our result.

THEOREM 4.2. Let $f: I_R(\mathscr{L}_1) \times I_R(\mathscr{L}_2) \to I_R(\mathscr{L}(\mathscr{M}))$ by $f(\mu, \nu) = \rho$ where ρ is defined as above. Then f is a homeomorphism.

 $\begin{array}{l} \textit{Proof. A basic closed set in } I_{R}(\mathscr{L}(\mathscr{M})) \text{ is } W(\underset{1}{\overset{n}{\bigcup}A_{i} \times B_{i}) = \underset{1}{\overset{n}{\bigcup}} W(A_{i} \times B_{i}) \cdot \\ f^{-1}(\underset{1}{\overset{n}{\bigcup}} W(A_{i} \times B_{i}) = \underset{1}{\overset{n}{\bigcup}} (f^{-1}(W(A_{i} \times B_{i})). \text{ Now } W(A \times B) = \{\rho \mid \rho(A \times B) = I\} = \\ = \{\mu \mid \mu(A) = I\} \times \{\nu \mid \nu(B) = I\} = W(A) \times W(B) \cdot f^{-1}(W(A_{i} \times B_{i}) \text{ is therefore } W(A_{i}) \times W(B_{i}), \text{ a closed set in } I_{R}(\mathscr{L}_{1}) \times I_{R}(\mathscr{L}_{2}) \text{ and } f \text{ is continuous.} \end{array}$

Since $f^{-1}(W(A \times B)) = W(A) \times W(B)$, apply f to both sides to get $f(W(A) \times W(B)) = W(A \times B) f$, therefore, takes basic closed sets into closed sets and is a closed map. f is now closed, continuous and bijective, equivalent to being a homeomorphism.

5. LATTICE PSEDOCOMPACTNESS

In this chapter we generalize certain results of Varadarajan and Glicksberg. All lattices in this section will be normal, atom disjuctive δ -lattices.

DEFINITION. A real valued function is lattice-continuous if the inverse image of a closed set in R is in the lattice.

LEMMA 5.1. If $L_1 \cap L_2 = \emptyset$, L_1 , $L_2 \in \mathscr{L}$, $\exists: a \text{ bounded, } \mathscr{L}\text{-continuous}$ $f, 0 \leq f \leq I, L_1 = f^{-1}(0), L_2 = f^{-1}(I).$

Proof. This is Urysohn's lemma applied to normal lattices. For a complete proof, see [1], p. 317 ff.

DEFINITION. A sequence $\{L_i\}$ is \mathscr{L} -regular if a) $L_i \uparrow X b$ For all n, there exists $U_n = L_{k'}$, $L_k \in \mathscr{L}$, such that $L_n \subset U_n \subset L_{n+1}$. A regular sequence is called terminating if $L_n = X$ for some n.

THEOREM 5.1. Let $\{L_i\}$ be an \mathcal{L} -regular sequence. Let $\tau(\mathcal{L}) = \{ \cap L_k | L_k \in \mathcal{L} \}$. Then $C \in \tau(\mathcal{L})$ iff $C \cap L_i \in \tau(\mathcal{L})$ for all L_i in the \mathcal{L} -regular sequence. As a result, f is $\tau(\mathcal{L})$ continuous iff it is $\tau(\mathcal{L})$ continuous on each L_i in the \mathcal{L} -regular sequence.

Proof. In one direction the result is clear. Assume $C \cap L_i \in \tau(\mathscr{L})$. If $L_n \subset U_n \subset L_{n+1}$, choose $x \in X - C$, $x \in U_n$ for some $n. x \notin C \cap L_{n+1} \in \tau(\mathscr{L})$. Let $C \cap L_{n+1} = \cap L_k$. $x \in \cap (L_k)' = UL_{k'} \Rightarrow \exists L_{j'} \in \{L_{k'}\}$ with $x \in L_{j'}$. Let $G_1 = L_{j'} \cap U_n = \overline{L}' \in \mathscr{L}'$. It is easy to show that $G_1 \cap C = \varnothing$. For each $x \in X - C$, generate \overline{G} with $x \in \overline{G}, \overline{G} \cap C = \varnothing$

$$\mathbf{X} - \mathbf{C} = \mathbf{U} \,\overline{\mathbf{G}} \,$$
, $\mathbf{C} = (\mathbf{U} \,\overline{\mathbf{G}})' = \cap \overline{\mathbf{G}}' = \cap \mathbf{L}_i \in \tau(\mathscr{L}).$

THEOREM 5.2. Let $\{L_n\}$ be an \mathscr{L} -regular sequence, and let $\{t_n\}$ be an increasing sequence of numbers. Then $\exists g : a \ \tau(\mathscr{L})$ -continuous function, defined on X, such that, for each n, $L_n = \{x \mid g(x) \le t_n\}$.

Proof. We define f_i by induction satisfying: 1) $f_1 = t_1$ on L_1 ; 2) $f_n = t_1$ on L_1 , t_n on $L_n - U_{n-1}$ and on $U_i - L_i$, $t_i < f_n < t_{i+1}$; 3) f_i is \mathscr{L} -continuous on L_i ; 4) f_n extends $f_{n-1} \cdot f_1$ is easily constructed. Assume that $f_1 \cdots f_n$ satisfy 1)-4).

Then \bar{g} , continuous on L_{n+1} , $= t_n$ on L_n and t_{n+1} on $L_{n+1} - U_n$ exists by an application of Lemma 5.1. Let $f_{n+1} = f_n$ on L_n and \bar{g} on $L_{n+1} - L_n$. Define g on X by $g = f_n$ on L_n . It is clearly $\tau(\mathscr{L})$ continuous on L_n , and by Theorem 5.1 it is $\tau(\mathscr{L})$ continuous on X. By construction, $L_n = \{x : g(x) \leq t_n\}$.

THEOREM 5.3. If $\{L_n\}$ is a sequence $\downarrow \emptyset$, there exists an \mathscr{L} -regular sequence, $\{L_n^*\}$ such that $L_n^* \subset L_n'$ for each n.

Proof. Let f_n be bounded, \mathscr{L} -continuous, $0 \leq f_n \leq 1$ and $L_n = f_n^{-1}(0)$.

Define $f_n = \max(f_1, \dots, f_n)$. Let $L_n^* = \{x : f_n^*(x) \ge 1/n\}$ and $U_n = \{x : f_n(x) > 1/(n+1)\}$. It is straightforward to show that $\{L_n^*\}$ is the desired sequence.

DEFINITION. Given a space, X, and an associated lattice, \mathscr{L} , X is \mathscr{L} -pseudocompact if every real valued, \mathscr{L} -continuous function is bounded. The next result is the major one in this section. It generalizes a Theorem of Glicksberg that is cited by Varadarajan and relates pseudocompactness to properties of lattice regular sequences.

THEOREM 5.4. If X is $\tau(\mathcal{L})$ pseudocompact, then the following equivalent conditions hold: I) Each \mathcal{L} -regular sequence in X terminates. II) Each countable covering of X by U sets has a finite subcovering. III) For X, Dini's theorem holds. All the above imply the following. IV) X is \mathcal{L} -Pseudocompact.

Proof. $\tau(\mathscr{L})$ pseudocompact $\to I$). Let $\{L_i\}$ be \mathscr{L} regular. By Theorem 5.2 $\exists: \tau(\mathscr{L})$ continuous g with $L_n = \{x : g(x) \leq t_n\}$. Since X is $\tau(\mathscr{L})$ pseudocompact, g is bounded. If g is bounded, $\{L_i\}$ must terminate. $I \leftrightarrow II$) II may be restated: The intersection of any decreasing sequence of sets is not empty. By Theorem 5.3 this is equivalent to every \mathscr{L} -regular sequence terminating. $I \leftrightarrow III$) Let $\{f_n\}$ be bounded, \mathscr{L} continuous, $\downarrow \circ$. If $L_n =$ $\{x : f_n(x) \geq \varepsilon\}, \{L_n\} \downarrow \varnothing$. Since $I \to II, L_n = \varnothing$ for $n \geq n_0 \to f_n < \varepsilon$ for $n \geq n_0$. Thus $f_n \downarrow \circ$ uniformly and III holds. Conversely, if $\{L_n\}$ is non-terminating and regular, $\exists \{f_n\}, f_n$ bounded, \mathscr{L} continuous with $\circ \leq$ $\leq f_n \leq I$ and $f_n \downarrow \circ$ such that $L'_{n+1} \subset f_n^{-1}(I)$. We can choose $x_n \in L'_{n+1}$ for each n. Since $f_n(x_n) = I$, f cannot converge uniformly and III $\to I$. $I \to IV$) Let g be bounded, \mathscr{L} continuous. $L_i = \{x : g(x) \leq i, i = I, 2 \cdots\}$ is an \mathscr{L} regular sequence. I implies that such a sequence terminates which implies that g is bounded and IV is true.

COROLLARY. X is $\tau(\mathcal{L})$ pseudocompact iff each $\tau(\mathcal{L})$ regular sequence terminates.

Proof. We note that $\tau(\tau(\mathscr{L})) = \tau(\mathscr{L})$. If the lattice in Theorem 5.4 is replaced by $\tau(\mathscr{L})$ we get: $\tau(\mathscr{L})$ pseudocompact $\rightarrow \tau(\mathscr{L})$ regular sequences terminate $\rightarrow IV$ X is $\tau(\mathscr{L})$ pseudocompact.

6. LATTICE REALCOMPACTNESS

The major result of this section is to generalize a theorem of Varadarajan, which we obtain as a corollary.

DEFINITION. X is \mathscr{L} realcompact iff every \mathscr{L} -regular, σ -smooth o — I measure is fixed at a point.

We note that the measure may be defined on either $\mathscr{A}(\mathscr{L})$ or $\sigma(\mathscr{L})$. It can be shown [8] that every σ smooth \mathscr{L} regular o - I measure on $\mathscr{A}(\mathscr{L})$ is fixed at a point iff such measures defined on $\sigma(\mathscr{L})$ are also fixed at a point.

Our result concerns lattice realcompact properties of subsets. Our setting for these results is the following: A space X, a lattice \mathscr{L} on X, a subset $A \subset X$ and a lattice \mathscr{L}_A on A. \mathscr{L} is a normal base lattice for a topology on X, and \mathscr{L}_A is a normal base lattice for a topology on A. We assume that $\tau(\mathscr{L}_A) = \tau(\mathscr{L}) \cap A$. This is equivalent to the topology on A being the same as the topology A inherits from X.

NOTATION. $\rho(\mathcal{L})$ is the smallest collection of sets, containing \mathcal{L} which is closed under countable intersection and union.

THEOREM 6.1. Assume the conditions on \mathcal{L} , \mathcal{L}_A discussed above. Let X be \mathcal{L} -realcompact. Suppose that $\rho(\mathcal{L}) = \sigma(\mathcal{L})$. If $A \subset X$, a sufficient condition for A to be \mathcal{L}_A realcompact is: $\forall x \in X - A \exists : E \in \sigma(\mathcal{L}) \ni : E \supset A$ and $x \in X - E$.

THEOREM 6.2. Assume the conditions on \mathcal{L} , \mathcal{L}_A discussed above. If A has the property that $A \cap L \in \mathcal{L}$, whenever $L \in \mathcal{L}$ than, in order for $A \subset X$ to be realcompact, a sufficient condition is: $\forall x \in X - A\exists : E \in \sigma(\mathcal{L}) \ni : E \supset A$ and $x \in X - E$.

Note. The different conditions in the theorems are each sufficient to guarantee that a certain measure is regular. The following proof establishes both theorems.

NOTATION. $I_{R}^{\sigma}(\mathscr{L})$ is the set of σ -smooth, \mathscr{L} regular, o-i measures.

Proof. Let $m_0 \in I^{\sigma}_{\mathbb{R}}(\mathscr{L} \cap A)$. For $K \in \sigma(\mathscr{L})$, define *m* by $m(K) = m_0(K \cap A)$. Since $\sigma(\mathscr{L} \cap A) = \sigma(\mathscr{L}) \cap A$, our measure is defined on the appropriate set.

We claim that $m \in I^{\sigma}_{\mathbb{R}}(\mathscr{L})$. It is easy to show that m is \mathscr{L} -smooth. To prove the \mathscr{L} -regularity we consider two cases: a) $A \cap L \in \mathscr{L}$, whenever $L \in \mathscr{L}$.

Proof. $m(\mathbf{K}) = \mathbf{I} \Rightarrow m_0(\mathbf{K} \cap \mathbf{A}) = \mathbf{I} \Rightarrow \exists : \mathbf{\overline{L}} \cap \mathbf{A} \subset \mathbf{K} \cap \mathbf{A} \text{ and } m_0(\mathbf{\overline{L}} \cap \mathbf{A}) = \mathbf{I}.$ If $\mathbf{\overline{L}} \cap \mathbf{A} \in \mathscr{L}$, then, since $\mathbf{K} \supset \mathbf{\overline{L}} \cap \mathbf{A}, m(\mathbf{K}) = \sup_{\mathbf{K} \supset \mathbf{L}, \mathbf{L} \in \mathscr{L}} m(\mathbf{L});$

case b) If A is arbitrary but $\sigma(\mathscr{L}) = \rho(\mathscr{L})$.

Consider K = the collection of subsets of $\sigma(\mathscr{L})$ on which *m* is \mathscr{L} regular. It is not difficult to show that K contains \mathscr{L} and is closed under countable unions and countable intersections. This collection therefore $\supset \rho(\mathscr{L}) = \sigma(\mathscr{L})$.

Since $K \subset \sigma(\mathscr{L})$, *m* is \mathscr{L} -regular on $\sigma(\mathscr{L})$.

Since X is realcompact, *m* is fixed at a point $x_0 \in X$.

Claim: $x_0 \in A$. proof: if $x_0 \in X - A$ than $\exists : E \in \sigma(\mathscr{L})$ with $x_0 \in X - E$. Than $m(X - E) = m_0((X - E) \cap A) = m_0(\emptyset) = 0$. Contradiction.

The definition of m_0 guarantees that m_0 is also degenerate at x_0 which shows that A is $\mathscr{L} \cap A$ realcompact. Claim: A is \mathscr{L}_A realcompact.

Proof. We show that $\overline{m}(K) = I$ iff $x_0 \in K$, for $K \in \sigma(\mathscr{L}_A)$. It is sufficient to show that $\overline{m}(U_0) = I$ if $x_0 \in U_0$ and $U_0 = L'_A$, $L_A \in \mathscr{L}_A$.

Let $x_0 \in U_0 \cdot U_0$ is open in A which implies that $U_0 = G \cap A$, where G is open in X. (Here we are using the restriction on the topologies). Since

 $x_0 \in G, U = L', L \in \mathscr{L}, \exists : x_0 \in U \subset G. x_0 \text{ is then in } U \cap A \subset U_0.$ Since $U \cap A \in \mathfrak{c} \sigma(A \cap \mathscr{L})$, and $x_0 \in U \cap A, \overline{m}(U \cap A) = I.$ (\overline{m} , restricted to $\sigma(\mathscr{L} \cap A)$) must degenerate at x_0 by the above discussion. Consequently, $\overline{m}(U_0) = I$, and the theorem is proved.

Given a space X, assumed completely regular, Hausdorff, let $Z(X) = {x : f(x) = 0}$ for some continuous, real valued f. We note that Z(X) is a lattice, and $\sigma(Z(X)) =$ Baire sets of the space.

COROLLARY (Varadarajan). Let X be Z (X)-realcompact. (Varadarajan calls such a space a Q space). In order that X_0 be Z (X) realcompact, it is sufficient that for any point $x \in X - X_0$, there exists a Baire subset of X, say E, such that $X_0 \subset E$ and $x \in X - E$.

Proof. $\sigma\left(Z\left(X\right)\right)=\rho\left(Z\left(X\right)\right).$ All the conditions of Theorem 6.1 now hold.

BIBLIOGRAPHY

- [I] A. D. ALEXANDROFF (1940) Additive Set Functions in Abstract Spaces, «Mat. Sb. (N.S.) », 8 (50), 307-348; (1941) «Mat. Sb. (N.S.) », 9 (51), 563-628.
- [2] R. ALO and H. L. SHAPIRO (1970) Z-Real Compactifications and Normal Bases, «Australian J. Math.», 11, 489-495.
- [3] G. BACHMAN and R, COHEN Regular Lattice Measures and Repleteness, Communications on « Pure and Applied Mathematics », 26, 587-599.
- [4] R. M. BROOKS (1967) On Wallman Compactifications, «Fundamentae Mathematicae», 60, 157–173.
- [5] O. FRINK (1964) Compact and Semi-Normal Spaces, «Amer. J. Math «, 86, 602-607.
- [6] Z. FROLIK (1972) Prime Filters with C.I.P, «Commentationes Mathematicae Universitatia Carolinae», 13 (3), 553-575.
- [7] P. R. HALMOS (1950) Measure Theory, Princeton: D. Van Nostrand and Co.
- [8] M. KERNER (1975) Lattice Derived Measures and Their Topologies, Ph. D. Dissertation, The Polytechnic Institute of New York.
- [9] F. KOST (1971) Wallman Type Compactifications and Products, «Proc. Amer. Math. Soc. », 29 (3), 607–612.
- [10] F. TOPSOE (1970) Topology and Measure, Berlin: Springer-Verlag.
- [11] V. S. VARADARAJAN (1965) Measures on Topological Spaces, «Amer. Math. Soc. Trans», Series II, 48, 168-228.
- [12] H. WALLMAN (1938) Lattices and Topological Spaces, «Ann. Math. », 39 (2), 112-126.