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SEZIONE 1

(Matematica, meccanica, astronomia, geodesia e geofisica)

Matematica. — Strong oscillation of elliptic systems of second order
partial differential equations. Nota di SamueL M. Rawkiw, III, pre-
sentata @ dal Socio C. MIRANDA.

RIASSUNTO. — Si da una condizione sufficiente ad assicurare il carattere fortemente
oscillatorio .dei sistemi ellittici del tipo

2 D; (Ay () Dy u)—I—C(x)u—o
i,j=1

Con questo risultato si estendono vari criteri noti relativi al caso di una sola equazione.

Oscillation theory for elliptic partial differential equations and elliptic
systems of partial differential equations of second order has developed rapidly
during recent years with the papers of Clark and Swanson [1], Headly [3],
Headly and Swanson [4], Kreith [z, 6, 7], Kreith and Travis [8, o], Swanson
[11, 12], and Travis [13, 14]. The papers are separated into three basic
types: () those concerned with Sturm-Picone comparison theorems for scalar
equations ([1]), [5], [6]); (8) those concerned with sufficient conditions for
non-oscillation and oscillation of scalar equations ([9], [12], [13]); (¢) those
concerned with elliptic systems of type (3) below ([7], [8], [11], [14]).

The main result of this paper gives a sufficient condition for strong oscil-
lation of the equation

(1) : Lu—aZD(Aw(x)D #) +C(x)u=o0

%,J=1

(*) Nella seduta del 15 novembre 1975.
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where Ay (x) (7,7 =1,---,m) and C (x) are m X matrix functions defined
in E". The solution z (x) = (2, (x) ,- - -, 4y ()" is an m X1 vector function.
To be explicit, we show that nodal oscillation of an equation of type (2)

n
(2) lu = Z D; (@i (x)Djv) +c(x)v =0
4i=1
implies the nodal oscillation of equation (1). Here a;(x) (Z,j=1,---,m)

and ¢ (x) are real valued scalar functions.
Comparison theorems between two equations of type (1) and between
equations of type (1) and equations of the form

(3) LV = .lei(Aij @D;V) +Cx)V =0

%HI=

where V is an . X matrix function are also developed in this paper.
Our techniques will be based on the methods of the calculus of variations
in characterizing the eigenvalues and eigenfunctions of the system

@ I DiAy@DE@) LCE @ +@W=0 on G

1,j=1

z(x)=o0 on F(G)

where G is a bounded domain in E* and F (G) is its boundary. We will use
properties of system (4) which are developed in [10].
The following assumptions will be made throughout the paper.

(1) C(x) and each A;;(x) are m-square real matrix functions defined
in E% the solutions #z (x) of equation (1) are 7 X1 vectors.

(i) A;; = Aj; and each Ay is symmetric as class C' (E").
(iii) The mn-square matrix (A (x)) is positive definite.

(iv) C is symmetric and continuous.

(v) The notations aff and " will be used to denote the %/-th elements

of the matricies Ay; (x) and C (x), respectively.

A bounded domain G C E" is said to be a nodal domain of a solution # of

(1) (resp. (2)), if and only if # = o on F (G). The equation (1) (resp. (2)) will

- be called nodally or strongly oscillatory in E”" if for every R > o there is a
a domain G in

def

ER—_—{xGE”|]x|=l/x§—{~---+x,2,>R},

such that G is a nodal domain for a solution of (1) (resp. (2)).
The following three theorems are stated without proofs. Their proofs
can be found in [10].
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THEOREM A. The linear operator

n

Lu= 3 Di(Ay#)D;u) +C (2)u

has a discrete spectrum in the bounded region G CE™, the smallest eigenvalue
of the operator being given by the formula

. \
/ ( D;u" Ay () Dju—u" C (2) u) dG
J \i5=1

2
.G
A = min

ued m 2
> 4 (%) dG
i=1
G

The class ® is an appropriate set of  admissible Junctions.”

THEOREM B. For 7 >o define G(nr»)={x|n < x| <7}, then
the smallest eigenvalue )\ (r) of the system

(s) 3 DAy @D 4 CWu=0 o Glr,r)

1,)=
% =0 on F (G (@,7)

satisfies lim A () = oo.
r—>7r

THEOREM C. Define G (ry,7) as in Theorem B, then the smallest eigenvalue
N (7) of the system (5) depends continuously on 7.

We now state and prove a useful lemma.

LEMMA. [fthere exists a solution v (x) of equation (2) that has a nodal domain
G CEg for, some R > o, then there exists a region G (a, b) such that G (a, b)
is a nodal domain for a solution = (x) of equation (2).

Proof. Since v (x) satisfies equation (2) for the region G and v(x)=o0 on
F(G), zero is an eigenvalue of equation (2) and v(x) is its corresponding eigen-
function. Enclose G in a region of the form G (a,7) = {xlo<a<|x|<r}.
By classical variational principles [2] the smallest eigenvalue of the problem

lu + 2 u = o on G(a,r)

u =0 on F (G (a,r))

is less than or equal to zero. Appealing to Theorems B and C, there exists
a & > a such that zero is the smallest eigenvalue of the system :

4+ = o on G(a,d
% =0 on F (G (e, d)).
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Thus the proof is complete.
Our main theorem can now be stated.

THEOREM 1. [f the scalar elliptic equation

n
© 2 Di(@ (®)D;v (@) + (@ o=o,
i5=1
is nodally oscillatory for some k=1 ,---,m then equation (1) is nodally oscil-
latory.

Proof. Since (6) is nodally oscillatory we have by the lemma that there
exists for each R > o a domain G = G (»;,7) where ; > R and such that
G is a nodal domain for a solution z (x) of (6). Define  (x) = v (x) B where
B is a constant X1 vector with one in the A-th component and zeros
elsewhere, then # (¥) =0 on F (G (r,,7)). Now consider the eigenvalue
problem (4). If @ denotes the class of ‘“admissible functions”, Theorem A
implies that

-
/ ( D, 2z Ay (x) 2 —z'C () z) dG
J \i,j=1

A, = min

o /(% 22k<x)>dG

[( ﬁ DiuTAij(x)D]-u—uTC(x)u>dG
Jo\g,i=1 ‘

<- -
/(2 u,i(x)>dcr
k=1
é
[(i" %?Di”(x)D,-W(x)—-C’“"vz(x)>dG
_ ¢ i,j=1
/wz(x) dG
G

Since v (¥) satisfies (6) and v (¥) =0 on F (G), the last ratio is zero and
M <o. Now by Theorems B and C, there is a domain G (r;,7") CG for
which the eigenvalue problem

Lu +Nu=o0 on G (@ry,7)

u=o0 on F(G(@n,7r))

satisfies 2; = o. This completes the proof.

From the proof of Theorem 1 we see that the following result can be
stated.
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THEOREM 2. [If for eack R > o there exists a domain G CEg,
ake{1, -, m} and a solution v of equation (6) such that v =o0 on F (G),
then equation (2) is nodally oscillatory.

COROLLARY 1. If for eachk R > o there exists a bounded region G C Ex
with piecewise smooth boundary, a continuously differentiable function z with

z2(x) =0 on F (G) and an integer k €{ 1, -+, m } such that
n
@ f( > diD;zDyz— c’“"z) dG <o,
471
G

the equation (1) is sz‘ronglj/ oscillatory.

Proof. Condition (7) implies that the smallest eigenvalue for the system

n
(8) 2 Di (d},;;c Dj %> -+ ke 4y L a=o0 on G

4,5=1

=0 on F(G)

is less than or equal to zero. Now by classical variational principles found
in [2], there exists a domain G’ CG such that the smallest eigenvalue A" for
the system (8) defined on G’ satisfies A’ = o and the corresponding eigenfunction
u' satisfies %' (x) = 0 on F (G). Now apply Theorem 2.

~ We can extend a result of Kreith and Travis [9] to vector equations.
Define

By (7) = J A 0)Ap(r, ), 7 (6)do

A

ock(r)zfck(r,ﬂ)df)

A

where A denotes the unit (7 — 1) sphere in E" the column vector 7 (0) is the
exterior unit normal to the sphere A at (-, 0) and where A (», 0) and ¢, (», 6)

denote the matrices (a’ﬁ? (x)) and ¢ (x), respectively; x is written in terms of
hyperspherical coordinates for E".

THEOREM 3. If the ordinary differential equation
o G OR-S B PO R

for some k=1, --,m is oscillatory at r = oo, then equation (1) is nodally
oscillatory at |x| = oo. )

Proof. Equation (6) is nodally oscillatory by the theorem of Travis [13].
Now by Theorem 1 we have the strong oscillation of (1)in E™
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THEOREM 4. If for some k=1, --,m equation (¥) Au -+ My = o
is nodally oscillatory for all positive \ and if (@¥ (%) is bounded as a Jorm in E",
then equation (1) is strongly oscillatory.

Proof. Let a, be a positive upper bound for (@ (x)). Since (*) is nodally
oscillatory for all A > o, there exists for each R > 0 a domain G C Er and a

solution z of (*) with A = dL such that # =0 on F (G). Now we have
0

n
f( Z 4&ED; uDj o — uz) dG
=1

G
Sf(aoz (D; 2)2 — bk uz) dG
i=1
G

=1

= aon (2 (D; )2 — Ak uz) dG = o.

By corollary (1), the conclusion follows.

Let o () = < j et (7, 0) d® where A again denotes the full range of
n
A

angular coordinates and X, = J df. We then have the following corollary

A
of Theorem 4, which extends another result of Kreith and Travis [9] to
vector equations. '

COROLLARY 2. /f lim sup » [ o (7) dr = oo and (af (%)) is bounded as a
r—>00 -
form on E* for some k= 1,---,m, then equation (1) s strongly oscillatory.

Proof. The proof follows from Theorem 4.4 of [9] and Theorem 4.
A result similar to one found in a paper by Swanson [12] for scalar
equations can be obtained for vector equations.

THEOREM 5. Eguation (1) is strongly oscillatory if for every r >o
there exists

(1) @ bounded region M C E, with piecewise smooth boundary and

(2) a piecewise continuously differentiable function w, defined on M such
that u, = o on F (M) and

n
f( > Diuy Ay (%) Djof — 42 C (x) u) dG < o.
t,7=1

b /
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Proof. Let » > o0 and M be a bounded region in E,, then the smallest
eigenvalue A (M) of the problem

Ly +M M=o on M
u =0 on F (M)

is less than or equal to zero. Enclose the region M of (i) by a region
M, (7, ,7) = {x€E" |r <7, <|x| <7}, then the smallest eigenvalue A (M,)
of the region M, satisfies, A (M,) <A (M). By Theorems B and C there exists
a region M, ={x€E"|r<r < |x|<r <7} such that the smallest
eigenvalue (M,) = o. Thus the region M,, is a nodal domain of a non-trivial
solution of (I).

Using our methods, a comparison result which gives a stronger result
than the results obtained by Kreith [5, 6] and Clark and Swanson [1] can be
obtained. Consider equation (1) along with another equation of the same form:

© Lo = 3 Di(By(D;0) +D@o — o,

©,J=1

THEOREM 6. If for some R > o there exists a G C Ex and a solution u of
equation (1) with w =0 on ¥ (G) and such that

(10) ([(Di " (A (2) — By @) Dy + 4" (D (1) — C (#)) ] dG = o,

G,

then there exists a domain G' C Eg such that G' is a nodal domain for a solution
2 (x) of equation (8).

Proof. Let G(a,r)={r€E"|o<a<|x|<r} be such that
GCG(a,r). Extend # to G(a,r) by letting =0 on G(a,r)—G,
since % is; a solution of (1) on G and from (10) we have

O=!(.E DiuTAij(x)D,«u—uTC(x)u) dG

1,j=1

n
=f( > Diu" Ay (#) D u— 4" C (%) w) dG
§,5=1 :

Gla,r)

2[( DiuTBij(x)Dju—uTD(x)u)dG.
1

i,J=
G(a,r)

Therefore the smallest eigenvalue of the problem
Liu +Mm=o0 on G (a,r)

% =0 on F(G(a,r))
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is less than or equal to zero. Again, by Theorems B and C there exists a domain
G'=G@,”)={r|o<a<|x| <+ <r} such that M (G = o.
Another type of comparison theorem involves equation (1) and an equa-
tion of the form (3). For prepared solutions of (3), that is, solutions which
n

satisfy V* Z Ay;Djv is symmetric for 7=1,---, %, we have the following
=1

theorem:

THEOREM 7. If equation (1) is nodally oscillatory, then the determinant
of every prepared solution of (3) has a zero in Ex for every R > o.

Proof.  Since equation (1) is oscillatory, there exists for each R > o
a domain G C Er which is a nodal domain for a solution z (x) of equation (1).
Now applying Swanson’s Theorem 1 of [11], we get our results.

Note we have assumed the existence of classical solutions of the eigenvalue
problem (4). Theorem A guarantees the existence of generalized solutions
under the stated assumptions on the coefficients of L.
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