
ATTI ACCADEMIA NAZIONALE DEI LINCEI

CLASSE SCIENZE FISICHE MATEMATICHE NATURALI

RENDICONTI

Amalia Ercoli Finzi, Carlo Morosi

Maxwell’s equations and Clifford algebra: vector
formulation. Nota I

Atti della Accademia Nazionale dei Lincei. Classe di Scienze Fisiche,
Matematiche e Naturali. Rendiconti, Serie 8, Vol. 59 (1975), n.5, p. 421–429.
Accademia Nazionale dei Lincei

<http://www.bdim.eu/item?id=RLINA_1975_8_59_5_421_0>

L’utilizzo e la stampa di questo documento digitale è consentito liberamente per motivi di
ricerca e studio. Non è consentito l’utilizzo dello stesso per motivi commerciali. Tutte le
copie di questo documento devono riportare questo avvertimento.

Articolo digitalizzato nel quadro del programma
bdim (Biblioteca Digitale Italiana di Matematica)

SIMAI & UMI
http://www.bdim.eu/

http://www.bdim.eu/item?id=RLINA_1975_8_59_5_421_0
http://www.bdim.eu/


Atti della Accademia Nazionale dei Lincei. Classe di Scienze Fisiche, Matematiche e
Naturali. Rendiconti, Accademia Nazionale dei Lincei, 1975.



A. E rco li Finzi e C. Morosi, Maxwell's equaiionsì ecc. 421

Fisica m atem atica. —  Maxwell's equations and Clifford algebra: 
vector fo rm u la tio n ^ . N ota I di A m a l i a  E r c o l i  F i n z i  ((*) ** (***)} e C a r l o  

M o r o s i  (**\ presenta ta (**#) dal Socio C . C a t t a n e o .

R iassunto. — Si considera una possibile generalizzazione delle equazioni di Maxwell, 
nell’ambito del formalismo dell’algebra di Clifford per lo spazio euclideo. Si indaga se tale 
generalizzazione conservi le proprietà formali della descrizione classica, e si conclude che solo 
il dato sperimentale della conservazione della carica elettrica e della non esistenza della carica 
magnetica impone la riduzione al caso classico.

In t r o d u c t io n

Several and often formally different formulations of the electromagnetic 
field equations are well-known. Due to their synthetic features, particularly 
interesting formulations are those representing the field by a unique element 
of a suitable function space or algebraic set, e.g. by an element of the Clifford 
algebra: the Pauli algebra for the Euclidean space [1] and the Dirac algebra 
for the space-time Minkowski manifold [2].

It is known that the field can be described by an element of the Pauli 
algebra formed only by a vector and a pseudo-vector, and that the charge- 
current density is given by an element of the so-called even subalgebra of the 
Pauli algébra, formed by a scalar and a vector [1, p. 16]: therefore one 
must associate with the physical objects some elements which are not the 
most general ones of the algebra.

Is such a restricted choice due only to the well-known experimental fact 
that neither scalar electromagnetic field nor magnetic charge-current distri
bution exist, or is it implicitly required by some other properties of the field 
and by the; structure of the algebra by which it is described? This paper aims 
just to verify a possible generalization of the field equations that maintains 
the same formal structure of the classic equations, but that associates the 
most general elements of the Pauli algebra with the field and the charge- 
current density. This analysis seems to us of some interest as the set of equa
tions (<generalized M axwell's equations') corresponds to the wave equation with 
zero rest mass, and the cases of positi ve definite energy are known for reducible 
representations (as the one we consider) only for particles with non-zero rest 
mass [3, ch. 2].

As we will show in the following sections, the conclusion can be drawn 
that if one requires that also in the generalized field a positive definite energy 
exists, a vector with the same properties of the Poynting vector can be defined,

(*) Work done under the auspices of the G.N.F.M. of the C.N.R..
(**) Istituto di Matematica del Politecnico. Milano.

(***) Nella seduta del 15 novembre 1975.
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as well as two symmetric stress and stress-energy tensors, then no restrictions 
have to be imposed upon the generalized field: however, it is characterized 
by a charge-current density both electric and magnetic, for which no conser
vation law has to be required. Up to now (1), it can be concluded that the 
generalized field can be reduced to the classic field only by taking into account 
the experimental fact of the conservation law for the electric charge and the 
non-existence of a magnetic charge-current distribution.

I. M a t h em a t ic a l  p r e l im in a r ie s

For a concise exposition of the formal aspects of the Clifford algebra 
and particularly of its physical-geometric meaning, see [1]: in contrast with [1], 
the terminology of the usual vector calculus will be used for a few notations 
and definitions. The Pauli algebra & is used, i.e. the real Clifford algebra 
C3 for the Euclidean three-dimensional space. By /-num ber we mean any 
element of the algebra (in what follows, any /-num ber is written in Latin 
letters): its general form is as follows:

(1.1) /  — a +  iß +  u +  iv

that is a combination of a scalar, a pseudo-scalar, a vector and a pseudo- 
vector (2). The Clifford product uv of two vectors decomposes as follows

(1.2) uv =  u ' v iu X v ,

where the usual scalar and vector products are indicated by • and X 
respectively. If p  is a /-num ber, by /*  we mean its (hermitian) conjugate:

(1.3) / ! =  a — i ß + u  —  iv .

When writing differential equations, one has to introduce the differential 
operator djdx; it follows from its definition that

(1.4) —  — grad X ; —  =  div u +  i rot u \

(1) The analysis of the space-time formulation of the generalized equations and their 
variational formulation is the subject of the second part of this paper (Maxwell’s equations 
and Clifford algebra: space-time formulation. Nota II).

Among other generalized space-time formulations of the electromagnetic field, see [4], 
where the field is described by a skew-symmetric second order tensor, a scalar function and 
a completely skew-symmetric tensor of the fourth order.

(2) Scalar objects are written by Greek letters (a , ß ,* • • ), vector objects by Latin bold 
letters (u , v  , • • •)• The unit pseudo-scalar is written by i : a s i2 =  — I, formally it behaves 
as the imaginary unit, and it commutes with any /-number {ip ' =  p i  , \ /p  e & ).
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therefore by (1.1) it follows that:

Ç\L
(1.5) -3“  =  div u +  i div v +  (grad a — rot v) +  i (grad ß +  rot u) .

The d ’Alembertian operator of the Clifford algebra is indicated by

1 dx2 dt2 \ dx ~  dt ) \ dx dt j  '

when applied to scalar and vector objects, it behaves as the usual d ’Alem- 
bertian operator: □  =  A — d2/dt2.

2. T h e  c l a ssic  vecto r  fo r m u la tio n

If the classic field is considered for the vacuum (s0 =  fx0 =  c =  1), and 
the field is described by E , B, the electric charge-current density by p , j , 
the energy and the Poynting vector by s , s (e == (E2 +  B2)/2 ; s  — E x  B), 
the field equations are:

(2.1) div E =  p ; div B == o ; — -----rot B — — j  ; -f  rot E =  o .

By means of eqs. (2.1) one can easily obtain the energy equation, the conti
nuity equation and the second order field equations, respectively:

(2-2) +  d iva  =  — E - /;  (2.3) +  d iv i  =  o ;

(24 ') □  E =  grad p + ;  (24") D B  =  — ro ty .

Furthermore the ponderomotive force law follows from eqs. (2.1):

(2-5) pk?  — -ÿ -  =  pE, — zimn Bmf  (3\  (i =  I , 2 , 3)

where

(2;6) Ph — ■ +  Ej E* +  B* B* (i = i ,2 , 3)

is the stress tensor. At last, the field E , B can be described by means of the 
potentials A , <p by the well-known relations

(2.7) E ==— grad <p — —  ; B s s r o tA .

(3) Here and in the following, the usual notations of tensor calculus, as the summation
convention over repeated indices, are adopted.
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The potentials can be obtained directly from the charge-current density by 
the equations

(2.8) D A  — grad s e ^ — j  ; □ < p + - ^ - . =  — p ( j 2 ? = d i vA +  ^ ,

or the equations □  A =  — j  ; □  <p =  — p, corresponding to the choice of 
the Lorentz gauge (4).

3. T h e  c l a ssic  f ie l d  a n d  t h e  Pa u l i  a l g e b r a

As can be easily verified, if the following ^-numbers are defined:

(3-0 F == E +  iB  ; j  =  p.— j f

the field equations (2.1) take the form

✓ --N dF I dF
(3 } ^  +

whereas eqs. (2.2) and (2.5) correspond to the unique equation

(3-3) F’ ( l r  +  f j  =  FV ,

(it would be better to say to its scalar and vector parts in 0>, as the pseudo
scalar and the pseudo-vector parts give only necessary conditions of the 
field equations (3.2)). Similarly, the conservation and second-order equa
tions (2.4) and (2.3) correspond to the unique equation

(3-4) □  F = 3L
dx dt '

Furthermore we rem ark that the description of the field by means of the 
potentials can be maintained if one defines f  ^  — A and assumes the
following relation between F and cp

(3-5) F== y _ . _ y .
dt dx

From the vector and pseudo-vector part of eq. (3.5), eq. (2.7) follows, 
whereas the scalar part gives the Lorentz gauge condition. As the equation 
□  /  =  — j  yields the equations of the potentials and of the charge-current

(4) The field equations are invariant under gauge transformations of the second kind 

A \—> A' =  A — grad y ; <p 1—> <p' =  <p ■— .

The Lorentz gauge X (□ X =  corresponds to the only linear gauge transformations 
invariant under any coordinate mapping [5].
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density corresponding to the Lorentz gauge, this gauge is the peculiar 
one for the Clifford-formalism (as well as for Lorentz-invariant space-time 
descriptions). Therefore only restricted transformations are allowed

(3-6) +  — ( □  X =  o ) .

In contrast with the classic formalism, there is no more any link between 
gauge invariance and conservation laws: this link depends upon formal pro
perties of the mathematical model more than on physical grounds, in parti
cular it depends upon the adjointness relation between the (formal) operators 
of the equations corresponding to eqs. (3.2) and (3.5) [6],

4. The generalized field

As already said in the introduction, the field equations given in the 
Clifford formalism are now generalized through the following criterion: we 
assume that the form of the equations is the same, but that F, / ,  j , are 
given by the following more general /-num bers:

(4.1) F' =  a +  *ß +  E +  *B ; / '  =  <p +  i<p — A — iC ;

f  =  P +  io — j  — im  .

That is to say, the generalized field F ' is given by the most general element 
of the Pauli algebra, and we suppose that it is either a pure radiation field 
or it is generated by a general current (as will be seen later on, it is sponta
neous to interpret a and m  as a magnetic charge-current density). Equating 
separately the scalar, vector, pseudo-scalar and pseudo-vector parts in 0 , 
we get the four equations:

—  +  div E =  p ; +  div B =  <t ;

—  +  rot E +  grad ß =  — m ; - - r o t B +  grad a =  — 7;

the analogy between p , <j and ;  , m  is self-evident.
If eq. (3.3) is taken into account, its scalar and vector parts give the 

following equations:

(4-3) +  div s ' =  — (E - j  +  B • m) +  ap +  ßcr

(44) Pm Qf ' 97" =  P^i +  +  eikn ( j k — wï Ew) ,

whereas the pseudo-scalar and pseudo-vector parts correspond to necessary 
(but not sufficient) conditions of the generalized eqs. (4.2). As the following
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definitions have been introduced in eqs. (4.3) and (4.4)

j s' =  (E2 +  B2 +  a2 +  ß2)/2 ; *'== E x  B + ' ocE +  ßB;

(4-5) / =  — 2( aE +  ßB);

( Pu =  (— s' +  a2 +  ß2) 8« +  Ei E , +  Bi B* — eikn (aBn-  ßE“),

ys \  Pu appear as the natural generalizations of the classic field energy, 
Poynting vector and stress tensor; the vector I has no classic analogue and 
it vanishes for a =  ß =  o. The generalized second-order field equations, 
corresponding to eq. (3.4), are now given by:

( □  a =  — di v j  — □  ß =  — div m  -—
(4.6) X

( □  E =  grad p +  —  +  rot m  ; □  B =  grad a +  ~  — roty .

The relations between field and potentials, and between potentials and 
current, corresponding to eqs. (3.5) and to □ / = — j ,  become now:

a =  div A +  — ■ ; ß =  div C +  —

E =  — +  grad 9 -f rot C) ; B =  — +  grad -jj — rot Aj

(4.8) □  ? =  — P ; □  4 =  — a ; □  A =  — j  ; □  C =  — m.

5. P r o p e r t ie s  of t h e  g e n e r a l iz e d  f ie l d

The formal structure and the properties of the new equations are now 
analyzed, and their relations with the classic equations discussed. The gene
ralized field eqs. (4.2) are a system of eight partial differential equations of 
the first order, in normal form with respect to the time variable: therefore 
one must not expect the existence of compatibility conditions for the equa
tions, i.e. conservation laws for the charge-current density: in fact eq. (4.6) 
implies that:

(5-0 d i v j + ^ - ^ o  ; d i v m - f — =j=o.

The stress tensor p u  is not symmetric, but it is well-known [7, ch. 4] that 
eq. (4.4) can be re-expressed in another equivalent form, where a new symme
tric stress tensor is contained, whose linear invariant is the opposite of the 
(generalized) field energy s', as in the classic field. To this end, a tensor qu 
with zero divergence must be added to pM , so that the new tensor becomes 
symmetric; taking into account the definition (4.5) of p Ui the following con
ditions must be satisfied by qu :

CS-2) ' $ *  =  Vi (Vi =**"*?*") ; q % = z kinvn (vn ^ o cB“ — ßE"),
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where qif and q $  are the symmetric and skew-symmetric parts of qu : 
therefore p u  can be made symmetric if a symmetric tensor can be obtained 
with a given divergence: the solution of this problem is known for generic 
N-manifolds, both Euclidean and Riemannian [8; 9]. Assuming a flat mani
fold and choosing orthogonal Cartesian coordinates, the general solution of 
eq. (5.2') is:

Xk

(5-3) Çu =  Çu +  Hmn ziir yml,'lr (qlk =  àxk ; q*+k =  o j ,

where yml is an arbitrary symmetric tensor [10].
Furthermore yml m ay always be chosen so that the linear invariant of 

the stress be the opposite of e'; in fact, since

(54) Pi +  qi =  -  3 (s' — a* ■- ß2) +  E2 +  B2 +  zimn sjr ^

it is sufficient that ym‘l is a solution of the unique differential equation

(5-5) n x - X m*l»n =  - 2(*a+ p ) - g t * .  ( x ^ z ‘0 .

Therefore, if Qu is the tensor (5.3), where y"m is any solution of eq. (5.5), the 
tensor (4.5) can be replaced by the following symmetric tensor Pw :

(5 -6) P* =  ( -  ^  +  «2 +  ß2) Ä* +  Ei Eh +  Bj B» +  Q*, .

d he energetic features of the electromagnetic field are classically described 
by s >s >pu: the ecls- (2-2) and (2.5) of the time evolution of s and s  can 
be reunited, in a space-time description <5), by the equation of the pondero-
motive force:

(5-7) T^V  =  Kv,

where Kv and the symmetric stress-energy tensor T 1"1 are given by 

(5.8) Kv =  (— E -7 ; ■— pE 4- B x j )  ; T |iV =
£ 5

5 ' Pki

Taking into account eqs. (4-3) ar*d (44)> the generalized form of eq. (5.7)
is T  ‘‘V  =  K v, with:

(5-9)
s' s ' +  I

s ' — Pfci

The generalized equation can be given in an equivalent form where a sym
metric tensor of the second rank T 1X7 appears, containing the energy, a 
stress tensor and a unique vector.

(5) The metric tensor is 7)^ =  diag (1 ; — 1 ; — 1 ; — 1). Latin indices take on values 
(ï , 2 , 3). Greek indices take on values (< > ,1 ,2 ,3 ) .

31. RENDICONTI 1975, Voi. LIX, fase. 5.
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To this end (and in a substantially analogous way as for the symmetri- 
zation of the stress tensor) one searches for a tensor R^v (R ^  =  T — T ^v) 
so that:

(5.10) R!iV  =  o; (5-11)

Eq. (5.10) is satisfied by taking:

(5-12) R,iV =

and eq. (5.11) requires that

(5-13)

■ĵ yv __    rj,' V[X   rjvp' {AV

T r  — I

r s  .

_9y_
dt +  div r  =  o

) drf dt

(b jm — U ) .
+  u =  o

Eqs. (5.13) have infinitely many solutions, e.g. we can choose r  — o and 
y — o (without loss of generality, for the very meaning of the generalized 
energy s'); furthermore, the particular solution S mi can be chosen of the 
equation

( s -h )
c*im _
0  “  ~ W  ’

having a vanishing linear invariant (as mentioned above, this is always pos
sible). Therefore:

(5-15)

(5:16) T " ^  =  K v ; X"“v =  T"v“ ; T"uu =  s ' > o .

At last it can be remarked that the generalized Poynting vector s' defined
by (4.5) is again parallel to the wave vector k  (J =  o):

(5.17) s' X k  =  (E x  B) X k  +  a (E X k) +  ß (B X k) =  o.

In fact eqs. (4.2) have the following plane wave solution (v ~ k - x  — oV)

(5.18) a =  00 exp (/v) ; ß =  ß0 exp(fv) ; E = E 0exp(fv) ; B =  B0 exp (fv), 

where, taking into account eqs. (4.2), co and k  satisfy the relations:

(eoa  —  & - E  =  o ; coß— k - B  =  o
(5-19) {

( coE +  ÄXB — ak =  o ; coB — k X  E — $k =  o .

0 —  I

0 Opmi
qp" M-v _

pt.v "V[4

• P . 4- S •1 «  T  ^mi 

"00

Thus the condition (5.17) can be easily deduced, on account of eqs. (5.19).
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