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Equazioni a derivate parziali. — Comparison and oscillation theo-
vems for singular hyperbolic equations. Nota di EvriQuio C. Youna,
presentata @ dal Socio M. PiconE.

RIASSUNTO. — In questa Nota si dimostrano teoremi di confronto e di oscillazione per
equazioni singolari a derivate parziali del tipo iperbolico considerato in un dominio cilindrico.

E notevole uno dei risultati conseguiti, secondo il quale, una soluzione di una tale equa-
zione che sia identicamente nulla sulla superficie laterale di un cilindro, ha nell’interno infi-
niti punti di zero.

I. INTRODUCTION

The Sturmian comparison and oscillation theorems for ordinary diffe-
rential equations have been extended extensively to partial differential equa-
tions of the elliptic type. For example, see Kuks [1], Swanson [2], [3], Diaz
and McLaughlin [4], and Kreith and Travis [5], to mention only a few. In [6],
by employing Swanson’s technique, Dunninger obtained a comparison theorem
for parabolic partial differential equations. His result was recently generalized
by Chan and Young [7] to time-dependent quasilinear differential systems.
However, for partial differential equations of hyperbolic type very little is
known. As a matter of fact, certain Sturmian results for elliptic equations
are false for hyperbolic equations without additional constraints. A simple
example is the wave equation #; —u,, = o0 in the semi-infinite strip
S={(x,)|o<xr<m,0<¢t<oo} Clearly u(x,f)=sinx sin# is a
solution of the wave equation which has infinitely many zeros in S while
u(x,t) =1 is also a solution which has no zero in S.

In [8] Kreith proved comparison and oscillation theorems for solutions
of an initial boundary value problem for the damped wave equation in two
variables. His results have been recently extended by Travis [9] to the normal
hyperbolic equation in 7 space variables. Other oscillation results for solutions
of hyperbolic equations have also been obtained by Kahane [10] under some-
what different conditions. The purpose of this paper is to present corresponding
results for the pair of singular hyperbolic differential equations

Y
Lu=u, +_t_ wuy— (a4 (x , £) Ug)oj TP (X, )u=0
and

~
Mo = vy, ‘l—‘;“vt_(éij(x’t>7jx,-)wj+9(x;l‘>'y=0

where £ is a real parameter — oo < £ < oo, and the repeated indices are to
be summed from 1 to 7.

(*) Nella seduta del 15 novembre 1975.
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The coefficient matrices (a;;) and (4;;) are assumed to be symmetric,
positive definite, and of class C' while » and ¢ are simply continuous in the
cylinder

Q= {(x,8)|x€D,r <t <T}

T >0,T < oo, where D is a bounded domain in E" with smooth boundary.
By a solution of Lz = o or Mu = 0 we shall mean a function that is twice
continuously differentiable in the interior of Q. and continuously differentiable
in the closure Q..

It will be seen that the parameter 4 plays a role in our results.

2. THE CASE (ay) = (by),i,7=1,",n

We treat first the case when L and M have the same principal parts, that
is, @;; = b;;, for 7,7 =1,---,n. We consider the boundary value problems

Y .
Uy + — sy — (@ij U )oj + pr =0 in Q,,

(1)
0,
%e}—r(x,t)u:o on aDX[o,T]
and
£ .
Ve + > Yt (6s5 v(t,’)dlj +gqv=o0 in €,
@) N
5, Ts@,Hv=o0 on 3DXJ[o,T]
where ufon = a;;uy; vi, (v, -+, W) being the outward unit normal vector

on 3D, and » and s are continuous functions on aDx[o,T]. When £>o0
we have the following result.

THEOREM 1. Let k> 0 and suppose that p < g and » < s. If there exists
a solution of the problem (1) which is positive for o < t < T such that u (x,8)=o0,
then every solution of the problem (2) has a zero in Q.

Proof. Let v be a solution of the problem (2) and suppose that v (y, t)>o
in Q,. Then by integrating the identity

* [‘ZJ (ﬂtz“}‘% %t)"“” (btt +*'§—7/t)] =

= [t*(uyv — v, )], = t* [ay (t; 0 — vy, 1)y + 2% (¢ — p) ww
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over , and using the divergence theorem, we obtain

(3) J [ (nyv— v, u)];,r dx =

D
T
:Uﬂc (yg—z——ug—Z)ddeﬂzk@—p)wdxdz.
0 oD Z}o

Substituting the boundary conditions satisfied by #« and », equation (3) yields

4) kaut(x,T)v(x,T)dxz
b
T
= (s —7r)uvdxrds + * (g — p) uv dx de.
Il I

From the assumption on p,¢,7, and s, it follows that the righthand side of
equation (4) is non-negative. But since # > o for 0o <#<T and % (x,T)=o0,
it follows that #,(x,T) < o, so that the lefthand side of equation (4) is nega-
tive. Thus we have a contradiction and so the theorem is proved.

It is clear from the proof that if p < ¢ or » <s, then we can conclude
in the theorem that » must have a zero in the interior of Q,.

We note that in Theorem 1 no condition on # need be prescribed at the
singular line # = o. This is quite in contrast to the case when 2 < o, which
includes the normal hyperbolic equation (£ = 0), as we shall see in the next
theorem.

THEOREM 2. Let £ < 0 and suppose that p < q and r < s. If there exists
a solution u of the adjoint of Lu = o that is,

Y
L% = wy— (7 u)t—- (@ij U)oy + p1 = O in Qq

which is positive for o< t<<'T such that u(x ,0)=o0,u(x,T)=o0 for x€D
and (du[on) +ru = o on 3D X [0, T), then every solution v of the problem (2)
has a zero in Q.

Proof. Again, let v be a solution of the problem (2) and suppose that
v>o0 in Q. By integrating the identity

uMov — oL % = (uv, —ou, + £ ‘u;zi)
t

— lay; (wvz; — vuz))e; + (g — p) wv
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over Q. and substituting the boundary conditions satisfied by # and v, we
obtain

~

(s) J {%: x, Do, T) + [uvt—vuz -+ é?]m} dx

=ff(y—r) wv dx d¢ —+—~U~(q——p) wv dx dz.
Qe

g oD

Now we let ¢ tend to zero. Since « (x,0) = 0, we note that lim « (x , ¢)fe =
=u;(x,0 +). Thus as ¢ > o, the boundary integral yields “>°

f[u,(x,T)v(x,T) +(*k—1)u,(x,0)v(x,0)]dx

which is negative since #,(x,0)> 0, u,(x,T)< o0, and # <o. This con-
tradicts the fact that the righthand side in equation (5) is non-negative.

If we consider the problems (1) and (2) in the cylinder Q. where = > o,
then a combination of the conditions in Theorems 1 and 2 leads to the following
result which is valid for any value of the parameter 4.

COROLLARY 1. If there exists a solution of Lu = o in Q. which is positive
Jor v <t <T suck that u(x,r) =o0,u(x,T)=0, and dufon 4ru=o
on DX [v, T, then every solution v of Mv = o in Q. satisfying the condition
wlon +sv =0 on IDX[tv,T] kas a zero in Q..

The proof is similar to that of Theorem 1.

3. THE CASE (ay) < (6;)

The results obtained above cah be extended to the case when a; <
<bi,%,7j=1, --,n, provided the coefficients @i, p,7, and b;,q,s
are all independent of the variable ¢, so that L and M are both variable sepa-

rable.
THEOREM 3. Let u be a nontrivial solution of the problem

wuy + é wuy— (@ij (%) tha ), + p (F) u = 0 in L
©)

g—z—l—r(x)u:o on 3D X[o,T]

such that u (x ,T) =0 for #<o0 or u (x 0)=o0 and u(x,T)=o0 for £<o,
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where p > 0,7 >0, and p ,r are not both identically zero. If

) ai; (%) < by (%), I, j=1, ", nm
(7
p(x) <g(® and 7 (x) <s(x)

where at least one strict inequality holds throughout D, then every solution v of
V] .
v+ U Gy (D) v)y T g@v=0 in Q

® N
a_m;-}—s(x)yzo on 3D X[o,T]

(ovfony = bij vy, v;) has a zero in the interior of €.

Proof. Let ¢ and ¢ be the positive normalized eigenfunctions correspon-
ding to the first eigenvalues %, and p, of the problems

— (@i (X) We)oy+ p(®)w =20 in D

)

%-l—r(x)wzo on @D
and |

— (éi]' (x) wx,')xj -+ q <x> w = QLW in D
(10)

*g%-i-s(x)w:o on 3D

respectively. By using variational principles, we may characterize the eigen-
values A, and p, as

(11) 0 <Ay = minf(aiijixxj—}— pw?) dx +frw2 dx
wetI)D D
= @y 00yt e ax - [rorar
D - D

< f (bi5 Yoy bay -+ g®) dx + f s¢? dx

oD

wewW
D

= min f(b,;j Wy, Wy + qw?) dx + fswz dx =y,
oD
where ® and ¥ are the sets of C* functions with unit L* norm satisfying the

boundary conditions of the problems (9) and (10) respectively. Notice that
‘the inequality in equation (11) is due to the assumption made on equation (7).
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Now let v be a solution of the problem (8) and let us define

U(t)z(u(x,z)cp(x)dx and V(z‘)zfv(x,t)n];(x)dx‘

o

D D
Then from equations (6) and (9), we have

(12) U+ 2 U 492U =0

with the boundary conditions U (T) = o for 2> o, and U (0) = o, U (T) = o
for £ <o. Likewise from (8) and (10) we have

144 k 4
(13) Vi L VitV =o.

If £>1, then a solution of equation (12) which is bounded at #= o is
given by

U () = 70" Jo—1y2 (V7\_o £)

where J; is the Bessel function of the first kind of order 4. The con-
dition U (T) = o thus implies that Jg_1y2 (YA T)=o0. This means that

V(@) =P Jo_pm (T )

which satisfies equation (13), vanishes at = (Ao/w,)”* T< T. Since ¢ (x)> o
we conclude from the definition of V that » has a zero in the interior of Q,
when £ > 1.

For o <4 < 1, a solution of equation (12) which is bounded at #=o
is' given by

U @) = £""PRIC, Jgene (W &) 4 Ca Jaciye (V20 2]

where C; and C, are some constants. Since U(T)=o, the constants C, , C,
can be determined, and hence the function

V(@) =P C Tacae (Vo ?) + Ca Tamiye (Vo )]

also vanishes at # = (Ao/0)"* T < T. By the same argument as in the pre-
vious case, we again see that v has a zero in the interior of Q.

Finally, the case 2 < o can also be proved in exactly the same manner
provided we note that a solution of equation (12) which vanishes at # = o
is given by

U@ = Ju_ e (10 8.
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4. OSCILLATION THEOREMS

We shall now consider the oscillation phenomenon of solutions of the
equation Lz = o0 in the semi-infinite cylinder G = {(x,?)|x €D ,0 <
< ¢ < oo}. We shall say that Lz = o is oscillatory if every solution of the
equation which vanishes on the lateral surface of G has arbitrarily large zeros
in the interior of G. First, we shall establish an oscillation criterion in the case
when the matrix (a;;) of L is independent of z

THEOREM 4. Let p(x) =0 and r (x) =0 in D where p and r are not
both identically zevo. If p ()< g (x,8) in G and r(x) < s (x,7) on 3D X [0, 00),
then every solution v of

%
71n+7 U — (aij (’C) vxi>$j+q<x’t)v =0

satisfying w[dn + sv = 0 on dD X [0, 00) has a zero in G, = {(x,2)|x €D,
T <t < oo} for every =.

Proof. We shall give the proof only for the case £ > o as the proof for
£ < o is similar. Let ¢ > o be the eigenfunction corresponding to the first
eigenvalue A, of the problem (9). Then

w(x, ) =" g0 0 (Vo) o (x)

is a nontrivial solution of problem (6) which vanishes at the sequence of points
<ty < Ly <y = zn/l/k:(nz 1), where z, are the zeros of the
Bessel function Jg_1ys (¢). The theorem then follows by applying Corollary 1
to each of the domains

Gn:{<xyt>IxED)tn§t§tn+l} y n =1

b

More generally, let 2 be any positive function that is continuous in D
with L? norm. TLet Q be a continuous function satisfying the inequality

(P, %)

where

;Pu=~<ai;‘<x’l‘> %,-)x,“i‘?(x»f)% and <u’h):f%<x’t>h<x> dx

D

for all functions z that are twice continuously differentiable and positive
in G for large # and that vanish on the lateral boundary of G. Then the
following two theorems generalize Theorems 6 and 7 and [9], respectively.
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THEOREM 5. The hyperbolic equation
”tt‘}“é y—(ai; (%, ) ta )y + p (¥, ) u =0
is oscillatory in G if the equation
'+ %7 19z—0
is oscillatory for ¢t > o.
THEOREM 6. The hyperbolic equation
g + - 14— (@55 (%) )+ p (B = 0

ts oscillatory in G if and only if the elliptic equation
— (ay (%) ”x;‘)zj +prpx)u=o0
is disconjugate in D.

The proofs are similar to those given in [9] with slight modification.

5. CONCLUDING REMARKS

When # = o the equation Lz = o reduces to the hyperbolic equation
considered by Travis [9]. Hence our results here include those obtained in [9].
Finally, it should be pointed out that comparison results for the corresponding
singular elliptic equation uy, + (/t) u, + (ay; Uy )e; + p = 0 have recently
been given by Dunninger and Weinacht [11].
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