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Equazioni a derivate parziali. — On wave solutions of Israel
and Trollope’s new unified field theory in aV,xV, space—time. Nota
di KrisuNa Bimarr Lar e Amir Arr Ansari, presentata ® dal
Socio B. SEGRrE.

RIASSUNTO. — Israel e Trollope [1] hanno assegnato due serie di equazioni di campo

unificato, ottenute assumendo il tensore £y simmetrico e I"%’j non simmetrico. Nel presente

lavoro si considerano tali equazioni in uno spazio-tempo dato da una varietd riemanniana
di dimensione quattro e classe due che sia il prodotto Vy XV, di due superficie, e si dimostra
che allora I’equazione delle onde ammette soluzioni.

1. INTRODUCTION
The first set of field equations of the new theory [1] is given by
(1.1) @) k=0, & M="Th,=o0, o 6%=o0,

d) RL"Z =« M,;k (RV) , e) R = o,
where

(12) @) 0% =7V—g(¢" +aR¥), & Ry=Ti,—T%, +
F IRl — T Ta, 0 Ma (R)=—gi Ry R" — ¢ Ry Ry,

d) "Th =T+ 8Ty, (Ty = Th)

and « is a constant. The fundamental tensor gi; and its inverse g% defined
by £¥ gi = 8] are used to lower and rise the indices of a tensor. A semi-colon (;)
followed by an index with asterisk (*) denotes covariant differentiation with
respect to the connections “T'. A bar (—) and a hook (V) below two indices
denote the symmetry and skew-symmetry respectively between those indices
and a comma denotes partial differentiation.

The second set of field equations of the new theory [1] is given by (1.1)
@), b), ¢) and

(13) @ Riu—@1/4b)ga=aMag®R), & 0% =1"g(g% +aR¥),

where it has been assumed that R is a non-vanishing constant given by the
relation 4R = 1.

Israel and Trollope [1] have found wave solutions of the field equations (1.1)
and (1.1), @)—¢), (1.3) in a static spherically symmetric space-time. Lal and
Singh [2] have found wave solutions of the same set of equations in a cylin-

(*) Nella seduta del 15 novembre 1975.



378 Lincei - Rend. Sc. fis. mat. e nat. - Vol. LIX - novembre 1975

drically symmetric space-time. In the present paper we propose to find wave
solutions of the same set in a VyXV, space-time given by

(1.4) ds® = — A (da® + dy?) — B (d2* — d#?)

where

A=A,y , B=B(,?.

PART I. — SOLUTIONS OF FIELD EQUATIONS (I.I)

2. Solution of equations (1.1), a), b), c¢). For solving the field equations
(1.1), @) a second rank non-symmetric convariant tensor Sy ‘inverse ” to
the contravariant tensor density 9% is defined in [1] by the relations

(2.1) tSu 0" = 8% (—det 02 det TSy = det 6%
Using (2.1) the equation (1.1) @) is equivalent to the equation (2.2)
(2.2) *Siar = O.
In this paper we take the tensor field *Sy in the form [3]
A o P —p ]
o —A 6 —o¢ )
(2.3) ("Sw) = , '=x,y,2,9),
—p —oc —B o)
N c o B_

where p and ¢ are functions of x,y, z—¢ The symmetric parts A, B of TSy
correspond to the metric (1.4) taken by Lal and Khare [3] and p, ¢ are the
skew-symmetric parts of *Sy. Using the tensor field (2.3) Lal and Khare [3]
have already solved a set of equations of the type (2.2). The field equations (1.1)
b) are identically satisfied for 7= 1 and 7 = 2 while equations for 7 = 3
and 7 = 4 are satisfied under the condition

(2.4) p1 + 03 = O,

where p1 and op stand for 3pfox and 36/3y respectively.
Using equation (2.3) in (2.1), we get sixteen simultaneous equations from
~ which on solving, we get sixteen components of 8% which are given by

—B o P e
.9) o — ‘0 —B c ‘0'
—p —o (p—B)/B  9A/B
| —¢ —o  ¢A/B (¢+B)/B |
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where
(2.6) 9 = oA = (¢ + o)A,

(The details of calculations have been omitted for the sake of brevity).
Using (2.5) we find that the field equation (1.1), ¢) is identically satisfied
if the relation (2.4) holds.

3. Caleulation of gy, Ry and My, (R,). Using (2.5) in equation (1.2),
a) the non-vanishing components of g# are given by

(3.1) gl =g"=—1/A , g% =g%=¢/B,
¥ =(p—B)B* , = (p+ B)B;
and the non-vanishing components of R¥ are given by
(3.2 RY=R¥ = —R¥ = —RY¥ = (/uAB,
R¥ = R¥ = —R¥ = — R¥ — 5/aAB.

The contravariant counterparts of g% and R¥ are given by

fn=gu=—A | £31 =843 = @,
(3-3)

g33=“‘(<P+B) y Lu=—(p—B);
and

Riz=Rgy =0 , R13=’—R14=P/°‘,
(3-4) i iy - i

R3=——R24=0'/0(.

Using (3.1)-(3.4) into (1.2), ¢) the components of My (R,) are
My (Ry) = My (Ry) =0,
M (Ry) = My, (Ry) = — My, R)) = a2 (e + o)A = opfa?.

(3-5)

4. Solutions of equations (1.1), d) ¢). If we denote the Ricci tensor formed
from the connections *T'% by *Ry, then from equations (1.2), 4), &) we have

(4.1) "Rip = Rar + (2/3) (T, — I'vi) . "Rg=Ry.

Substituting the components of *R;, from [3] and My (R,) from (3.5)
in (1.1), d), we get B

(4.2) L=o,

(4-3) N+ 2P =2d/[aA,
(4-4) 'N—zP‘=—2oc’/ocA,
4-5) P = o'[ah;

28. — RENDICONTI 1975, Vol. LIX, fasc. 5.
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where

L = (An + Am)/A — (A] + AD/A*,
N = (Bss— Buy)/B — (B; — BY)/B”,
P =30’ (A} + AD2A* — o (Ay + Ap)JA® +
+ (ann + om)/2A% — (1 Ay + a3 AA® — (o, — 02 A%
By virtue of (4.4) and (2.6), (4.5) can be written in the form
(4.6) en + P + <Paa¥ ou = 4A 8" + (92 @)} .

where B" = (ps— o1)[2 A.

Using equation (4.5) in (4.3) and (4.4), we get

@7 N=o.
Putting
(4.8) a =log A and o' =log B

in equations (4.2) and (4.7), we get

(4-9) a + am = o,

(4.10) bog — bga = O .

Equation (4.9) is a Laplacian in 4’ and has a solution of the form
(4.11) ' =logA=fx+)+f(x—1iy),

while (4.10) is a wave equation and has a solution of the form

(4-12) b =logB=g(z+0+g,mE—1,

where f,, /5, g1 and g, are functions of their arguments.

Hence the solution of field equation (1.1), &) is given by (4.11), (4.12)
and (4.6).

The field equation (1.1), ¢) is identically satisfied since, by using (3.1),
(4.1) and *Ry; from [3] in R =g" R;;, we get

which is identically equal to zero in view of (4.2) and (4.7).
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PART 2. SOLUTIONS OF FIELD EQUATIONS (I.2), @) — ¢) AND (I.4).

The field equations (1.1), @)—¢) have already been solved in Section 2
and the field equation (1.3), 4) is identical with (1.2), @), which has been
solved in section 3. We have now to find only the solution of (1.3), ).

5. Solution of equation (1.3), a). Using the components of *Rié from [3],
(3-3), (3.5) in equation’ (1.3), @), we get

(5.1) L=—Al2b

(5.2) N + 2P = (2a//aA) — (¢ + B)j24,
(5.3) N—2P = —(2a/[2A) + (¢ — B)/2 5,
(5-4) P = (o JaA) — (pl4) .

Equation (5.4) can be written in a slightly modified form as
5-5) Pt Pa + Por — fas = 4A {87+ (/200 — (9/86) ).

Using (5.4) in (5.2) and (5.3), we get
(5.6) N = — B/z26.

Using (4.8) in (5.1) and (5.6), we get

(5.7) 4;1 -+ 4;2 = —ea’/2b s
and
(3.8) byy —bgg =— 2|25 .

Reducing equation (5.7) to canonical form by changing the dependent va-
riable o’ into { where {=¢(£,7) and £=x-+4y and n=x—4y, we get

(5.9) SR LJOE o = — (1/8) &

Equation (‘5.9) is of Liouville’s form and, by Forsyth [4], has a solution of the
form

(5.10) e =2f, () f ()I[fy (&) — (1/88) f ())I%.
The exact solution of (5.7) is

(5.11) @' =log A =log [2/, (x + &¥)] + log [fa(x —iy)] —
—2log [/i(x +4) —(1/88) {fo(x —y)}],
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Similarly, an exact solution of (5.8) is

(5.12) b'=log B=log [24 (s + )] + log [ & (s — )] —
—2log [g (z+£)— (1/88) {g: (s — D)},

where f1, /5, g, and g, are arbitrary functions of their arguments and bars
denote the partial differentations with respect to them. Hence the solution

of field equation (1.3), @) is given by (5.5), (5.11) and (5.12).
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