ATTI ACCADEMIA NAZIONALE DEI LINCEI # CLASSE SCIENZE FISICHE MATEMATICHE NATURALI # RENDICONTI # Lucie de Munter-Kuyl # Some invariants for rank three torsion-free modules over a Dedekind domain Atti della Accademia Nazionale dei Lincei. Classe di Scienze Fisiche, Matematiche e Naturali. Rendiconti, Serie 8, Vol. **59** (1975), n.5, p. 349–356. Accademia Nazionale dei Lincei <http://www.bdim.eu/item?id=RLINA_1975_8_59_5_349_0> L'utilizzo e la stampa di questo documento digitale è consentito liberamente per motivi di ricerca e studio. Non è consentito l'utilizzo dello stesso per motivi commerciali. Tutte le copie di questo documento devono riportare questo avvertimento. Algebra. — Some invariants for rank three torsion-free modules over a Dedekind domain. Nota di Lucie De Munter-Kuyl, presentata (*) dal Corrisp. G. Zappa. RIASSUNTO. — Viene associato un sistema completo di invarianti ad un modulo M di rango tre libero da torsione sopra un dominio di Dedekind e ad una terna di elementi indipendenti di M. I metodi usati sono simili a quelli della teoria dei gruppi abeliani. ### I. INTRODUCTION In [3], we have associated a complete system of invariants with the triple (M, x_1, x_2) consisting of a rank two torsion-free module M and two independent elements of M. The purpose of this paper is to extend our results to modules of rank three. Let A be a Dedekind domain, K its field of fractions, $\mathscr P$ the set of non-zero prime ideals of A, $A_{\mathfrak p}$ the local ring of A at the non-zero prime ideal $\mathfrak p$, and π a uniformizing element of A. An (integral) superdivisor of A is defined to be a mapping μ from \mathscr{P} to $\overline{\mathbf{N}} = \mathbf{N} \cup \{0, \infty\}$. Multiplication of superdivisors is defined by $(\mu \mu')(\mathfrak{p}) = \mu(\mathfrak{p}) + \mu'(\mathfrak{p})$, with the convention that $n + \infty = \infty$, $\forall n \in \overline{\mathbf{N}}$. Integral ideals of A are identified with the superdivisor corresponding to their prime decomposition and multiplicative terminology is carried over from ideals to superdivisors. In particular, we write $\mu \mid \mu'$, when μ divides μ' , and we denote by $[\mu, \mu']$ the GCD of two arbitrary superdivisors μ and μ' . In accordance with the group theoretical terminology, we define a torsion A-module T to be \mathfrak{p} -primary if every element of T has order a power of \mathfrak{p} , i.e. if the submodule zero is \mathfrak{p} -primary in T, in the usual sense. For $k \in \mathbf{N} \cup \{0\}$, we denote by $A(\mathfrak{p}^k)$ the \mathfrak{p} -primary A-module A/\mathfrak{p}^k and by $A(\mathfrak{p}^\infty)$ the \mathfrak{p} -primary component of the torsion A-module K/A. A \mathfrak{p} -primary A-module T satisfying the descending chain condition on submodules is the direct sum of a finite number of submodules of the form $A(\mathfrak{p}^k)$, $k \in \mathbf{N} \cup \{\infty\}$. The number of direct summands is independent of the decomposition of T. It is called the rank of T and is denoted by r(T). If T is any torsion A-module whose \mathfrak{p} -primary components $T_{(\mathfrak{p})}$ satisfy the d.c.c., we set $r(T) = \sup_{\mathfrak{p} \in \mathscr{P}} r(T_{(\mathfrak{p})})$ and still call it the rank of T. When $r(T) \leq I$, we thus have $T_{(\mathfrak{p})} \simeq A(w_{\mathfrak{p}}(T))$, where $w_{\mathfrak{p}}(T) \in \overline{\mathbf{N}}$. We denote by w(T) the superdivisor defined by $w(T)(\mathfrak{p}) = w_{\mathfrak{p}}(T)$. Unless otherwise explicitly mentioned, we further use the terminology and notations of [1], Chap. I. ^(*) Nella seduta del 15 novembre 1975. #### 2. Invariants Let E be a three-dimensional vector space over K. Let M be a rank three A-submodule of E and let x_1 , x_2 , x_3 be independent elements of M. For any x in M, let $k_{\mathfrak{p}}^{\mathrm{M}}(x) = \sup \{k \in \mathbf{N} \cup \{0\} ; \pi^{-k} x \in \mathrm{M}_{\mathfrak{p}}\}$ and consider the superdivisor $h(\mathrm{M}, x) : \mathfrak{p} \mapsto k_{\mathfrak{p}}^{\mathrm{M}}(x)$. In particular, set $\mu_{i} = h(\mathrm{M}, x_{i})$, i = 1, 2, 3. Let N_i be the pure A-submodule of M generated by x_i , i=1, 2, 3, and set $M/N_1+N_2+N_3=M^0$. We have proved in [2] that M^0 is a torsion module and that $M^0_{(\mathfrak{p})}$ is of the form $A(\mathfrak{p}^{\mu(\mathfrak{p})}) \oplus A(\mathfrak{p}^{\mu'(\mathfrak{p})})$, with $\mu(\mathfrak{p})$, $\mu'(\mathfrak{p}) \in \overline{\mathbf{N}}$, and requiring $\mu'(\mathfrak{p}) \leq \mu(\mathfrak{p})$, we have thus determined two superdivisors μ and μ' which characterize the structure of M^0 and were proved to satisfy: - (C_1) $\mu' \mid \mu;$ - (C₂) if there exists *i* such that $\mu_i(\mathfrak{p}) = \infty$, then $\mu'(\mathfrak{p}) = 0$; - (C₃) if there exist i and j, $i \neq j$, such that $\mu_i(\mathfrak{p}) = \mu_j(\mathfrak{p}) = \infty$, then $\mu(\mathfrak{p}) = \mu'(\mathfrak{p}) = 0$. Let N_{ij} be the pure A-submodule of M generated by x_i and x_j , where i, j=1, 2, 3 and $i\neq j$. Then N_{ij}/N_i+N_j is a torsion module of rank at most one (see [2]). Set $h_k=w$ (N_{ij}/N_i+N_j) , where k=1, 2, 3 and $\{i,j,k\}=\{1,2,3\}$. Denote by f the canonical homomorphism of M onto M^0 and let $N_{ij}^0=f(N_{ij})$. For i=1, 2, 3, denote by M_i the A-submodule of E consisting of the elements rx_i for which there exist s, $t \in K$ such that $rx_i + sx_j + tx_k \in M$, with $\{i,j,k\} = \{1,2,3\}$. For any subset $\{i,j\}$ of $\{1,2,3\}$, denote by M_{ij} the A-submodule of E consisting of the elements $rx_i + sx_j$ for which there exists $t \in K$ such that $rx_i + sx_j + tx_k$ belongs to M, with $k \neq i,j$. Finally, if H is a submodule of M^0 of rank at most I, set $m_i(H, \mathfrak{p}) = w_{\mathfrak{p}}(H \cap N^0_{jk})$, with i = 1, 2, 3 and $\{i, j, k\} = \{1, 2, 3\}$, and let $m_i(H): \mathfrak{p} \mapsto m_i(H, \mathfrak{p})$. - 2.1. LEMMA. Let $z_i(\mathfrak{p}) = 0$, if $\mu_i(\mathfrak{p}) = \infty$ and $z_i(\mathfrak{p}) = s_i(\mathfrak{p}) x_i$, if $\mu_i(\mathfrak{p}) < \infty$, where $s_i(\mathfrak{p}) \in K$ satisfies $v_{\mathfrak{p}}(s_i(\mathfrak{p})) = -\mu_i(\mathfrak{p})$ and $v_{\mathfrak{q}}(s_i(\mathfrak{p})) \geq 0$, for $\mathfrak{q} \neq \mathfrak{p}$, and where i = 1, 2, 3. - (a) If H is a rank I submodule of M^0 and if $0 < m \le w_{\mathfrak{p}}(H)$, there exist a_1 , a_2 , $a_3 \in A$ such that $v_{\mathfrak{p}}(a_i) = \inf(m_i(H,\mathfrak{p}), m)$ and $h^M_{\mathfrak{p}}(a_1 z_1(\mathfrak{p}) + a_2 z_2(\mathfrak{p}) + a_3 z_3(\mathfrak{p})) \ge m$. - (b) If b_1 , b_2 , $b_3 \in A$ are such that $v_{\mathfrak{p}}(b_i) = v_{\mathfrak{p}}(a_i)$, then $h_{\mathfrak{p}}^{\mathbb{M}}(b_1 z_1(\mathfrak{p}) + b_2 z_2(\mathfrak{p}) + b_3 z_3(\mathfrak{p})) \ge m$ if and only if $v_{\mathfrak{p}}(a_i b_j a_j b_i) \ge m$, for all $\{i, j\} \subset \{i, 2, 3\}$. To abbreviate our notations, we set $z_i(\mathfrak{p}) = z_i$ and $m_i(H, \mathfrak{p}) = m_i$. Since $r(H) = \mathfrak{p}$, there exists at most one index i such that $m_i \neq 0$. Suppose $m_1 \geq m_2 = m_3 = 0$. Then, by virtue of [2], Prop. 5, Cor. 1, we have $\mu_2(\mathfrak{p})$, $\mu_3(\mathfrak{p}) < \infty$. If $\mu_1(\mathfrak{p}) = \infty$, the lemma results immediately from [3], Lemma 1, applied to the submodule N_{23} . Suppose thus $\mu_1(\mathfrak{p}) < \infty$. If $0 < m \leq w_{\mathfrak{p}}(H)$, let \bar{z} be an element of H whose order ideal is \mathfrak{p}^m and let $z = r_1 z_1 + r_2 z_2 + r_3 z_3 \in f^{-1}(\bar{z})$. Then $v_{\mathfrak{p}}(r_i) \geq -m$, where equality holds for at least two values of i since otherwise the order ideal of \bar{z} would contain \mathfrak{p}^{m-1} . We now show that z can be chosen such that $v_{\mathfrak{p}}(r_i) = \inf(m_i - m, 0)$. If $m_1 \geq m$, we have $\bar{z} \in H \cap N_{23}^0$ and $f^{-1}(\bar{z}) \subset N_1 + N_{23}$. Then, for any $z \in f^{-1}(\bar{z})$, we have $v_{\mathfrak{p}}(r_1) \geq 0$ and z can clearly be chosen such that $v_{\mathfrak{p}}(r_1) = 0$. Now let $m_1 < m$. Let $z = r_1 z_1 + r_2 z_2 + r_3 r_3 \in f^{-1}(\bar{z})$ and write $v_{\mathfrak{p}}(r_1) = h - m$. Therefore $\mathfrak{p}^{m-h} \bar{z} \subset H \cap \mathbb{N}_{23}^0$ and hence $h \leq m_1$. If we had $h < m_1$, there would exist $\bar{y} \in H \cap \mathbb{N}_{23}^0$ of order \mathfrak{p}^{h+1} and $a \in A$ such that $\bar{y} = a\bar{z}$ and $v_{\mathfrak{p}}(a) = m - h - 1$. On the other hand, we would have $az \in \mathbb{N}_1 + \mathbb{N}_{23}$, which implies $v_{\mathfrak{p}}(ar_1) \geq 0$ and $v_{\mathfrak{p}}(a) \geq m - h$. Thus $h = m_1$. Now, if $c \in A$ is such that $v_{\mathfrak{p}}\left(c\right) = m$ and $v_{\mathfrak{q}}\left(c\right) \geq \sup\left(o, -v_{\mathfrak{q}}\left(r_{1}\right), -v_{\mathfrak{q}}\left(r_{2}\right), -v_{\mathfrak{q}}\left(r_{3}\right)\right)$, for $\mathfrak{q} \neq \mathfrak{p}$, then the $a_{i} = cr_{i}, \ i = \mathfrak{l}$, 2, 3, satisfy part (a) of the lemma. To prove (b), suppose first that $v_{\mathfrak{p}}(a_i\,b_j-a_j\,b_i)\geq m$, for all $\{i\,,j\}\subset C$ $\{\,\mathbf{1}\,,\,\mathbf{2}\,,\,\mathbf{3}\,\}$. Then, from [3], Lemmas I and 2, applied to the module \mathbf{M}_{23} , we know that if $r\in K$ is such that $v_{\mathfrak{p}}(r)=-m$ and $v_{\mathfrak{q}}(r)\geq \mathbf{0}$, for $\mathfrak{q}\neq \mathfrak{p}$, there exist $s\in K$ and d_2 , $d_3\in A$ such that $r\,(b_2\,z_2+b_3\,z_3)=s\,(a_2\,z_2+a_3\,z_3)+d_2\,z_2+d_3\,z_3$, with $v_{\mathfrak{p}}(s)\geq -m$ and $v_{\mathfrak{q}}(s)\geq \mathbf{0}$, if $\mathfrak{q}\neq \mathfrak{p}$. Thus $rb_2=sa_2+d_2$ and $rb_3=sa_3+d_3$. Set $d_1=rb_1-sa_1$. Then $s\,(a_3\,b_1-a_1\,b_3)=d_3\,b_3-d_1\,b_1$ and thus $d_1\in A$. Therefore, $r\,(b_1\,z_1+b_2\,z_2+b_3\,z_3)=s\,(a_1\,z_1+a_2\,z_2+a_3\,z_3)+d_1\,z_1+d_2\,z_2+d_3\,z_3$ belongs to M. Conversely, let $h^{\mathbb{M}}_{\mathfrak{p}}$ $(b_1\,z_1+b_2\,z_2+b_3\,z_3)\geq m$. There exist d_1 , d_2 , $d_3\in \mathbb{A}$ and r, $s\in \mathbb{K}$ such that $v_{\mathfrak{p}}(r)$, $v_{\mathfrak{p}}(s)\geq -m$, $v_{\mathfrak{q}}(r)$, $v_{\mathfrak{q}}(s)\geq 0$, if $\mathfrak{q}\neq \mathfrak{p}$, and r $(b_1\,z_1+b_2\,z_2+b_3\,z_3)=s$ $(a_1\,z_1+a_2\,z_2+a_3\,z_3)+d_1\,z_1+d_2\,z_2+d_3\,z_3$. This, together with $m_2=m_3=0$, implies $v_{\mathfrak{p}}(a_2\,b_3-a_3\,b_2)\geq m$ (see [3]). We thus have $v_{\mathfrak{p}}(a_3\,b_1-a_1\,b_3)=h^{\mathbb{M}}_{\mathfrak{p}}((a_3\,b_1-a_1\,b_3)\,z_1)=h^{\mathbb{M}}_{\mathfrak{p}}((b_1z_1+b_2z_2+b_3z_3)\,a_3-(a_1z_1+a_2\,z_2+a_3\,z_3)\,b_3+(a_2\,b_3-a_3\,b_2)\,z_2)\geq m$. Similarly, we would obtain $v_{\mathfrak{p}}(a_2\,b_1-a_1\,b_2)\geq m$. 2.2. COROLLARY. Let $M^0 = H \oplus H'$, with $w(H) = \mu$ and $w(H') = \mu'$. For all $0 < m \le \mu(\mathfrak{p})$ and $0 < m' \le \mu'(\mathfrak{p})$, choose $a_i = a_i(\mathfrak{p}, m)$ and $a'_i = a'_i(\mathfrak{p}, m)$ in A, corresponding respectively to H and H', and satisfying Lemma 2.1. Then $v_{\mathfrak{p}}(a_i a'_j - a_j a'_i) = 0$, for all $\{i, j\} \subset \{1, 2, 3\}$. This results from the fact that $H \cap H' = 0$. If $0 < m \le \mu(\mathfrak{p})$ (resp. $0 < m \le \mu'(\mathfrak{p})$), set $y(\mathfrak{p},m) = t(\mathfrak{p},m)$ $(a_1(\mathfrak{p},m)z_1(\mathfrak{p}) + a_2(\mathfrak{p},m)z_2(\mathfrak{p}) + a_3(\mathfrak{p},m)z_3(\mathfrak{p}))$ (resp. $y'(\mathfrak{p},m) = t(\mathfrak{p},m)$ $(a_1'(\mathfrak{p},m)z_1(\mathfrak{p}) + a_2'(\mathfrak{p},m)z_2(\mathfrak{p}) + a_3'(\mathfrak{p},m)z_3(\mathfrak{p}))$, with $v_{\mathfrak{p}}(t(\mathfrak{p},m)) = -m$ and $v_{\mathfrak{q}}(t(\mathfrak{p},m)) \ge 0$, for $\mathfrak{q} \ne \mathfrak{p}$. Thus $y(\mathfrak{p},m) \in f^{-1}(H)$ (resp. $y'(\mathfrak{p},m) \in f^{-1}(H')$). If $\mu_i(\mathfrak{p}) = \infty$, then for each $n \in \mathbb{N}$, let $t_i(\mathfrak{p}, n) \in \mathbb{K}$ be such that $v_{\mathfrak{p}}(t_i(\mathfrak{p}, n)) = -n$ and $v_{\mathfrak{q}}(t_i(\mathfrak{p}, n)) \geq 0$ for $\mathfrak{q} \neq \mathfrak{p}$. Set $y_i(\mathfrak{p}, n) = t_i(\mathfrak{p}, n) x_i$, i = 1, 2, 3. 2.3. Lemma. Let μ_1 , μ_2 , μ_3 , μ and μ' be the superdivisors associated with (M, x_1, x_2, x_3) . Let G be the set consisting of the x_i 's, the z_i (\mathfrak{p}) 's for all \mathfrak{p} such that μ_i $(\mathfrak{p}) < \infty$, the y_i (\mathfrak{p}, n) 's for all \mathfrak{p} such that μ_i $(\mathfrak{p}) = \infty$ and all $n \in \mathbb{N}$, the y (\mathfrak{p}, m) 's for all \mathfrak{p} such that μ $(\mathfrak{p}) \neq 0$ and all $m \in \mathbb{N}$ such that $m \leq \mu$ (\mathfrak{p}) and, finally, the y' (\mathfrak{p}, m) 's for all \mathfrak{p} such that μ' $(\mathfrak{p}) \neq 0$ and all $m \in \mathbb{N}$ such that $m \leq \mu'$ (\mathfrak{p}) . Then G is a generating system of M. Indeed, let N be the submodule of M generated by G. Then $f(N) = f(M) = M^0$, since the images of the $y(\mathfrak{p}, m)$'s and the $y'(\mathfrak{p}, m)$'s in M^0 generate M^0 . Therefore, $M \subset N + \ker f$. But, the x_i 's, $z_i(\mathfrak{p})$'s and $y_i(\mathfrak{p}, n)$'s generate $\ker f$ and thus we have $\ker f \subset N$ and M = N. 2.4. Lemma. Let H be a rank I submodule of M^0 such that $w(H)=\mu$. Then $h_i=[\mu\,,\,\mu'\,m_i\,(H)].$ We must prove that $w_{\mathfrak{p}}\left(\mathbf{N}_{jk}^{\mathbf{0}}\right)=\inf\left(\mu\left(\mathfrak{p}\right),\mu'\left(\mathfrak{p}\right)+m_{i}\left(\mathbf{H},\mathfrak{p}\right)\right)$, where $m_{i}(H, \mathfrak{p}) = w_{\mathfrak{p}}(H \cap N_{jk}^{0}).$ This is obvious when $\mu'(\mathfrak{p}) = 0$ or when $\mu'\left(\mathfrak{p}\right)=\mu\left(\mathfrak{p}\right). \quad \text{Suppose thus o} <\mu'\left(\mathfrak{p}\right)<\mu\left(\mathfrak{p}\right)\leq\infty, \ \text{ and suppose as}$ before that $m_1 \ge m_2 = m_3 = 0$, where m_i stands for m_i (H, \mathfrak{p}). have immediately $h_{2}\left(\mathfrak{p}\right)=h_{3}\left(\mathfrak{p}\right)=\mu'\left(\mathfrak{p}\right)$, and it remains to show $h_1(\mathfrak{p}) = \inf (\mu(\mathfrak{p}), \mu'(\mathfrak{p}) + m_1)$. This equality is obvious if $m_1 = \mu(\mathfrak{p})$. then $m_1 < \mu(\mathfrak{p})$ and let $m \in \mathbf{N}$ such that $\sup(m_1, \mu'(\mathfrak{p})) < m \le \mu(\mathfrak{p})$. submodule H is a direct summand of M^0 ; consider H' such that $M^0 = H \oplus H'$ and let $y(\mathfrak{p}, m)$ and $y'(\mathfrak{p}, \mu'(\mathfrak{p}))$ be defined as in Lemma 2.3. To simplify the notations, set $y(\mathfrak{p},m)=y(m)=t(m)\left(a_{1}\left(m\right)z_{1}+a_{2}\left(m\right)z_{2}+a_{3}\left(m\right)z_{3}\right)$ and $y'(\mathfrak{p}, \mu'(\mathfrak{p})) = y' = t'(a_1'z_1 + a_2'z_2 + a_3'z_3)$. By Corollary 2.2., $m_{1}=v_{\mathfrak{p}}\left(a_{1}\left(m ight) ight)>$ o implies $v_{\mathfrak{p}}\left(a_{1}^{'} ight)=$ o, i.e. at least one of the ideals $a_1(m)$ A and a_1' A is comaximal with $\mathfrak{p}^{\mu'(\mathfrak{p})}$. Then, there exist b, c, $d \in A$ such that $ba_1(m) + ca_1' + d = 0$, with $v_{\mathfrak{p}}(b) = v_{\mathfrak{p}}(a_1')$, $v_{\mathfrak{p}}(c) = m_1$ and $v_{\mathfrak{p}}\left(d ight)=\mu'\left(\mathfrak{p} ight)+m_{1}.$ Therefore, $b\left(a_{1}\left(m ight)z_{1}+a_{2}\left(m ight)z_{2}+a_{3}\left(m ight)z_{3} ight)+c\left(a_{1}^{'}z_{1}+a_{2}^{'}z_{2}+a_{3}^{'}z_{1}+a_{2}^{'}z_{2}+a_{3}^{'}z_{2}+a_{3}^{'}z_{2}+a_{3}^{'}z_{2}+a_{3}^{'}z_{2}+a_{3}^{'}z_{2}+a_{3}^{'}z_{2}+a_{3}^{'}z_{2}+a_{3}^{'}z_{2}+a_{3}^{'}z_{2}+a_{3}^{'}z_{2}+a_{3}^{'}z_{2}+a_{3}^{'}z_{2}+a_{3}^{'}z_{2}+a_{3}^{'}z_{2}+a_{3}^{'}z_{2}+a_{3}^{'}z_{2}+a_{3}^{'}z_{2}+a_{3}^{'}z_{2}+a_{3}^{'}z_{2}+a_{3}^{'}z_{2}+a_{3}^{'}z_{2}+a_{3}^{'}z_{2}+a_{3}^{'}z_{2}+a_{3}^{'}z_{2}+a_{3}^{'}z_{2}+a_{3}^{'}z_{2}+a_{3}^{'}z_{2}+a_{3}^{'}z_{2}+a_{3}^{'}z_{2}+a_{3}^{'}z_{2}+a_{3}^{'}z_{2}+a_{3}^{'}z_{2}+a_{3}^{'}z_{2}+a_{3}^{'}z_{2}+a_{3}^{'}z_{2}+a_{3}^{'}z_{2}+a_{3}^{'}z_{2}+a_{3}^{'}z_{2}+a_{3}^{'}z_{2}+a_{3}^{'}z_{2}+a_{3}^{'}z_{2}+a_{3}^{'}z_{2}+a_{3}^{'}z_{2}+a_{3}^{'}z_{2}+a_{3}^{'}z_{2}+a_{3}^{'}z_{2}+a_{3}^{'}z_{2}+a_{3}^{'}z_{2}+a_{3}^{'}z_{2}+a_{3}^{'}z_{2}+a_{3}^{'}z_{2}+a_{3}^{'}z_{2}+a_{3}^{'}z_{2}+a_{3}^{'}z_{2}+a_{3}^{'}z_{2}+a_{3}^{'}z_{2}+a_{3}^{'}z_{2}+a_{3}^{'}z_{2}+a_{3}^{'}z_{2}+a_{3}^{'}z_{2}+a_{3}^{'}z_{2}+a_{3}^{'}z_{2}+a_{3}^{'}z_{2}+a_{3}^{'}z_{2}+a_{3}^{'}z_{2}+a_{3}^{'}z_{2}+a_{3}^{'}z_{2}+a_{3}^{'}z_{2}+a_{3}^{'}z_{2}+a_{3}^{'}z_{2}+a_{3}^{'}z_{2}+a_{3}^{'}z_{2}+a_{3}^{'}z_{2}+a_{3}^{'}z_{2}+a_{3}^{'}z_{2}+a_{3}^{'}z_{2}+a_{3}^{'}z_{2}+a_{3}^{'}z_{2}+a_{3}^{'}z_{2}+a_{3}^{'}z_{2}+a_{3}^{'}z_{2}+a_{3}^{'}z_{2}+a_{3}^{'}z_{2}+a_{3}^{'}z_{2}+a_{3}^{'}z_{2}+a_{3}^{'}z_{2}+a_{3}^{'}z_{2}+a_{3}^{'}z_{2}+a_{3}^{'}z_{2}+a_{3}^{'}z_{2}+a_{3}^{'}z_{2}+a_{3}^{'}z_{2}+a_{3}^{'}z_{2}+a_{3}^{'}z_{2}+a_{3}^{'}z_{2}+a_{3}^{'}z_{2}+a_{3}^{'}z_{2}+a_{3}^{'}z_{2}+a_{3}^{'}z_{2}+a_{3}^{'}z_{2}+a_{3}^{'}z_{2}+a_{3}^{'}z_{2}+a_{3}^{'}z_{2}+a_{3}^{'}z_{2}+a_{3}^{'}z_{2}+a_{3}^{'}z_{2}+a_{3}^{'}z_{2}+a_{3}^{'}z_{2}+a_{3}^{'}z_{2}+a_{3}^{'}z_{2}+a_{3}^{'}z_{2}+a_{3}^{'}z_{2}+a_{3}^{'}z_{2}+a_{3}^{'}z_{2}+a_{3}^{'}z_{2}+a_{3}^{'}z_{2}+a_{3}^{'}z_{2}+a_{3}^{'}z_{2}+a_{3}^{'}z_{2}+a_{3}^{'}z_{2}+a_{3}^{'}z_{2}+a_{3}^{'}z_{2}+a_{3}^{'}z_{2}+a_{3}^{'}z_{2}$ $+ a_{2}^{'} z_{2} + a_{3}^{'} z_{3} + dz_{1} = (ba_{2}(m) + ca_{2}^{'}) z_{2} + (ba_{3}(m) + ca_{3}^{'}) z_{3} = u(m) \in \mathbb{N}_{23},$ with $\mathit{h}_{\mathfrak{p}}^{M}\left(\mathit{u}\left(\mathit{m}\right)\right) \geq \inf\left(\mathit{m}\,,\,\mu'\left(\mathfrak{p}\right) + \mathit{m}_{1}\right)$ and thus $\mathit{h}_{1}\left(\mathfrak{p}\right) \geq \inf\left(\mu\left(\mathfrak{p}\right)\,,\,\mu'\left(\mathfrak{p}\right),\,\mu'\left(\mathfrak{p}\right)\right)$ $\mu'(\mathfrak{p})+m_1$). The lemma is proved if $\mu'(\mathfrak{p})+m_1\geq \mu(\mathfrak{p})$. It remains to consider the case where $\mu'(\mathfrak{p}) + m_1 < \mu(\mathfrak{p})$ and to show that $h_1(\mathfrak{p}) \leq \mu'(\mathfrak{p}) + m_1$. Suppose, on the contrary, that there exists $bz_2+cz_3\in \mathbb{N}_{23}$ such that $v_{\mathfrak{p}}(b)=v_{\mathfrak{p}}(c)=$ o and $h^{\mathbb{M}}_{\mathfrak{p}}(bz_2+cz_3)=\mu'(\mathfrak{p})+m_1+1$. Then, by Lemma 2.3, we can find $k\in \mathbb{K}$, such that $v_{\mathfrak{p}}(k)=-\mu'(\mathfrak{p})-m_1-1$ and $v_{\mathfrak{q}}(k)\geq 0$ for $\mathfrak{q}\neq \mathfrak{p}$, and $d,d',n_1,n_2,n_3\in \mathbb{A}$ satisfying $k(bz_2+cz_3)=\mathrm{d}y(m)+d'y'+n_1z_1+n_2z_2+n_3z_3$, where $m=\mu'(\mathfrak{p})+m_1+1$. This means $\mathrm{d}t(m)\,a_1(m)+d'\,t'\,a_1'+n_1=0$, $\mathrm{d}t(m)\,a_2(m)+d'\,t'\,a_2'+n_2=kb$ and $\mathrm{d}t(m)\,a_3(m)+d'\,t'\,a_3'+n_3=kc$. But, the first equality inplies $v_{\mathfrak{p}}(d)>0$, while each of the last two implies $v_{\mathfrak{p}}(d)=0$! - 2.5. COROLLARY. If $h_i(\mathfrak{p}) < \mu(\mathfrak{p})$ for all $i = \mathfrak{l}$, 2, 3, then for all $\{j,k\} \subset \{\mathfrak{l}$, 2, 3}, $w_{\mathfrak{p}}(H \cap N_{jk}^0)$ is independent of the choice of H, provided $w(H) = \mu$. - 2.6. DEFINITION. We shall use the term adele, in a restricted sense, to designate the elements of the product ring $\mathscr{A} = \prod_{\mathfrak{p} \in \mathscr{P}} \overline{A}_{\mathfrak{p}}$, where $\overline{A}_{\mathfrak{p}}$ is the completion of A with respect to the discrete valuation $v_{\mathfrak{p}}$. We shall identify the element a of A with the adele $(a(\mathfrak{p}))$ defined by letting $a(\mathfrak{p}) = a$ for all $\mathfrak{p} \in \mathscr{P}$. For any $\mathfrak{p} \in \mathscr{P}$ and $\mathfrak{q} \in \mathscr{A}$, we set $v_{\mathfrak{p}}(\mathfrak{q}) = v_{\mathfrak{p}}(\mathfrak{q}(\mathfrak{p}))$ and $v(\mathfrak{q}) : \mathfrak{p} \mapsto v_{\mathfrak{p}}(\mathfrak{q})$. Let μ be a superdivisor and let $(\eta_1, \eta_2, \eta_3), (\eta_1', \eta_2', \eta_3') \in \mathscr{A}^3$ such that for all $\mathfrak{p} \in \mathscr{P}$, $$\inf_{\substack{i,j \in \{1,2,3\}\\i \neq j}} v_{\mathfrak{p}} \left(\eta_i \, \eta_j \right) = \inf_{\substack{i,j \in \{1,2,3\}\\i \neq j}} v_{\mathfrak{p}} \left(\eta_i' \, \eta_j' \right) = o.$$ We shall say that (η_1, η_2, η_3) and $(\eta_1', \eta_2', \eta_3')$ are μ -equivalent (in symbol $(\eta_1, \eta_2, \eta_3) \sim_{\mu} (\eta_1', \eta_2', \eta_3')$ if - (I) $v(\eta_i) = v(\eta'_i)$, i = 1, 2, 3 and - (2) $\mu \mid v (\eta_i \eta'_j \eta_j \eta'_i), i, j = 1, 2, 3, i \neq j.$ - 2.7. Lemma. (a) Let $z_i(\mathfrak{p})$ be defined as in Lemma 2.1. and let H be a submodule of M^0 of rank at most 1. Then, there exists $(\eta_1, n_2, \eta_3) \in \mathscr{A}^3$ such that - (i) $v(\eta_i) = m_i(H)$, for i = 1, 2, 3; - (ii) if $w_{\mathfrak{p}}(H) \neq 0$, if $m \in \mathbb{N}$ is such that $m \leq w_{\mathfrak{p}}(H)$ and if $a_1, a_2, a_3 \in A$ satisfy $v_{\mathfrak{p}}(a_i) = \inf (m_i(H, \mathfrak{p}), m)$, then $h_{\mathfrak{p}}^M(a_1 z_1(\mathfrak{p}) + a_2 z_2(\mathfrak{p}) + a_3 z_3(\mathfrak{p})) \geq m$ if and only if $v_{\mathfrak{p}}(a_i \eta_j a_j \eta_i) \geq m$, for all $i, j = 1, 2, 3, i \neq j$. - (b) A triple $(\eta_1^0, \eta_2^0, \eta_3^0)$ satisfies (i) and (ii) if and only if $(\eta_1^0, \eta_2^0, \eta_3^0) \underset{w(H)}{\sim} (\eta_1, \eta_2, \eta_3)$. Clearly, we can suppose immediately that r(H)=1. Consider a fixed \mathfrak{p} such that $w_{\mathfrak{p}}(H)\neq o$. It suffices to show the existence of $\eta_{1}(\mathfrak{p})$, $\eta_{2}(\mathfrak{p})$, $\eta_{3}(\mathfrak{p})\in \bar{A}_{\mathfrak{p}}$ satisfying conditions (i) and (ii). As before, suppose $m_2=m_3=0$. The existence of η_1 , η_2 , η_3 is obvious when $w_{\mathfrak{p}}(H)<\infty$ and results from [3], Lemma 3, when $w_{\mathfrak{p}}(H)=m_1=\infty$. Now suppose $w_{\mathfrak{p}}(H)=\infty$ and $m_1<\infty$. Consider the sequences $(a_1(m))$, $(a_2(m))$ and $(a_3(m))$ of elements of A, with $m\geq m_1$, as defined in Lemma 2.1. We thus have $v_{\mathfrak{p}}(a_1(m))=m_1$ and $v_{\mathfrak{p}}(a_2(m))=v_{\mathfrak{p}}(a_3(m))=0$. The ideals $a_3(m)$ A and \mathfrak{p}^m being comaximal, there exist $c_m\in A-\mathfrak{p}$ and $d_m\in \mathfrak{p}^m$ satisfying $c_m a_3(m)+d_m=1$. Let $b_i(m)=c_m a_i(m)$. Then $h_{\mathfrak{p}}^M(c_m(a_1(m)z_1++a_2(m)z_2+a_3(m)z_3)+d_m z_3)=h_{\mathfrak{p}}^M(b_1(m)z_1+b_2(m)z_2+z_3)\geq m$. Similarly, we have $h_{\mathfrak{p}}^M(b_1(m+1)z_1+b_2(m+1)z_2+z_3)\geq m+1$, and applying again Lemma 2.1., we obtain $v_{\mathfrak{p}}(b_1(m+1)-b_1(m))\geq m$ and $v_{\mathfrak{p}}(b_2(m+1)-b_2(m))\geq m$. The sequences $(b_1(m))$ and $(b_2(m))$ are thus converging in \bar{A}_p , say to η_1 and η_2 . Now, take $\eta_3=1$. It is readily checked that η_1 , η_2 , η_3 satisfy (i) and (ii). Part (b) is the result of an easy calculation which we omit. 2.7. COROLLARY. Let $M^0 = H \oplus H'$, with $w(H) = \mu$ and $w(H') = \mu'$. Let (η_1, η_2, η_3) , $(\eta_1', \eta_2', \eta_3') \in \mathcal{A}^3$ correspond respectively to H and H'. Then, if $\mu'(\mathfrak{p}) \neq 0$, we have $v_{\mathfrak{p}}(\eta_i \eta_i' - \eta_j \eta_j') = 0$ for all $i, j = 1, 2, 3, i \neq j$. This results immediately from the previous lemma and Cor. 2.2. 2.9. DEFINITION. Let Q and Q' be respectively a μ -class and a μ' -class of elements of \mathscr{A}^3 . We shall say that Q and Q' are compatible if, whenever we have $\mu'(\mathfrak{p}) \neq 0$, then $v_{\mathfrak{p}}(\eta_i \eta_i' - \eta_j \eta_j') = 0$ for all $(\eta_1, \eta_2, \eta_3) \in Q$, $(\eta_1', \eta_2', \eta_3') \in Q'$ and $\{i, j\} \subset \{1, 2, 3\}$. For each decomposition $H\oplus H'$ of M^0 , Corollary 2.8. ensures the existence of a pair $(Q\ ,Q')$ consisting of a μ -class and a μ' -class which are compatible. We shall now investigate the relations between two pairs $(Q\ ,Q')$ and $(\overline{Q}\ ,\overline{Q}')$ associated with distinct decompositions $H\oplus H'$ and $\overline{H}\oplus \overline{H}'$ of M^0 . 2.10. LEMMA. Let $H \oplus H'$ and $\overline{H} \oplus \overline{H'}$ be two decompositions of M^0 , with $w(H) = w(\overline{H}) = \mu$ and $w(H') = w(\overline{H}') = \mu'$. Let Q and \overline{Q} (resp. Q' and \overline{Q}') be the corresponding μ -classes (resp. μ' -classes). Then, for every $(\eta_1, \eta_2, \eta_3) \in Q$ and $(\eta_1', \eta_2', \eta_3') \in Q'$, there exists a matrix $\begin{pmatrix} \alpha & \alpha' \\ \beta & \beta' \end{pmatrix}$ with coefficients in $\mathcal A$ and such that - (I) $(\alpha \eta_1 + \alpha' \eta_1', \alpha \eta_2 + \alpha' \eta_2', \alpha \eta_3 + \alpha' \eta_3') \in \overline{Q}$. - (2) $(\beta \eta_1 + \beta' \eta_1', \beta \eta_2 + \beta' \eta_2', \beta \eta_3 + \beta' \eta_3') \in \overline{Q}'$ - (3) $v(\alpha\beta' \alpha'\beta) = 1$, - (4) $\mu \mid \mu' (v (\alpha'))$. Let $\mathfrak p$ be a fixed non-zero prime ideal. $\begin{array}{ll} \textit{Case I: } \mu'\left(\mathfrak{p}\right) \leq \mu\left(\mathfrak{p}\right) < \infty. \quad \text{Let } \eta_{i}\left(\mathfrak{p}\right) = a_{i} + \xi_{i}, \text{ with } v_{\mathfrak{p}}\left(\xi_{i}\right) \geq \mu\left(\mathfrak{p}\right), \\ \text{and let } \eta_{i}'(\mathfrak{p}) = a_{i}' + \xi_{i}', \text{ with } v_{\mathfrak{p}}(\xi_{i}') \geq \mu'\left(\mathfrak{p}\right), \text{ where } a_{i}, a_{i}' \in A. \quad \text{Set } y\left(\mathfrak{p}, \mu\left(\mathfrak{p}\right)\right) = \\ = y = t\left(a_{1}\,z_{1} + a_{2}\,z_{2} + a_{3}\,z_{3}\right) \text{ and } y'\left(\mathfrak{p}, \mu'\left(\mathfrak{p}\right)\right) = y' = t'\left(a_{1}'\,z_{1} + a_{2}'\,z_{2} + a_{3}'\,z_{3}\right). \\ \text{Choose } (\bar{a}_{1}, \bar{a}_{2}, \bar{a}_{3}) \in \overline{\mathbb{Q}} \text{ and } (\bar{a}_{1}', \bar{a}_{2}', \bar{a}_{3}') \in \overline{\mathbb{Q}}' \text{ with } \bar{a}_{i}, \bar{a}_{i}' \in A. \quad \text{Set } \bar{y}\left(\mathfrak{p}, \mu\left(\mathfrak{p}\right)\right) = \\ = \bar{y} = t\left(\bar{a}_{1}\,z_{1} + \bar{a}_{2}\,z_{2} + \bar{a}_{3}\,z_{3}\right) \text{ and } \bar{y}'\left(\mathfrak{p}, \mu'\left(\mathfrak{p}\right)\right) = \bar{y}' = t'\left(\bar{a}_{1}'\,z_{1} + \bar{a}_{2}'\,z_{2} + \bar{a}_{3}'\,z_{3}\right). \end{array}$ There exist c, c', r_1 , r_2 , $r_3 \in A$ such that $\bar{y} = cy + c'y' + r_1 z_1 + r_2 z_2 + r_3 z_3$ and similarly, there exist d, d', s_1 , s_2 , $s_3 \in A$ such that $\bar{y}' = dt' t^{-1} y + d' y' + t + s_1 z_1 + s_2 z_2 + s_3 z_3$. Thus $\bar{a}_i = ca_i + c' t' t^{-1} a_i' + t^{-1} r_i$ and $\bar{a}_i' = da_i + t' d' a_i' + t'^{-1} s_i$. Let $\alpha(\mathfrak{p}) = c$, $\alpha'(\mathfrak{p}) = c' t' t^{-1}$, $\beta(\mathfrak{p}) = d$ and $\beta'(\mathfrak{p}) = d'$. Then $v_{\mathfrak{p}}(\alpha'(\mathfrak{p})) \geq \mu(\mathfrak{p}) - \mu'(\mathfrak{p})$ and $v_{\mathfrak{p}}((\alpha(\mathfrak{p}) a_i + \alpha'(\mathfrak{p}) a_i') \bar{a}_j - (\alpha(\mathfrak{p}) a_j + t'(\mathfrak{p}) a_j') \bar{a}_i) \geq \mu(\mathfrak{p})$ and $v_{\mathfrak{p}}((\beta(\mathfrak{p}) a_i + \beta'(\mathfrak{p}) a_i') \bar{a}_j - (\beta(\mathfrak{p}) a_j + \beta'(\mathfrak{p}) a_j') \bar{a}_i) \geq \mu'(\mathfrak{p})$. These relations imply $v_{\mathfrak{p}}((\alpha(\mathfrak{p}) \gamma_i(\mathfrak{p}) + \alpha'(\mathfrak{p}) \gamma_i'(\mathfrak{p})) \bar{a}_j - (\alpha(\mathfrak{p}) \gamma_j(\mathfrak{p}) + t'(\mathfrak{p}) \gamma_j'(\mathfrak{p})) \bar{a}_i) \geq \mu(\mathfrak{p})$ and $v_{\mathfrak{p}}((\beta(\mathfrak{p}) \gamma_i(\mathfrak{p}) + \beta'(\mathfrak{p}) \gamma_i'(\mathfrak{p})) \bar{a}_j - (\beta(\mathfrak{p}) \gamma_j(\mathfrak{p}) + t'(\mathfrak{p}) \gamma_j'(\mathfrak{p})) \bar{a}_i) \geq \mu(\mathfrak{p})$, which proves (1) and (2) at \mathfrak{p} . In addition, the relations giving \bar{y} and \bar{y}' in terms of y and y' must be invertible and therefore $v_{\mathfrak{p}}\left(cd'-c'dt't^{-1}\right)=v_{\mathfrak{p}}\left(\alpha\left(\mathfrak{p}\right)\beta'\left(\mathfrak{p}\right)-\alpha'\left(\mathfrak{p}\right)\left(\beta\right)\left(\mathfrak{p}\right)\right)=0.$ Case 2: $\mu'(\mathfrak{p}) < \infty$ and $\mu(\mathfrak{p}) = \infty$. Then $H_{(\mathfrak{p})}$ is the largest divisible submodule of $M_{(\mathfrak{p})}^0$ and therefore $\overline{H}_{(\mathfrak{p})} = H_{(\mathfrak{p})}$. We can thus choose $\alpha(\mathfrak{p}) = \mathfrak{l}$ and $\alpha'(\mathfrak{p}) = 0$. The existence of $\beta(\mathfrak{p})$ and $\beta'(\mathfrak{p})$ is proved as before. Case 3: $\mu'(\mathfrak{p}) = \mu(\mathfrak{p}) = \infty$. Let $(a_i(m))$ and $(a_i'(m))$ be sequences of elements of A defined as in Lemma 2.1. and converging respectively to $\eta_i(\mathfrak{p})$ and $\eta_i'(\mathfrak{p})$. On the other hand, let $(\overline{\eta}_1, \overline{\eta}_2, \overline{\eta}_3) \in \overline{Q}$ and $(\overline{\eta}_1', \overline{\eta}_2', \overline{\eta}_3') \in \overline{Q}'$. Let $(\bar{a}_i(m))$ and $(\bar{a}_i'(m))$ be sequences of elements of A converging respectively to $\overline{\eta}_i(\mathfrak{p})$ and $\overline{\eta}_i'(\mathfrak{p})$. Proceeding as in Case 1, we can find for every $m \in \mathbb{N}$ elements c_m , c_m' , d_m , d_m' of A such that $\inf (v_{\mathfrak{p}}(c_m), v_{\mathfrak{p}}(c_m')) = \inf (v_{\mathfrak{p}}(d_m), v_{\mathfrak{p}}(c_m')) = \inf (v_{\mathfrak{p}}(d_m), v_{\mathfrak{p}}(c_m'))$ $v_{\mathfrak{p}}(d'_{m})) = 0$, $v_{\mathfrak{p}}((c_{m} a_{i}(m) + c'_{m} a'_{i}(m)) \bar{a}_{j}(m) - (c_{m} a_{j}(m) + c'_{m} a'_{j}(m)) \bar{a}_{i}(m)) \ge m$ and $v_{\mathfrak{p}}\left(\left(d_{m} \, a_{i}\left(m\right) + d_{m}^{'} \, a_{i}^{'}\left(m\right)\right) \, \bar{a}_{j}\left(m\right) - \left(d_{m} \, a_{j}\left(m\right) + d_{m}^{'} \, a_{j}^{'}\left(m\right)\right) \, \bar{a}_{i}\left(m\right)\right) \geq m$. Moreover, taking into account Cor. 2.2., it is easy to prove that $\inf\left(v_{\mathfrak{p}}\left(c_{m}\right),v_{\mathfrak{p}}\left(d_{m}\right)\right)=\inf\left(v_{\mathfrak{p}}\left(c_{m}^{'}\right),v_{\mathfrak{p}}\left(d_{m}^{'}\right)\right)=\text{o.}\quad\text{Then, assuming for example}$ that $v_{\mathfrak{p}}\left(c_{m}\right)=v_{\mathfrak{p}}\left(d_{m}'\right)=0$, we still have $v_{\mathfrak{p}}\left(c_{m+k}\right)=v_{\mathfrak{p}}\left(d_{m+k}'\right)=0$ for every $k \in \mathbb{N}$, and it is readily checked that c_m and d_m' can be taken equal to 1 for all $m \in \mathbf{N}$. We now have $v_{\mathfrak{p}}\left(\left(a_{i}\left(m\right)+c'_{m}\,a'_{i}\left(m\right)\right)\,\bar{a}_{j}\left(m\right)-\left(a_{j}\left(m\right)+a_{j}\left(m\right)\right)\,\bar{a}_{j}\left(m\right)\right)$ $+ \ c_{m}^{'} \ a_{j}^{'} \left(m\right)) \ \bar{a}_{i} \left(m\right)) \geq m \ \text{ and clearly also } \ v_{\mathfrak{p}} \left(\left(a_{i} \left(m\right) + c_{m+1}^{'} \ a_{i}^{'} \left(m\right)\right) \ \bar{a}_{j} \left(m\right) - c_{m+1}^{'} \ a_{i}^{'} \left(m\right)\right) = 0$ $-(a_j(m)+c'_{m+1}a'_j(m))\bar{a}_i(m)) \ge m$. These relations imply $v_{\mathfrak{p}}(c'_{m+1}-c'_m) \ge m$, i.e. the sequence (c'_m) has a limit $\alpha'(\mathfrak{p})$ in $\bar{\mathbf{A}}_{\mathfrak{p}}$. Similarly, the sequence (d_m) converges to an element $\beta(\mathfrak{p})$ of $\bar{A}_{\mathfrak{p}}$ and, choosing $\alpha(\mathfrak{p}) = \beta'(\mathfrak{p}) = 1$, we obtain $$(\alpha (\mathfrak{p}) \eta_{i} (\mathfrak{p}) + \alpha' (\mathfrak{p}) \eta_{i}' (\mathfrak{p})) \overline{\eta}_{i} (\mathfrak{p}) = (\alpha (\mathfrak{p}) \eta_{j} (\mathfrak{p}) + \alpha' (\mathfrak{p}) \eta_{j}' (\mathfrak{p})) \overline{\eta}_{i} (\mathfrak{p}),$$ $$(\beta (\mathfrak{p}) \eta_{i} (\mathfrak{p}) + \beta' (\mathfrak{p}) \eta_{i}' (\mathfrak{p})) \overline{\eta}_{j} (\mathfrak{p}) = (\beta (\mathfrak{p}) \eta_{j} (\mathfrak{p}) + \beta' (\mathfrak{p}) \eta_{j}' (\mathfrak{p})) \overline{\eta}_{i} (\mathfrak{p}).$$ 2.11. DEFINITION. We shall say that the pairs (Q, Q') and $(\overline{Q}, \overline{Q'})$ are equivalent if, for every $(\eta_1, \eta_2, \eta_3) \in Q$ and $(\eta_1', \eta_2', \eta_3') \in Q'$, there exists a matrix $\begin{pmatrix} \alpha & \alpha' \\ \beta & \beta' \end{pmatrix}$ with coefficients in $\mathscr A$ and satisfying conditions (1), (2), (3) and (4) of Lemma 2.10. It is trivial to check that this defines an equivalence relation. With (M, x_1, x_2, x_3) are thus associated the superdivisors μ_1 , μ_2 , μ_3 , μ and μ' , and a class χ of pairs (Q, Q'). We shall write $inv(M, x_1, x_2, x_3) = (\mu_1, \mu_2, \mu_3, \mu, \mu', \chi)$. In view of Lemmas 2.3. and 2.7., the following theorem requires no further proof: 2.12. THEOREM. Let x_1 , x_2 , x_3 be independent elements of E. Let μ_1 , μ_2 , μ_3 , μ and μ' be superdivisors satisfying conditions (C_1) , (C_2) and (C_3) and let χ be a class of pairs (Q,Q'). There exists one and only one rank three A-submodule M of E, containing x_1 , x_2 , x_3 and such that inv $(M, x_1, x_2, x_3) = (\mu_1, \mu_2, \mu_3, \mu, \mu', \chi)$. ## REFERENCES - [1] J.W.S. CASSELS and A. FRÖHLICH (1967) Algebraic number theory, Academic Press. - [2] L. DE MUNTER-KUYL (1974) Primary decomposition and rank of some quotients of torsion-free modules over a Dedekind domain-Dirasat (Univ. of Jordan), 1 (1-2), 7-16. - [3] L. DE MUNTER-KUYL (1974) Beaumont-Pierce invariants for rank two modules over a Dedekind domain-Dirasat (Univ. of Jordan), 1, (1-2), 43-49.