ATTI ACCADEMIA NAZIONALE DEI LINCEI

CLASSE SCIENZE FISICHE MATEMATICHE NATURALI

RENDICONTI

LUCIE DE MUNTER-KUYL

Some invariants for rank three torsion-free modules
over a Dedekind domain

Atti della Accademia Nazionale dei Lincei. Classe di Scienze Fisiche,
Matematiche e Naturali. Rendiconti, Serie 8, Vol. 59 (1975), n.5, p. 349-356.

Accademia Nazionale dei Lincei

<http://www.bdim.eu/item?id=RLINA_1975_8_59_5_349_0>

L’utilizzo e la stampa di questo documento digitale & consentito liberamente per motivi di
ricerca e studio. Non é consentito 1'utilizzo dello stesso per motivi commerciali. Tutte le
copie di questo documento devono riportare questo avvertimento.

Articolo digitalizzato nel quadro del programma
bdim (Biblioteca Digitale Italiana di Matematica)
SIMAI & UMI
http://www.bdim.eu/


http://www.bdim.eu/item?id=RLINA_1975_8_59_5_349_0
http://www.bdim.eu/

Atti della Accademia Nazionale dei Lincei. Classe di Scienze Fisiche, Matematiche e
Naturali. Rendiconti, Accademia Nazionale dei Lincei, 1975.



LuciE DE MUNTER-KUYL, Some invariants Jor rank, ecc. 340

Algebra. — Some invariants for rank three torsion-free modules
over a Dedekind domain. Nota di Lucie DE MuxTER-KUVL, presen-
tata @ dal Corrisp. G. ZaPpa.

RIASSUNTO. — Viene associato un sistema completo di invarianti ad un modulo M
di rango tre libero da torsione sopra un dominio di Dedekind e ad una terna di elementi indi-
pendenti di M. I metodi usati sono simili a quelli della teoria dei gruppi abeliani.

1. INTRODUCTION

In [3], we have associated a complete system of invariants with the
triple (M, x;, xp) consisting of a rank two torsion-free module M and two
independent elements of M. The purpose of this paper is to extend our
results to modules of rank three.

Let A be a Dedekind domain, K its field of fractions, 2 the set of non-zero
prime ideals of A, A, the local ring of A at the non-zero prime ideal p, and
7 a uniformizing element of A.

An (integral) superdivisor of A is defined to be a mapping u from £ to
N =NU{o, c0}. Multiplication of superdivisors is defined by (uu’) (p) =
= @ (p) + p' (p), with the convention that # 4 co = oo, ¥z € N. Integral
ideals of A are identified with the superdivisor corresponding to their prime
decomposition and multiplicative terminology is carried over from ideals to
superdivisors. In particular, we write p|p’, when y divides p/, and we denote
by [w, u'] the GCD of two arbitrary superdivisors w and p'.

In accordance with the group theoretical terminology, we define a torsion
A-module T to be p-primary if every element of T has order a power of p,
ie. if the submodule zero is p-primary in T, in the usual sense.

For £€ NU {o}, we denote by A (p*) the p-primary A-module A/p* and
by A (p™) the p-primary component of the torsion A-module K/A. A p-primary
A-module T satisfying the descending chain condition on submodules is the
direct sum of a finite number of submodules of the form A (y*), 2 e NU {oo}.
The number of direct summands is independent of the decomposition of T.
It is called the rank of T and is denoted by »(T). If T is any torsion
A-module whose p-primary components T satisfy the d.c.c., we set
r(T) = sug 7 (T) and still call it the rank of T. When » (T) < 1, we thus

be

have T, ~ A (w, (T)), where w, (T) €N. We denote by w (T) the super-
divisor defined by = (T) (p) = 2, (T).

Unless otherwise explicitly mentioned, we further use the terminology
and notations of [1], Chap. L.

(*) Nella seduta del 15 novembre 1975.
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2. INVARIANTS

Let E be a three-dimensional vector space over K. Let M be a rank three
A-submodule of E and let x,, x,, x3 be independent elements of M.

For any x in M, let %y (x) = sup {# €e NU {o} ; =% x € M,} and consider
the superdivisor 2 (M ,x):p~>/y (x). In particular, set w; =74 M ,x),
i=1,2,3.

Let N; be the pure A-submodule of M generated by x;, ¢=1, 2, 3, and
set M/N; + N, + Ny, = M°. We have proved in [2] that M° is a torsion
module and that M%, is of the form A (p**) ® A (*'®), with u (v), ' () €N,
and requiring u' (p) < w (p), we have thus determined two superdivisors w
and w' which characterize the structure of M’ and were proved to satisfy:

€y w'le;
(Cy) if there exists 7 such that y; (p) = oo, then p'(p) = o;

(Cg) if there exist 7z and j, ¢ # 7, such that y; (p) = w@; (p) = oo, then
w) = @ =o

Let N;; be the pure A-submodule of M generated by x; and x;, where
i,7j=1,2,3 and 7% 7. Then Ny/N; +N; is a torsion module of rank
at most one (see [2]). Set /4 =w (Ny/N; +N,), where 2=1,2,3 and
{,7,#=1{1,2,3}. Denote by f the canonical homomorphism of M
onto M’ and let NY; = £ (N;)).

For 7 =1, 2, 3, denote by M; the A-submodule of E consisting of the
elements 7x; for which there exist s,z€ K such that rx; + sx; + #x; € M,
with {z,j,42}={1,2,3}. For any subset {7, 7} of {1,2,3}, denote
by M;; the A-submodule of E consisting of the elements 7x; + sx; for
which there exists #€ K such that »v; + sx; 4 #x; belongs to M, with
kE#1,].

Finally, if H is a submodule of M® of rank at most 1, set 7 (H ,p) =
—w, NNy, with i=1,2,3 and {7,/,4}={1,2,3}, and let
m; (H) 2 p—>m; (H , p).

2.1. LEMMA. LZLet z;(p) =0, if p(p) =00 and z () = s () x;, if
w; (0) < oo, where s;(p) €K satisfies vy (s; (n)) = — w3 (n) and vq (s; (b)) = 0,
Jor qa# 0, and where ¢ =1, 2, 3.
(@) If H is a rank 1 submodule of M° and if o <m < w, (H), there
exist @y, ay, az3 €A such that v, (@) = inf (m;(H ,p) , m) and Iy (a2 (p) +
+ @y 23 (p) + azz3 (0) = m. ' -
(b) If by,6,,065 €A are such that v, (b;) = vy (;), then Iy (By 2y (0) +
+ byz (1) + byzs (D) =m if and only if vy (a;b;j—ajb)=m, for all
{7, 73C{r,2,3}.

To abbreviate our notations, we set z (p) =2 and = (H,p) =m;.
Since » (H) = 1, there exists at most one index 7 such that »; # o. Suppose
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my = my = mg = 0. Then, by virtue of [2], Prop. 5, Cor. 1, we have
e (), g () < co. If yy (p) = oo, the lemma results immediately from [3],
Lemma 1, applied to the submodule N,3. Suppose thus p; (p) <oco. If
o<m<w,(H), let Z be an element of H whose order ideal is p™ and
let 2=rm2 +rz+rsz€f (3. Then v, () >—m, where equality
holds for at least two values of 7 since otherwise the order ideal
of Z would contain p™1. We now show that z can be chosen such that
vy, (;) = inf (m;—m , 0).

If wm,>m, we have 2 € HNNy; and ™' (8) CN, 4 N,,. Then, for any
z €f7 (), we have 7,(r))>o0 and z can clearly be chosen such that
o (1) = o.

Now let my<m. Let z=r2 +rz Fryrs€f (5 and write
v, (1) = & —m. Therefore y""zCHNNJ; and hence # <. If we had
& < m,, there would exist 7 € H N N33 of order p*! and « € A such that
y=af and vy, (@) =m—~r—1. On the other hand, we would have
az € Ny + Nyg, which implies v, (a7y) > 0 and v, (&) = m — k. Thus 42 = m,.

Now, if ¢ €A 1is such that wz,(¢c) =m and o4 (c) = sup (0, —v, (7)),
— vy (ry) , — vy (7)), for q # p, then the a; =cr;, ¢ =1, 2, 3, satisfy part (a)
of the lemma.

To prove (), suppose first that v, (a; 6;— a;6;) > m, for all {7,;}C
C{1,2,3}. Then, from [3], Lemmas 1 and 2, applied to the module M,
we know that if » € K is such that v, (#*) = —m and v, (r) > o0, for q#y,
there exist s € K and d, , &5 € A such that » (6,25 + b525) = s (@2 2, + @3 25) +
+dy 2, + ds 25, With v, (s) > —m and vy (s) = o, if q#p. Thus 76, = sa, +d,
and 763 = sa; +ds. Set dy =7rb,— sa,. Then s (a;b,— a,b5) =d3 03— d b,
and thus &, € A. Therefore, » (b2 + by 2, + b325) = s (@, 8y + a5 25 + a3 25) +
+dy 2 + dy 2, + ds 23 belongs to M.

Conversely, let /134 (by2y + by 25 + b325) =m. There exist dy,ds,d3 €A
and 7, s € K such that z, (), v, (s)=—m ,v,(»),v5(s) =0, if q#p, and
¥ (byzy F byzy + bgz5) = s (a2 + ay 2z + aszs) +dy 2 + dy 2z + dszz. This,
together with 2, =mg=o0, implies v,(a, 03— azby)=m (see [3]). We
thus have o, (@38 — @y by) = /y' (@3 by — a1 b3) 2,) =iy (by 2+ by 2+ by 25) a5 —
— (@12 + a3 2, + a5 25) b3 + (@ b3 — a3 by) 2,) = m. Similarly, we would obtain
vy (a3 by — ay &) = .

2.2. 'COROLLARY. LZLet M°=H @ H', with w (H)=p. and w (H') =y,
For all o<m<u(p) and o<m' <y (p), choose a;=a;(p,m) and
a; = a; (v, m) in A, corresponding respectively to H and H', and satisfying
Lemma 2.1. Then v, (a; a;— a;a;) = o, for all {i,j}C{1,2,3}.

This results from the fact that HOH' = o.

If o<m=u.(p) (resp. o<m=p/(n)), st y (v, 7m) = 1(p,m) (2 (p,m) 2, (0) +
Ty (p,m) 25 (0) 45 (p,m) 25 () (resp. ¥ (p,om) = 2 (p, ) (aa (p,72) 2 () +
+aa(p,7) 2 () + a3 (p,m) 25 (9), with 0y (¢, 7)) = —m and (¢ (p,m)) = 0,
for q#p. Thus y (p,m) €/ (H) (resp. ' (v, ) €/~ (H)).
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If p;(p) =oo, then for each €N, let #(p,#) €K be such that
% (% (0, 7)) =-—nand 254 (p, m) =0 for a#£p. Sety; (v, 7) =4, %) x,
i=1,2,3.

2.3. LEMMA. Let wy, s, g, o and p' be the superdivisors associated
with (M, %y, %y, %5). Let G be the set consisting of the x;'s, the z W)'s for all
p such that y; (p) < oo, the y;(p,n)'s for all p such that p;(p) = oo and all
n €N, the y (p,m)'s for all v such that p.(p) # o and all m €N such that
m < (v) and, finally, the y' (v ,m)'s for all p such that u' (p) #0 and all
m €N such that m < p' (v). Then G is a generating system of M.

Indeed, let N be the submodule of M generated by G. Then
J(N) = f (M) = M, since the images of the y (p,m)'s and the y'(p,m)’s
in M’ generate M°. Therefore, M CN + ker £. But, the x;s, z;(p) ’s and
¥ (0, »)’s generate ker f and thus we have ker f/CN and M = N.

2.4. LEMMA. Zet H be a rank 1 submodule of M® such that w (H) = p.
Then hi = [u, w' m; (H)].

We must prove that w, (Nj) = inf (u (p), w' (b)) + 72 (H,p)), where
mi(H,p) =w,(H N Nj). This is obvious when p’ () =0 or when
w () =w (). Suppose thus o <y’ (p) <p(p) <oo, and suppose as
before that m > my, = my; =0, where m,; stands for m; (H,p). We
have immediately 4, (p) = %5 (b)) = u’' (p), and it remains to show that
7y (p) = inf (. (), p’' (p) + my). This equality is obvious if my = (p). Let
then 72, < p (p) and let 7 € N such that sup (m, , u’ (p)) <m < p (). The
submodule H is a direct summand of M® consider H’ such that M°— HeH’
and let y (p, ) and 3’ (p, ' (p)) be defined as in Lemma 2.3. To simplify
the notations, set y (p ,m) =y (m) = ¢ (m) (ay (m) 2, + a, (m) 2, + ag (m) 25)
and ¥ (b, W Q) =9 =1t (2 + a2 + a 23). By Corollary 2.2.,
my = vy (ay (m)) > o implies o, (¢;) = 0, i.e. at least one of the ideals
a, (m)A and a4 A is comaximal with p“®. Then, there exist 4 ,c,d €A
such that bay (m) + cay +d =o, with o,(8) =1, (a}) , v,(c) = m, and
vy (@) = p' (p) +m,. Therefore, 6 (a; () 2, + a, (m) 2, + a5 (m) 25) + ¢ (ay 2, +
+ @2, + ay2) + day = (bay (m) + cas) 2 + (bay (m) + ca) 24 — u () € Nog,
with 72y’ (u (m)) = inf (m , w' (p) +my) and thus % () = inf (& (), o’ (),
© (p) +72). The lemma is proved if uw (p) + 7, > (p). It remains to con-
sider the case where ' (p) + 72, < p (n) and to show that % (p) < u' () + ma.

Suppose, on the contrary, that there exists bz, -+ ¢z3 € Npg such that
v () =1y ()= 0 and &y (b2, + cz5) = (p) +m; + 1. Then, by Lemma 2.3,
we can find £ €K, such that v,(£) = — ' (p) —m, — 1 and v (£) =0 for q#p,
and &, d', ny,ny,n5 €A satisfying £(bz,+ cz3) = dy (m) +-d'y' + 1y 21+ 1 2, -+ 14 2,
where m = u' (p) + m, + 1. This means dz (m)ay (m) +d't' ay + n, = o,
dt (m) ay ) +d' ¢ ay + ny = kb and dz (m) az (m) +d' ¢ ay + ng = ke. But,
the first equality inplies v, (d) > o, while each of the last two implies
v, (d) = ol
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2.5. COROLLARY. If 2;(p) <@ (p) for all i =1 ;2 , 3, then for all
{/, £y C{1,2,3}, wy (HNON}) is independent of the choice of H, provided
w (H) = p.

2.6. DEFINITION. We shall use the term adele, in a restricted sense,
to designate the elements of the product ring o/ = [] A,, where A, is the
pe?

completion of A with respect to the discrete valuation z,. We shall identify
- the element a of A with the-adele (z (p)) defined by letting @ (p) = a for all
p€Z. For any p €2 and n €, we set v,(n) =7v,(n (p)) and v(n) : p — 7, (1).

Let p be a superdivisor and let (m;, v, 7s), (M1, M2, Ms) € Z° such that
for all p € 2,

. . ! I

inf oy (nim;) = inf gy (nim) =o.
i,j€{1,2,8} i,j€{1,2,3}

] i)

We shall say that (v, %, Ms) @#d (4, M, Ns) are p-equivalent (in symbol
! r r .
(1 » M2 , M) i (01, 2, mg)) if

(1) v()=v(n), i=1,2,3 and
(@) wlo@ing—mm), 1,7 =1,2,3,0#/.

2.7. LEMMA. (a) Let z;(p) be defined as in Lemma 2.1. and let H be
a submodule of M° of rank at most 1. Then, there exists (g, ny,7,) € A°
such that

(1) 'U(ni) = mi(H)’ Jori=1,2, 35

(i) f wy(H)#o0, if meN is such that m <w,(H) and if a;,a,,a;€A
satisfy v, (a)) = inf (m; (H ,p) , m), then hy (a2 (p) + a2 (p) + a3 25 (p) = m
if and only if vy (aym;—ajg)=m, for all i,j=1,2,3,7# ).

(b) A triple (ny,n9,n3) satisfies () and (i) if and only if
(2 s 72, 78) g (mn s e > ).

Clearly, we can suppose immediately that » (H) = 1. Consider a fixed
p such that w, (H) # o. It suffices to show the existence of =, (p), . (p),
ns (p) €A, satisfying conditions (i) and (ii).

As before, suppose m, = mg3 = 0. The existence of 7, , 7, 13 is obvious
when w2, (H) <oco and results from [3], Lemma 3, when w,(H) =, =co. Now
suppose w, (H) = oo and m,; < co. Consider the sequences (@, (%)) , (@, (7))
and (a3 (m)) of elements of A, with » > m,, as defined in Lemma 2.1.
We thus have o, (@, (m)) = m, and v, (a, (m)) = v, (a5 (m)) = 0. The ideals
as(m) A and p™ being comaximal, there exist ¢, € A—yp and 4, €p™ satis-
fying ¢, a3 (m) +d,, = 1. Let b; ) = ¢,, a; m). Then /zﬁ‘ (tm (@y (m) 2y +
+ ay () 2y + ay () 23) - dyy 25) = By (by () 21+ by (m) 23+ 23) = m. Similarly,
we have /' (b (m + 1) 2, + by (m + 1) 2, +25) = m + 1, and applying again
Lemma 2.1., we obtain o, (6, (m + 1) — by (m)) =>m and v, (6, (e + 1) —
— by (m))>m. The sequences (&, (m)) and (b, (m)) are thus converging
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in A,, say to n; and n,. Now, take Mg = 1. It is readily checked that
M, Na, Mg satisfy (i) and (if).
Part (b) is the result of an easy calculation which we omit.

2.7. COROLLARY. Let M°=H @ H', with w (H) = p and w HY =y .
Let (3, 0a 5 M3) > (g y M » M) € ° carrespond respectively to H and H'. Then,
of w' (p) # o, we have v, (n;n; — V)]n,)——ofor Al i,j=1,2,3,7#7.
This results immediately from the previous lemma and Cor. 2.2.

2.9. DEFINITION. Let Q and Q' be respectively a p-class and a

w'-class of elements of «°. We shall say that Q and Q' are compatible if,

Whenever we have p’(p) # o, then v, (v;n; — n; 7)7) = o for all (n;,75,75) €Q,
(n1, 75, me) €Q' and {7,7}C{1,2,3}.

For each decomposition H®H’ of M?, Corollary 2.8. ensures the existence
of a pair (Q, Q") consisting of a p-class and a u'-class which are compatible.
We shall now investigate the relations between two pairs (Q , Q') and ©Q,9)
associated with distinct decompositions H ® H' and 8 @ ' of M°.

2.10. LEMMA. Let HO H' and B ® B’ ée two decompositions of M°,
with w(H)y=w () =p and w( H)=w (A)=y'. Let Q and Q (resp. Q'
and Q') be the mrrespondmg w-classes (resp. w'-classes).  Then, for every
(e, NasMs) €Q and (ny,my,n3) €Q', there exists a matrix (g g,) with coef-
Joctents in A and such that

(1) (o + o' 1, amp + oy, omg + o' 73) €0.
(2) B +B m, B+ B m, By + 8 1) €,
(3) v(@p —a'B) =1,

@ plp (@@)).

Let p be a fixed non-zero prime ideal.

Case 1: p' (p) < u(p) < oo Let m;(p) = a; + &, with 2, ;) = u (),
and let 7 () = i +-;, with oy(&) > '), where ay, a{€A. Set y(y, () —
=y=tazn+tazn +4333> and J’ v, ) (p» =y =/ (4131 +ayz —{—¢z3z3)
Choose (4, ,d,, ;) €Q and (al,a;,as) €Q’ with a;,a; €A. Set 7w ()=
=J= (G5 + a2z ‘}“1323) and 7' (p, ' ) =7 =7¢ (6112'1 + a3 2 +4333)

There exist ¢, ¢/, 7, ,7,,7; €A such that 7= ey ey stz gz
and similarly, there exist &,d’, sy, 5,5 €A such that §'=d¢ 1y +-d'y +
512 + S22 + 5323, Thus G, =ca; -+ ¢t a; + t1r; and a; = da; +
+da;+¢1s;. Let a() =c,a (p)=c ¢, B(p) =d and B’ (p) =4
Then o (¢ () = 1 () — ' (1) and oy ((x(0) s + o () @) & — (o (1) a; +
o () @)) ) = 1w 3) and o, (B () @ +B'0) a) 2, — B () a3+ B'4) ) ) >
= ! (p).  These relations imply o, (o (1) 7 (0) + o' (8) s (9)) 5 — (2.6) 1, () +
o 00 (1)) 80> () and o, (8 0)m () +8' () 7 () @ — (B (1) 1y () +
+ B’ (1) m; (1) @) = u’ (), which proves (1) and (2) at p. In addition, the
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relations giving ¥ and 7’ in terms of ¥ and 3’ must be invertible and there-
fore vy (cd’ — " at’17) = vy (« (p) B' (1) — o' (p) (B) (p)) = o.

Case 2: ' (p) < oo and p(p) = co. Then Hy, is the largest divisible
submodule of Mg, and therefore Hy,y = H,. We can thus choose « () =1
and &’ (p) = o. The existence of B (p) and B’ (p) is proved as before.

Case 30 p/ (p) = p (p) = oo. Let (a;(m)) and (a; (m)) be sequences of
elements of A defined as in Lemma 2.1. and converging respectlvely to 7; (p)
and 7; (p). On the other hand, let (1> 72> 7s) €Q and (1,75, 7s) €O Let
(@; (m)) and (a@ (m)) be sequences of elements of A converging respectively
to m; (p) and 7 v), (p). Proceedmg as in Case 1, we can find for every m € N
elements ¢, , ¢y , dy , dyy O A such that inf (vp (em) 3 (cm)) = inf (v, (&),
Uy (@) =0, vy (e ; (m) —I— tm @i (M) d@; (m) — (¢ a, (m) + m a] (m)) G; (m)) = m
and v, (dy, a; (m) + dy, a; (1)) &; (m) — (d,, a; (m) + dy, aj (m)) a; (m)) = m.
Moreover, taking into account Cor. 2.2., it is easy to prove that
inf (v (cw) , vy (@) = inf (v (cn) , vy (dyy)) = 0. Then, assummg for example
that o, (¢,,) = v, (dp) = 0, we still have 2N (cm,%) = vy (dpsr) = 0 for every
%/ €N, and it is readily checked that ¢, and dm can be taken equal to 1
for all m €N.  We now have v, ((a;(m) + ¢y, @; (m)) a] (m) — (a; (m) +
+ p a; (M) a@ (m)) >m and clearly also o, ((¢; (7) + cipiq az (m)) a; (m) —
— (@; (m) + ey a; (m)) @; (m)) = m. These relations imply o, (Cps —cm) > m,
i.e. the sequence (¢,,) has a limit o' (p) in A,. Similarly, the sequence (d,,)
converges to an element B (p) of A, and, choosing «(p) =B’ (p) = 1, we
obtain

(e (o) mi () + & () na ) 75 () = (e () n; (p) + o’ () my () 7 (),
@@ @) +B @) E = @00 + B )0 @) 7 )

2.11. DEFINITION. We shall say that the pairs (Q,Q") and (Q,Q")
are equivalent if, for every (n;,7,, %) €Q and (71, ns , n3) €Q’, there exists

a matrix (g g:) with coefficients in ./ and satisfying conditions (1), (2), (3)

and (4) of Lemma 2.10. It is trivial to check that this defines an equivalence
relation.

With (M, %, %, , %3) are thus associated the superdivisors (, , s, g,
and p/, and a class y of pairs (Q,Q"). We shall write sno (M , %, , %, , %) =
= (f"'l y Mo :‘ Bs, s U',> X)'

In view of Lemmas 2.3. and 2.7., the following theorem requires no
further proof:

2.12. THEOREM. Let xy,%,,x3 be independent elements of E. Let
W, Ue, Us, W and W be superdivisors satisfying conditions (Cy), (Cy) and (Cy)
and let y be a class of pairs Q,Q"). There exists one and only one rank three
A-submodule M of E, containing x,,xy, %5 and such that inv (M, x,, %y, x3) =
= (U1, oy s, 1, 1, )
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