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RENDICONTI
DELLE SEDUTE

DELLA ACCADEMIA NAZIONALE DEI LINCEI

Classe di Scienze fisiche, matematiche e naturali

Seduta del i $  novembre I()J5 
Presiede i l  Presidente della Classe B e n ia m in o  S e g r e

SEZIONE I
(Matematica, meccanica, astronomia, geodesia e geofisica)

M a te m a tic a . — Lattice Measures, Realcompactness and Pseudo­
compactness. Nota I di M a r t i n  K e r n e r ,  presentata (*> dal Corrisp. 
G. Z a p p a .

R iassunto. Dati uno spazio X e un reticolo ££di sottoinsiemi, c’è una corrispondenza 
i : i tra le misure o — i ^ -reg o la ri e gli ^ -u ltra filtr i. Esaminiamo quali cambiamenti 
subisce la teoria quando le misure non vengono assunte regolari. Topologizziamo lo spazio 
delle misure ^ -reg o la ri e mostriamo che questo spazio topologico è T — i e compatto. Infine 
colleghiamo questo spazio a certi spazi topologici studiati da Alexandrof e Varadarajan.

i .  I n t r o d u c t io n

In  this paper we m ake use of the relationship between measures and 
ultrafilters to use analytic m achinery in a topological setting. This and sim ilar 
relationships, discussed by B achm an and Cohen [3], Frolik [6], Topsoe [10], 
Alo and Shapiro [2] and others, allow us to study properties of the associated 
m easure ra ther than  those of the ultrafilter. In  this setting results of Brooks [4] 
and Kost [9] are obtained as corollaries and we get m easure theoretic charac- 
rizations of norm al lattices. Also, we get a i m irror , effect. S tarting  with a 
lattice, of subsets, we generate m easures on jaf («SP), the smallest algebra 
containing Pd. Subsets of this space of m easures form a lattice, and we relate 
properties of this lattice to properties of the original.

W e then  look at lattices as a m ore general setting for pseudocom pact­
ness and realcom pactness, concepts usually  defined in term s of Baire sets 
or zero sets. W hen the underlying lattice is allowed to be more general, we

(*) Nella seduta del 15 novembre 1975.
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get a result analogous to th a t of Glicksberg [11] for j£?-pseudocompactness, 
and generalize a theorem  of V aradarajan  [11] for realcom pact spaces which 
is itself obtained as a corollary.

2. B a c k g r o u n d  a n d  N o t a t io n s

Given a space X, a collection of subsets is a lattice if it contains <p , X,
and is closed under finite unions and intersections. A  8-lattice is one closed
under countable unions. A T  — 2 lattice is one with the following property:
x  y  , x  , y  € there exist A  , B in the lattice such th a t x  e A ', y  € B '
and A ' H B ' =  <p. Sim ilarly, a lattice is norm al if, for all L x , L 2 € there
exist A  , B 6 ££ such th a t A 'D I^  , B 'D L 2 and A ' O B ' =  <p. X is incom pact

n ,
if X =  U A ', A  e implies th a t X =  U  Â -. Intuitively, the closed sets in

1
a topological space form a lattice and we use this as a model to generalize 
notions of separation and compactness to a rb itra ry  lattices. A  lattice is atom 
disjunctive if, given x& A  y there exists B e i f  w ith i f  B , A f l B  =  9.

By a m easure, fx, we shall m ean a finitely additive set function defined 
on an algebra or a-algebra, evaluating to zero on 0 . A  countably additive 
m easure will be called cr-smooth. W e relate a m easure to the lattice structure 
of a space with the following: A measure, fx, is ^ -reg u la r if, for all A, (x (A) =  
=  sup (x (L), A D L  , L  e J2?. In  this paper we will be prim arily  interested 
in o —  I m easures, m easures tak ing  only two possible values.

A  filter is a collection of non-em pty subsets of a space X closed under 
finite intersection and supersets. A n ultrafilter is a m axim al element in the 
ordered set of filters.

T he next results indicate the relationship between measures and filters 
and relate some of the analytic properties of m easures to topological properties 
of filters. These properties have been studied by Bachm an and Cohen [3] 
and by the au thor [8], and will be referred to frequently  in this paper.

Given a space, X, and a lattice, of subsets of X, let (x be a o — 1 
«^-regular m easure defined on stf (J2?).

L em m a 2.1. Let =  {L | [x (L) =  1}. ThantF^ is an 3?-ultrafilter.

Proof. T he proof is straightforw ard.
L et G be an J^-ultrafilter. Define A G a s { E | E D L , L e G  or E C L ',  L e G }  

( L '— com plem ent of L).

L em m a 2.2. A g  is an algebra containing stf (j£f).

Proof. I t is not difficult to show tha t Aq is an algebra. To show th a t it 
contains s# («£?) we use the following result about ultrafilters: G iven an u ltra ­
filter F  and a set A  which intersects every m em ber of F, th an  A e F .  I f  B €«£? 
and B D L e G ,  B e G  and B e A q .  If  B eJ?  and B (f A f for any A e G ,  than  
B P) A  =j= <p for any  A  € G and by our result about ultrafilters B e G ^ B  e A g . 
T ogether, A G D 3? => A G (J2?).
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Define v on AG by v (E) =  1 if E  D L  e G; v (E) =  o if E C L ', L  e G.
It is easy to show th a t v is well defined and a m easure on A q .

CLAIM. v is ££-regular.

Proof. If  v (E) =  I, then ^ c o n ta in s  L  e G and v (L) =  1. I f  v (E) =  o 
and E 3 L 6i f  ,v  fE ) = i  E' ~PE£ 3 and v (L) =  1 . v (L) m ust then be o. 
In  both cases v (E) =  sup v (L) , E D L  , e 3.

Lemma 2.3. {g  e AG | v (g) =  1 } =  G.

Proof. I f  g  e G , v (g) =  I by definition. Assume th a t K e A G , K e G .

T hen  K  f i g  e G => K ' e G. But then v (K ') =  1 and v (K) =  o. We 
have shown th a t K € G => v (K) =  o which is equivalent to v (K) =  1 => K e G -

These last lemmas give the following result:

Theorem 2.1. There is a 1 . 1  correspondence between 3-ultrafilters 
and  o  •— I 3-regular measures. Each such measure generates an ultrafilter 
and every ultrafilter generates a measure which evaluates to 1 on its own elements.

Theorem 2.2. y 1 s Q-smooth iff  3  ̂ has the countable intersection property. 

(i.e. F , 6  J t ^ n F . ^ 0 ).

Proof. Assum e that ;x is osm ooth. and Fn 4. cp. T he 17-smoothness 
=> [x (lim ■ F„) =  lim [x ( F j ,  but these are unequal, contradicting F„ j  <p. 
In  general, let Gn 6^ .  L et Fx =  Ga , F2 =  G, D G2, etc. D F„ =  n  Gn . By 
above, D Fm=j=0 , and ^  has C .I.P .

Conversely, assume th a t has C .I.P . Suppose A„„ e . T han  
A.n i  3 ^ for all n >  n0. jx (A„) =  o for n >  n0 and jx is continuous from 
above at <p. By a standard  result in m easure theory, [x is cr-smooth.

T he next results indicate the change in the theory when the m easure 
is not assum ed to be 3 regular.

D efinition . A filter is prim e if A U B 6 F = > A e F  or B e F .

L emma 2.4. Let [X be a o — 1 measure, not necessarily 31 regular. Let 
^  =  { L  £ 3  I [x (L) =  I }. Then 3  is a prime filter.

Lemma 2.5. Let &  be a prime 3  filter. For A  £3 define [x (A) =  1 
i f  A  e JF; (A) =  o i f  A  6 3 . Then ;x is a measure on 3 in the sense that 
jx ( 0 )  =  o and that jx is finitely additive.

Proofs. T he proofs of both these lemmas are straightforw ard calculations.

D e f i n i t i o n .  A  semi-ring P, is a non-em pty collection of subsets which 
satisfy the following: a) closure under finite intersection; b) E  e P , F  6 P , 
F 3  E => there exists { C j j . Q e P  such th a t E  =  C0 C C r  ■ • C C„ =  F  and 
Dì =  Cì - C h G .
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Let i f  b e a  lattice. Let P (ST) =  { F  — E | F , E € J £ ? , F D E } .  It is not 
difficult to show th a t S* (ST) is a semiring. If  we define for D =  F  — E € P (ST) 
fx' (D) == [x (F) —  [x (E), where [x is a m easure ’ on the lattice, th an  fx' is a 
‘ m easure ’ on the semiring. It is always possible to extend such a m easure 
from a semiring to an algebra. (See, for example, [7], p. 25-6). U sing this 
result, and the previous lemmas, we have the following theorem , analogous 
to Theorem  2.1

T h e o r e m  2.3. There is a 1 : 1  correspondence between o — 1 measures 
defined on sd (ST), fo r  some ST, and prime ST filters.

Lastly, we will be discussing products of lattices, ST1xST2, whose members 
do not form  a lattice because they  are not closed under unions. W e now indi­
cate how to associate w ith such a set a lattice, while preserving the m easure- 
filter correspondence discussed above.

D e f i n i t i o n .  A m ultiplicative system is a collection of sets, J t ,  satis-
N

fying the following: d) 0  , X g 1 ; b) n  M* € J l  whenever e J t  Let
1

( n )3? (Jt') \j A i I £ J t \ .  W e note th a t (Jt') is a lattice D J t , and tha t 
( 1  )

sd (ST (Jt)) =  sd {Jt).

LEMMA 2.6. Let \i be a o — 1 measure defined on sd (Jt) =  sd (ST (Jt)). 
Then [x is Jt-regular iff  (x is ST (Jt)-regular.

Proof. Suppose [x is ^ - re g u la r .  Let K  € sd (Jt). If [x (K) =  1, than  
sup [x (M ) =  I , K  D M , M e J t . But sup [x (M) <  sup [x (M) =» sup u (M) — 1

M e J  M g JÖP(J() Me£P(JC)

T he case when |x (K) =  o and the converse are proved similarly.

T h e o r e m  2.4. There exists a 1 :  1 correspondence between prime filters 
oh J t , prim e filters on ST (Jt), and  0 —  1 measures on sd (Jt) = sd  (ST (Jt)).

Proof. T he correspondences are the following: G iven G, a prime 
«/^-filter, let F  =  { B €S? (Jt)  | B D A  e G } .  F  is directly shown to be a prime 
ST (Jt)  filter. By Theorem  2.3 this filter is in 1 : 1 correspondence w ith a o — 1 
m easure defined on sd (ST (Jt)  — sd (Jt)).

Conversely, given (x, a o — 1 m easure on sd (Jt) ~ s d  (ST (Jt)), let 
G =  {A e J t  I (x (A )=  1} G is easily seen to be a prim e J t  filter. By Theorem  2.3 
we have a correspondence between prim e ST (Jt)  filters and o —  1 m easures 
on sd (ST (Jt)). T he above construction gives us a correspondence between 
o —  I m easures on sd (ST (Jt)) = sd  (Jt)  and prim e J t  filters. This completes 
the proof.

T h e o r e m  2.5. There is a 1 : 1  correspondence between ultrafilters on 
J t , ultrafilters on ST (Jt) , 0 —  1 J t  regular measures on sd (Jt) and o — 1 
ST (Jt) regular measures on sd (ST (Jt)).
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Proof. In  the proof of Theorem  2.1 the closure under finite unions was 
never used. T he result was actually  m ore general: a 1 —  1 correspondence 
between o —  \ J i  regular measures and J i  ultrafilters, where J i  is a m ulti­
plicative system. By Lem m a 2.6 there is a 1 : 1 correspondence between 
o ■—  I J i  regular and o —  1 J  (Ji') regular measures. W e now get the corre­
spondence between J i  ultrafilters and J? (.Æ) ultrafilters via the associated 
measures.

3. W a l l m a n  T o p o l o g ie s  a n d  V a g u e  T o p o l o g ie s

Given a lattice, J , we will denote the space of ̂ -reg u la r, o —  1 measures 
by IR ß ) .  For A  €J2\ let W  (A) =  { ji e I R (JSP) | (x ( A) -  1}. W e define a 
topology on IR (ß )  by letting { W  (A) , A  eJ?}  be a base for the closed sets. 
W e will refer to this W allm an-type topology as the Ow topology.

Theorem 3.1. (IR ß )  , Ow) is a T  — 1 space.

Proof. Assum e th a t (x =j= [x, both in IR (ß ) .  T hen there exists A  'e J? such 
th a t [x (A) =  I , [I (A) =  o. "ji (A') =  1 = > A ' D B e j ^  and |tx fB) =  1. (W (A))' 
and (W (B))' are the required neighborhoods.

Theorem 3.2. (IR (ß )  , Ow) is compact.

Proof. W e use the following characterization of compactness: A  space 
X is com pact iff every fam ily of closed sets in X which has the finite in ter­
section property  has a non em pty intersection. Let H =  { W  (A) , A  eJi?} 
basic closed sets w ith F .I.P . Let F =  {A | W  (A) 6 H }. Now A  , B € F  => 
=> W  (A) n  W  (B) =j= <p => W  (A O B) =(= 9 => A  f) B =j= <p, so F has the F .I.P . 
and can be extended to a filter, and to an ultrafilter G. Let jxG be the 
m easure associated w ith G. W  (A) 6 H implies A  € F which implies A  € G. 
So [xG (A) =  I, for all A  € H. But this implies th a t (xG € n  W  (A), and this 
implies th a t IR ( ß )  , Ow is compact.

W e would like to relate the topology to the 4 vague ’ topology discussed 
by A lex andrò ff [1] and by V aradara jan  [11].

V arad ara jan  starts w ith a topological space, X. His m easures are not 
two valued and are regular w ith respect to zero sets-inverse images of zero 
under continuous functions. Calling this space of m easures M (X), he defines 
a topology. For any  m easure, m 0 6 M (X), consider sets N f n 0 ;g1 , • • • ,gn > e) —

<  £ ; r  =  I , 2 , • • •, n  ; , • • •, g n € C (X) j • The class

of all such sets obtained by varying m 0 , s >  o and gi generates a 
system  of neighborhoods for a topology. We will refer to this as the vague 
topology: (V aradarajan  calls it the weak topology) A  net { m a } in M  (X) con­

verges to m  in M (X) iff I g  dma -> I g  dm for all g  € C (X).
X
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A natu ra l generalization of V aradara jan ’s framework, which the author 
has discussed in [8], is to consider M r (jS?), measures, not necessarily two­
valued, but regular w ith respect to an arb itra ry  lattice . Continuous func­
tions would be lattice-continuous functions, i.e., g£C&(X.)  if g~x (an open set 
in R) =  L ', where L e i? .  IR ( i? )C M R(i?) and inherits the vague topology 
as a subset. W hat is the relationship between (IR (J£) , O J  and (IR (.§?), 
vague-inherited)? W e prove the following:

Theorem 3.3. ( IR (jgp), O J  and  (IR (jSP), vague-inherited) are identical. 
F or the proof, we need a result of Alexandroff.

Theorem. (Alexandroff). In  order that a sequence of non-negative mea­
sures should converge vaguely to p, necessary and sufficient conditions are\

a) lim pm (X) =  Jx (X ); b) For every G =  F ', F e i? ,  either ix (G) <
m ->  00 y

<  lim |xm (G) or [x (F) >  lim  pm (F).

Proof. A  complete proof is in [1]. W e note th a t A lexandroff did not 
speak in term s of lattice elements or complements but ra ther in term s of open 
and closed sets. H is restriction to closed sets, however, was only th a t they 
satisfy the requirem ents for a lattice, and his result about open and closed 
sets is actually  the more general result we have just given.

Proof, (of Theorem  3.3). W e prove th a t the topologies are identical by 
proving th a t they have the sam e limit points. Assume th a t |x,„ - ^ ( x i n  the Ow 
topology. If  F  e=â?, (x (F) =  o implies th a t [x e (W (F))'. Since jxm jx, 
m  >  N => [xm 6 (W  (F))' and pm (F) =  0 for m >  N. jx (F) =  lim \xm (F). 
If  (x (F) =  I , (x (F) >  lim fxm (F). By A lexandroff’s theorem , \xm fx in the 
vague topology.

Conversely, suppose th a t [x (G) <  lim jxm(G) for all G e iC . A  neighbor­
hood of p is (W  (K))'. This implies that [x (K ') =  1 => lim pm (K ') =  1 =>
=> lim pm (K ') = 1 .  If  m  >  N , jxTO (K) =  o and jxm is eventually  in every 
neighborhood of jx, and pm —> |x in the Om topology.


