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compactness. Nota 1 di MarTiN KERNER, presentata © dal Corrisp.
G. Zarpa.

RIASSUNTO. — Dati uno spazio X e un reticolo % di sottoinsiemi, ¢’¢ una corrispondenza
I:1 tra le misure o—1 Z-regolari ¢ gli F-ultrafiltri. Esaminiamo quali cambiamenti
subisce la teoria quando le misure non vengono assunte regolari. Topologizziamo lo spazio
delle misure #-regolari e mostriamo che questo spazio topologico ¢ T—1 e compatto. Infine
colleghiamo questo spazio a certi spazi topologici studiati da Alexandrof e Varadarajan.

1. INTRODUCTION

In this paper we make use of the relationship between measures and
ultrafilters to use analytic machinery in a topological setting. This and similar
relationships, discussed by Bachman and Cohen [3], Frolik [6], Topsee [10],
Alo and Shapiro [2] and others, allow us to study properties of the associated
measure rather than those of the ultrafilter. In this setting results of Brooks [4]
and Kost [9] are obtained as corollaries and we get measure theoretic charac-
rizations of normal lattices. Also, we get a ‘ mirror’ effect. Starting with a
lattice, %, of subsets, we generate measures on &/ (&), the smallest algebra
containing £. Subsets of this space of measures form a lattice, and we relate
properties of this lattice to properties of the original.

We then look at lattices as a more general setting for pseudocompact-
ness and realcompactness, concepts usually defined in terms of Baire sets
or zero sets. When the underlying lattice is allowed to be more general, we

(*) Nella seduta del 15 novembre 1975.
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get a result analogous to that of Glicksberg [11] for Z-pseudocompactness,
and generalize a theorem of Varadarajan [11] for realcompact spaces which
is itself obtained as a corollary.

2. BACKGROUND AND NOTATIONS

Given a space X, a collection of subsets is a lattice if it contains ¢, X,
and is closed under finite unions and intersections. A 3-lattice is one closed
under countable unions. A T-—2 lattice is one with the following property:
x==y,x,y€X= there exist A, B in the lattice such that x € A’, y € B
and A’ B’ = ¢. Similarly, a lattice £ is normal if, for all L, , L, € & there
exist A, B € £ such that A’'DL,, B'DL, and A’N B’ = ¢. X is Z-compact

n 4
if X=UA', AeZ, implies that X = U A;. Intuitively, the closed sets in
1

a topological space form a lattice and we use this as a model to generalize
notions of separation and compactness to arbitrary lattices. A lattice is atom
disjunctive if, given x¢ A €%, there exists B € Z with x € B,ANB = o.

By a measure, p, we shall mean a finitely additive set function defined
on an algebra or c-algebra, evaluating to zero on @. A countably additive
measure will be called g-smooth. We relate a measure to the lattice structure
of a space with the following: A measure, y, is Z-regular if, for all A, p. (A) =
=supu(L),ADL,L €% In this paper we will be primarily interested
in 0 — I measures, measures taking only two possible values.

A filter is a collection of non-empty subsets of a space X closed under
finite intersection and supersets. An ultrafilter is a maximal element in the
ordered set of filters.

The next results indicate the relationship between measures and filters
and relate some of the analytic properties of measures to topological properties
of filters. These properties have been studied by Bachman and Cohen [3]
and by the author [8], and will be referred to frequently in this paper.

Given a space, X, and a lattice, &, of subsets of X, let u be a 0o—1
ZL-regular measure defined on & (&).

LEMMA 2.1. Let F, = {L €Z| pw@) =1}, Than F, is an L-ultrafilter.

Proof. The proof is straightforward.
Let G be an Z-ultrafilter. Define Agas{E|EDL,LeG or ECL',LeG}
(" = complement of L).

LEMMA 2.2. Ag is an algebra containing o (£).

Proof. 1t is not difficult to show that Ag is an algebra. To show that it
contains & (£) we use the following result about ultrafilters: Given an ultra-
filter F and a set A which intersects every member of F, than A€F. If BeZ
and BDL€G, B€G and BeAg. If BeZ and B¢ A’ for any A€G, than
BN A==¢ for any A €G and by our result about ultrafilters B € G=B € Ag.
Together, AgDZ = Ag DA (L).
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Define v on Ag by v(E) =1 if EDL€G; v(E)=o if ECL/,LeG.
It is easy to show that v is well defined and a measure on Ag.

CLAM. v is P-regular.

Proof. 1f v(E) = 1, then E contains L €G and v (L) = 1. If v(E)=o0
and EDL€Z,v(E) =1 E'DLeZ and v(L)=1. v(L) must then be o.
In both cases v(E)=supv (L), EDL, €2.

LEMMA 2.3. {g€Ag|v(g) =1} =G.
Proof. 1f g€G,v(g) =1 by definition. Assume that K € Ag, KeG.

Then KpgeG =K' €G. But then v(K) =1 and v(K) =0 We

have shown that K € G = v (K) = o which is equivalent to v(K) = 1= K €G.
These last lemmas give the following result:

THEOREM 2.1. There is a I:I corvespondence between L-ultrafilters
and o — 1 L-regular measures. Each such measur> generates an wultrafilter

and every ultrafilter generates a measure which evaluates to T on its own elements.
THEOREM 2.2. @ is o-smooth iff F, has the countable intersection property.
(ie. F, € #, =2NF, = 02).

Proof. Assume that u is o-smooth and F, | ¢. The o-smoothness
=@ (lim F,) = lim ' (F,), but these are unequal, contradicting F, | o.
In general, let G,€%,. Let F; = G, F, = G, N G,, etc. N F,=NG,. By
above, NF,==g, and %, has C.I.P.

Conversely, assume that #, has C.LP. Suppose A, €#,. Than
A, eF, for all w=ny. w(A,) =o for n > n, and % is continuous from
above at ¢. By a standard result in measure theory, wp is 6-smooth.

The next results indicate the change in the theory when the measure
is not assumed to be # regular.

DEFINITION. A filter is prime if AUB€F=A€F or BeF.

LEMMA 2.4. Let p be a 0 — 1 measure, not necessarily L regular. Let
F={LeZL|\ul)=1} Then F is a prime filter.

LEMMA 2.5. Let F be a prime X filter. For A €L define u(A) =1
fAEF;, wA) =o0if AeF. Then u is a measure on L in the sense that
w(2) = o and that p. is finitely additive.

Proofs. The proofs of both these lemmas are straightforward calculations.

DEFINITION. A semi-ring P, is a non-empty collection of subsets which
satisfy the following: a) closure under finite intersection; 6) E€eP,FeP,
FDOE = there exists {C;},C; €P such that E=C,CC,---CC, = F and
D,=C,—C,_, €P.
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Let £ be a lattice. Let P(¥)={F—E|F,EeZ ,FDE}. Itis not
difficult to show that P (%) is a semiring. If we define for D=F — E € P (&)
@' (D) = p (F) — p (E), where u is a ‘ measure’ on the lattice, than p’ is a
‘measure’ on the semiring. It is always possible to extend such a measure
from a semiring to an algebra. (See, for example, [7], p. 25-6). Using this

result, and the previous lemmas, we have the following theorem, analogous
to Theorem 2.1

THEOREM 2.3. T7here is a I: I correspondence between O0— 1 measures
defined on A (L), for some L, and prime £ filters.

Lastly, we will be discussing products of lattices, £; X.%,, whose members
do not form a lattice because they are not closed under unions. We now indi-
cate how to associate with such a set a lattice, while preservihg the measure-
filter correspondence discussed above.

DEFINITION. A multiplicative system is a collection of sets, ./, satis-
N

fying the following: @) @, X €#; 6) N M; € #4 whenever M; € # Let
1

L M) =) " A, |Aje ). We note that £ () is a lattice D4, and that
1 .
A (L (M) =A (M).

LEMMA 2.6. Let p be a 0 — 1 measure defined on & (M) =t (L (M)).
Then p ts M-regular iff p is L (M)-regular.

Proof. Suppose w is M-regular. Let K € & (). If p(K) = 1, than
supu(M)=1, KDM ,M€.#. Butsupp(M)< sup p(M)= sup (M) =1
MeA MeZL (M) MeZ(H)

The case when p (K) = o and the converse are proved similarly.

- THEOREM 2.4. There exists a I: I corvespondence between prime filters
on M, prime filters on L (M), and 0 — 1 measures on A (M) = (L (M)).

Proof. The correspondences are the following: Given G, a prime
MAilter, let F = {B €% (#)| BDA €G}. F is directly shown to be a prime
& (M) filter. By Theorem 2.3 this filter is in 1 : 1 correspondence with a 0 — 1
measure defined on & (& (M) = o (M)).

Conversely, given @, a o— 1 measure on & (M) =4 (L (M)), let
G={A €| u(A)=1} G is easily seen to be a prime ./ filter. By Theorem 2.3
- we have a correspondence between prime & (/) filters and o— 1 measures
on o/ (¥ (A)). The above construction gives us a correspondence between
0 — 1 measures on 7 (&L (M)) =/ (M) and prime A filters. This completes
the proof.

THEOREM 2.5. There ¢s a I:I corrvespondence between wultrafilters on
M, ultrafilters on L(M),0— 1M regular measures on A (M) and 0—1
&L (M) regular measures on (L (M)).
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Proof. In the proof of Theorem 2.1 the closure under finite unions was
never used. The result was actually more general: a 1 — 1 correspondence
between o — 1 4 regular measures and  ultrafilters, where . is a multi-
plicative system. By Lemma 2.6 there is a 1:1 correspondence between
0— 1 ./ regular and 0 — 1 & (#) regular measures. We now get the corre-
spondence between .# ultrafilters and & (#) ultrafilters via the associated
measures.

3. WALLMAN TOPOLOGIES AND VAGUE TOPOLOGIES

Given a lattice, £, we will denote the space of #-regular, o — 1 measures
by Ig(#). For AeZ, let WA)={pelx(®)|pnA)=1}. We define a
topology on Ix (&) by letting { W (A), A €£} be a base for the closed sets.
We will refer to this Wallman-type topology as the O,, topology.

THEOREM 3.1. (Ir (&),0,) és a T — 1 space.

Proof. Assume that p,zﬁ w, both in Ig (#). Then there exists A € % such
that u(A) =1, pA) =0. p(A) =1 =2A'DB €L and u(B) = 1. (W (A))
and (W (B)) are the required neighborhoods.

THEOREM 3.2. (Ix (&), O,,) s compact.

Proof. We use the following characterization of compactness: A space
X is compact iff every family of closed sets in X which has the finite inter-
section property has a non empty intersection. Let H={W(A),AeZ}
basic closed sets with F.I.LP. Let F={A|W(A)eH}. Now A,BeF=
>WANWB)F=e=>WANB)F=9=>ANB==¢, so F has the F.I.P.
and can be extended to a filter, and to an ultrafilter G. Let p; be the
measure associated with G. W (A) € H implies A € F which implies A €G.
So g (Ay =1, for all A €H. But this implies that u; € "W (A), and this
implies that Ix (&), O, is compact.

We would like to relate the O,, topology to the ‘ vague’ topology discussed
by Alexandroff [1] and by Varadarajan [11]. ‘

Varadarajan starts with a topological space, X. His measures are not
two valued and are regular with respect to zero sets-inverse images of zero
under continuous functions. Calling this space of measures M (X), he defines
a topology. For any measure, 2, € M(X), consider sets N(mzq; g1, - *,&n,5) =

=;m‘/g,(dm~—dmo)|<s;7=1 y2y"'yn;gly"'ygnec(x)g' The class
of all such sets obtained by varying m,,e >0 and g; generates a

system of neighborhoods for a topology. We will refer to this as the vague
topology: (Varadarajan calls it the weak topology) A net { #, } in M (X) con-

verges to » in M (X) iff fg dmg, —>fg dm for all g eC (X).
x

x
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A natural generalization of Varadarajan’s framework, which the author
has discussed in [8], is to consider Mg (%), measures, not necessarily two-
valued, but regular with respect to an arbitrary lattice #. Continuous func-
tions would be lattice-continuous functions, i.e., g € C(X) if g (an open set
in R) =L', where LeZ. I (#)CMg (%) and inherits the vague topology
as a subset. What is the relationship between (Ig (&), 0,) and (Ix (D),
vague-inherited)? We prove the following:

THEOREM 3.3. (Ix (&), 0,) and (Ix (L), vague-inherited) are identical.
For the proof, we need a result of Alexandroff.

THEOREM. (Alexandroff). /n order that a sequence of non-negative mea-
sures should converge vaguely to w., necessary and sufficient conditions are:

a) lim w, (X) = w (X); &) For every G = F', FeL, cither w(G) <

m—>00

< lim p,, (G) o7 p (F) = lim g, (F).

Proof. A complete proof is in [1]. We note that Alexandroff did not
speak in terms of lattice elements or complements but rather in terms of open
and closed sets. His restriction to closed sets, however, was only that they
satisfy the requirements for a lattice, and his result about open and closed
sets is actually the more general result we have just given.

Proof. (of Theorem 3.3). We prove that the topologies are identical by
proving that they have the same limit points. Assume that Uy — 1 in the O,
topology. If F €%, u(F) = o0 implies that p € (W (F)). Since u, - ®,
m >N =y, € W) and u,(F)=o0 for m >N. u(F)= lim w,, (F).
If w(F)=1,p(F)>1limuy, (F). By Alexandroff’s theorem, Wy —> i in the
vague topology.

Conversely, suppose that u (G) < lim ,, (G) for all GeZ’. A neighbor-
hood of p is (W (K)). This implies that u(K') = 1= lim p,, KHY=1=
= lim b (K) =1 If m >N, u,(K)=o0 and p, is eventually in every
neighborhood of y, and w, —u in the O, topology.




