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Geom etrie finite. — Some applications o f the fundam ental charac
terization theorem o f R . C. Bose to partial geometries. Nota di J o s e p h  A .  

T h a s  e F r a n k  D e  C l e r c k , presentata (*} dal Socio B. S e g r e .

RIASSUNTO. — Ad ogni assegnata geometria parziale ne viene associata un’altra (che 
può dirsi ad essa complementare). Vengono poi caratterizzate le strutture d’incidenza otte
nibili a partire da un piano n proiettivo (non necessariamente desarguesiano) d’ordine q 
col sopprimere da 7r i punti di un {qd— q -j- d  ; ^  fi-arco, d  essendo un intero soddisfacente 
alle I < d  < q.

i . I n t r o d u c t io n

1.1. A (finite) partial geom etry ( r , k , t) is an incidence structure 
S =  (P , B , I) with a sym m etric incidence relation satisfying the following 
axioms:

(i) each point is incident with r  lines (r >  2) and two distinct points 
are incident w ith at m ost one line;

(ii) each line is incident with k  points (k >  2) and two distinct lines 
are incident with at m ost one point;

(iii) if x  is a point and L is a line not incident with x, then there are 
exactly t  {t > 1 )  points x t , x 2 , - • •, x t and t  lines L x , L 2 , • • •, L* such that 
x i  I x i IL, i  — I , 2 , • • •, t.

If  I P I =  v and I B | — Ò, then v =  k {(k —  1) (r ■— 1) -fi £)\t and 
b = .r  ( ( r :— 1) (k  —  1) +  £)\t [3]. Consequently t  | k (k —  1) ( r —  1) and
t \ r ( r ' — i ) ( k —  1). W e also rem ark tha t t <  k  and t < r .

1.2. If  the points x  , y  (resp. lines L ,M ) of S are collinear (resp. con
current), then we write x  ~ y  (resp. L  ^ M ) ;  otherwise we write x  + y  (resp. 
L00M ).

T he graph G of the partial geom etry S =  (P , B , I) is the graph (P , E), 
where E =  {{ x  , y  } C P  \\ x  ~ y  }. It is easy to prove th a t G is strongly 
regular w ith param eters v ~  k (fk — 1) ( r —  1) +  t)\t , n± — r  (k —  1), 
P11 =*= ( r —  1) ( / —  1) +  k  — 2, p h  =  r t {  1) [3]. The graph G of a partial 
geom etry (r , k  , t) is called a geometric graph (r , k  , t).

A strongly regular graph G is defined to be pseudo geometric ( r , k  , t) 
if its param eters v , , p h  , p \x are given by (1), where r  , k  , t  are integers
with r  >  2, k  >  2, I <  t <  k, I <  t <  r. In [2] R. C. Bose establishes a 
sufficient condition for a pseudo geometric graph (r , k  , t) to be geometric 
(r , k , I): the pseudo geometric graph (r , k  , t) is geometric (r , k  , f) if

(2) k  >  \  (r ( r —  1) +  t  (r +  1) (r2 —  2 r  +  2)) .

(*) Nella seduta dell’n  giugno 1975.



J. A. T has e F. De C le rck , Some applications of the fundamental, ecc. 87

1.3. E xamples of partial geometries

(a) The balanced incomplete block designs with X — 1 are the 
partial geometries (r , k , k) [3].

(J>) The nets of degree r  ( >  2) and order k  ( >  2) are the partial geo
m etries ( r , k , r — I) [3].

(c) T he partia l geometries for which t =  1 are the generalized qua
drangles [3].

(d) In  a finite projective plane of order q, any non-void set of I points 
m a y b e  described as a { / ; / /} -a rc ,  where d  (d  4= °) is the greatest num ber 
of collinear points in the set. For given q and d  ( d - o), /  can never exceed 
(d —  1) (q +  1) -f- I, and an arc with that num ber of points will be called a 
m axim al arc [1 ]. Equivalently, a m axim al arc m ay be defined as a non-void 
set of points meeting every line in just d  points or in none at all. It is not 
difficult to prove tha t a necessary condition for the existence of a m axim al 
arc (as a proper subset of a given plane) is that d  should be a factor of q [1]. 
But the condition is not sufficient; J. A. Thas [10] has proved that, in the 
desarguesian plane of order q =  3/z (h >  1), there is no { 2 q - f  3 ; 3 }-arc. 
In  [6] R. H. F. Denniston proves th a t the condition does suffice in the case 
of any desarguesian plane of order 2h.

Let K be a {qd-— q - f  d  ; ^}-arc , I < d  < q ,  of a projective plane tu 
(not necessarily desarguesian) of order q. Define points of the partial geom etry 
S as the points of tu which are not contained in K. Lines of S are the lines 
of 71 which are incident w ith d  points of K. The incidence is that of re. Now 
it is easy to prove that the configuration S so defined is a partial geom etry 
with param eters (q —  q\d  +  1 , q —  d  4 - 1 , q —  q /d — d  -f  1) ([8], [9], [11 ]). 
M oreover, if tu is desarguesian then it is also possible to construct partial 
geometries (qd—  q f ~ d , q , d ~  1 ) and (q (q —  d  +  i) \d  ,q  , (eq —  d)\d )  ([8], [9]). 2

2. M a in  t h e o r e m

2.1. T h e o r e m .  I f  there exists a partial geometry S =  (P , B , I) with 
parameters

r- =  u I, k — s +  I , t fo r  which y — s — t >  o, t  | us,

UY <  (Y +  1) 0  — y) and u (2 j — y (y +  2) (yM- i)p> (s —  y) (y (y +  1) — 2), 
then there also exists a partial geometry S =  (P , B , I) with parameters 
?==J +  I — t ,k  =  (su +  t ) / t , t =  u (s — t ) / t .

Proof .i The graph G =  (P , E) of S has parameters 

v  =  0 +  1) (su +  t ) ! t , nt =  (u +  1) j, p \x =  (s —  1) +  u (t — 1) , 

/11. =  (« +  1) t ( u ' > i > s ~ ^ \ , \ < t < u - { - i y \ < l t < s ) .
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The com plem entary graph G =  (P , E), E =  {{ x  , y  } C P || x  * y  }, of G is 
strongly regular with param eters v =  v — (s +  i) (su +  It, n± =  n2 =  
=  su (s +  I —  t)it, ph =  p \ 2 = su (s + I —  t)/t —  ( u + i ) ( s  —  t) —  I , p2n = 
=■ PI2 — ^  +  I —- f) (s —■ t)\t. Let k =  (su +  t)jt, r =   ̂ +  1 —  t and
i =  u (s ■—■ /)//.

T hen f  , k  , t  are integers with £ >  2 , f >  2 , I < i < k ,  1 <  t <  f  
(this follows from y =  s — t >  o, t | us and uy <  (y +  1) ( s —^y)). Now 
it is easy to check tha t G is pseudo geometric (f , k  , t). Since u (2 s —  y (y +  2) 
(y2 +  0 ) >  (s —  ï )  (y (y +  0  — 2)> Ît follows from (2) th a t G is geometric 
(f , k , i). Consequently there exists a partial geom etry (f , k , i ).

Rem ark . P =  P, the elements of B are the grand cliques of the graph 
G, and I is the natural incidence relation [2].

2.2. Corollaries.

(a) By applying this theorem  to nets, we obtain the well-known theorem 
of B ruck-Shrikhande [5].

(b) If  there exists a partial geom etry (q ■— q\d  -f- 1 , q  —  d  -f  1, 
q —  q \d — d  +  1), with l <  d  <  q and 2 q >  S4 —  S3 -j- S2 -f  S —  2 (q ~  ?>d), 
then there exists a partial geom etry ( q \d , q - f  1 , qjd)  and consequently a 
balanced incomplete block design with param eters i t  .=  q\d, r* =  y +  i, 
X =  I.

3. E m b e d d in g  o f  t h e  c o m p l e m e n t  o f  a  m a x im a l  a r c

IN A PROJECTIVE PLANE

3.1. Ovoids and spreads.

Let S .= (P , B , I) be a partial geom etry (u +  ; 1 , s +  1 , t). If  V is a 
set of points (resp. lines) of S no two of which are collinear (resp. concurrent), 
then it is easy to prove th a t | V | <  (su ' -f- f)\t. If  | V  ] =  (su +  t)\t, then V 
is called an ovoid (resp. spread) of S. A  necessary condition for the existence 
of an ovoid (resp. spread) is that t should be a factor of su.

3.2. The complement o f a m axim al arc.

Let K be a { q d •— q - \ - d ; d } ~ arc, 1 < d < q ,  of a projective plane ru 
of order q (not necessarily desarguesian). If  we delete the points of K from n,  
then the incidence structure of the remaining points and lines has the following 
properties:

(i) there are two types of lines: lines of type (I) are incident with q +  1 
points and lines of type (II) are incident with q +  1 — d  points (1 <  d  <  q)\

(ii) each point is incident with q\d lines of type (I) and q +  1 — q\d 
lines of type (II);

(iii) any two distinct points are both incident w ith exactly one line.
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Conversely let D be an incidence structure with the above properties. 
W e m ay ask the question whether or not it is possible to embed D in a 
projective plane of order q by suitably extending the lines of type (II).

3.3. Theorem . I f  D =  (P ., B , I) is an incidence structure w ith the 
above properties (i)-(iii) and i f  2 q >  d* ■— d s d 2 - f  d  -— 2, then D is embed
dable in a projective plane t: o f order q by suitably extending the lines o f type (II). 
Moreover the set o f the “ new ” points is a { q d —- q f  d  ; d  }-arc o f that plane.

Proof. Suppose tha t L is a line of type (I) and tha t M € B — { L  }. 
W e shall prove tha t L and M are concurrent. Let x  IM  and x  \ L. From  (iii) 
follows tha t there are exactly q +  1 lines incident with x  and concurrent 
with L. M oreover x  is incident w ith exactly q 4 - 1 lines (see (ii)). Conse
quently  L  and M are concurrent.

Let D x =  (P , Bj , Ij), where B 1 is the set of lines of type (I) and where 
lx is induced by the incidence relation I. From the previous rem ark follows 
easily tha t D x is a partial geom etry (q/d , q  T  1 , qld) .

Let D 2 — (P , B2 , I2), where B2 is the set of lines of type (II) and where 
12 is induced by the incidence relation I. Suppose that L € B2 and x  \ L. 
There are exactly q +  1 •— d  lines of B incident with x  and concurrent with L. 
Am ong these lines are the q/d  lines of B ± which are incident with x. Conse
quently  B2 contains exactly q +  1 — d — q\d  lines which are incident with x  
and concurrent with L. Hence D 2 is a partial geom etry (q 4 - 1 —  q\d} 
q -j- 1 — :d  , q 1 —■ d  — q\d).

Now we consider the geom etry D 2 — (B2 , P , I2), which is a partial 
geom etry (q +  1 —  d  , q +  1 — q/d , q +  1 — d  — q/d).  From  1 <  q/d  <  q 
and 2 q >  d* — d s d 2 ~ \-d— 2 there follows that the incidence structure 
D 3 --  (Bo , Pj , 13), with P 1 the set of grand cliques of the complement G2 
of the graph of D 2 and with I3 the natural incidence relation, is a partial geo
m etry ( d , q -|- I , d)  (see 2.2.b.). W e rem ark tha t each element of B1 is inci
dent with q +  I — ((q :— q /d ) (q —■ d) +  (q +  1 — d  — qldj)J(q +  1 —  d — qjd)  
elements of B2, and consequently the grand cliques of G* are the spreads 
of D 2 (i.e. the ovoids of D 2).

Let us consider the incidence structure D ' -  (P U Pj , B 1 U B2 , I U I3). 
F irst of all we rem ark th a t | P Ü V1 | =  | P | +  I Pi I == (q +  1) (q —  d  +  1) +  
+  dq -— q +  d  — q2 q I . If  x  , y  € P, x  =j= y,  then there is exactly one 
eilement of U B2 which is incident with ' x  and y  (the element L defined by 
x  I L  I y); there is exactly one element of B 1 U B2 which is incident with 
two given elements x  , y  , x  e P and y  e Px (the element L  of the spread jy 
of D 2 for which x  I L); finally there is exactly one element of B 1 U B2 which 
is incident with two given elements x , y £  P1? x ^ y  (since D3 is a partial 
geom etry > ( d , q f -  1 , d),  the spreads x , y  of D 2 have exactly one line in 
common). Consequently any two distinct points of D ' are both incident with 
exactly one line of Db Since each line of D ' is incident with q +  1 points 
of D ; (rem ark th a t each element of B2 is incident with d  elements of Px), we
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conclude th a t D is a 2 (q2 T  q T  1 j q -f- 1 , 1) design, i.e. a projective
plane of order q. Evidently  ^  is a {qd  —  q +  d ; d }~arc of the plane D '.

Remarks, (a) For d =  2 we have the theorem  of Bose-Shrikhande [4] 
about the em bedding of the complement of a complete oval in a projective 
plane of even order.

(b) A n analogous reasoning yields the following theorem: Suppose
tha t S is a partial geom etry (q +  1 ^ ~ q/d , q  +  i — d , q +  1 — d — q/ d ), 
I <  d  <  q, for which the following axioms are satisfied:

(i) 2 q >  S4 —  S3 +  S2 +  S —■■ 2, where q =  8 d;
(ii) S has a family V of spreads such that any two non concurrent 

lines of S are contained in exactly one element of V.

Then S is a partial geom etry arising from a { qd  — q +  d  ; d  }-arc in a 
projective plane of order q .
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