ATTI ACCADEMIA NAZIONALE DEI LINCEI

CLASSE SCIENZE FISICHE MATEMATICHE NATURALI

RENDICONTI

JOSEPH A. THAS, FRANK DE CLERCK

Some applications of the fundamental characterization theorem of R. C. Bose to partial geometries

Atti della Accademia Nazionale dei Lincei. Classe di Scienze Fisiche, Matematiche e Naturali. Rendiconti, Serie 8, Vol. **59** (1975), n.1-2, p. 86–90.

Accademia Nazionale dei Lincei

<http://www.bdim.eu/item?id=RLINA_1975_8_59_1-2_86_0>

L'utilizzo e la stampa di questo documento digitale è consentito liberamente per motivi di ricerca e studio. Non è consentito l'utilizzo dello stesso per motivi commerciali. Tutte le copie di questo documento devono riportare questo avvertimento.

Articolo digitalizzato nel quadro del programma bdim (Biblioteca Digitale Italiana di Matematica) SIMAI & UMI http://www.bdim.eu/ Geometrie finite. — Some applications of the fundamental characterization theorem of R. C. Bose to partial geometries. Nota di JOSEPH A. THAS E FRANK DE CLERCK, presentata (*) dal Socio B. SEGRE.

RIASSUNTO. — Ad ogni assegnata geometria parziale ne viene associata un'altra (che può dirsi ad essa complementare). Vengono poi caratterizzate le strutture d'incidenza ottenibili a partire da un piano π proiettivo (non necessariamente desarguesiano) d'ordine q col sopprimere da π i punti di un $\{qd - q + d; d\}$ -arco, d essendo un intero soddisfacente alle $\mathbf{I} < d < q$.

1. INTRODUCTION

I.I. A (finite) partial geometry (r, k, t) is an incidence structure S = (P, B, I) with a symmetric incidence relation satisfying the following axioms:

(i) each point is incident with r lines $(r \ge 2)$ and two distinct points are incident with at most one line;

(ii) each line is incident with k points $(k \ge 2)$ and two distinct lines are incident with at most one point;

(iii) if x is a point and L is a line not incident with x, then there are exactly $t (t \ge 1)$ points x_1, x_2, \dots, x_t and t lines L_1, L_2, \dots, L_t such that $x \perp L_i \perp x_i \perp L$, $i = 1, 2, \dots, t$.

If $|\mathbf{P}| = v$ and $|\mathbf{B}| = b$, then v = k((k-1)(r-1)+t)/t and b = r((r-1)(k-1)+t)/t [3]. Consequently t | k(k-1)(r-1) and t | r(r-1)(k-1). We also remark that $t \le k$ and $t \le r$.

1.2. If the points x, y (resp. lines L, M) of S are collinear (resp. concurrent), then we write $x \sim y$ (resp. L \sim M); otherwise we write $x \nsim y$ (resp. L \sim M).

The graph G of the partial geometry S = (P, B, I) is the graph (P, E), where $E = \{\{x, y\} \in P \mid x \sim y\}$. It is easy to prove that G is strongly regular with parameters v = k ((k-I)(r-I) + t)/t, $n_1 = r(k-I)$, $p_{11}^1 = (r-I)(t-I) + k - 2$, $p_{11}^2 = rt(I)$ [3]. The graph G of a partial geometry (r, k, t) is called a geometric graph (r, k, t).

A strongly regular graph G is defined to be pseudo geometric (r, k, t)if its parameters $v, n_1, p_{11}^1, p_{11}^2$ are given by (1), where r, k, t are integers with $r \ge 2$, $k \ge 2$, $1 \le t \le k$, $1 \le t \le r$. In [2] R.C. Bose establishes a sufficient condition for a pseudo geometric graph (r, k, t) to be geometric (r, k, t): the pseudo geometric graph (r, k, t) is geometric (r, k, t) if

(2)
$$k > \frac{1}{2} (r(r-1) + t(r+1)(r^2 - 2r + 2)).$$

(*) Nella seduta dell'11 giugno 1975.

1.3. EXAMPLES OF PARTIAL GEOMETRIES

(a) The balanced incomplete block designs with $\lambda = I$ are the partial geometries (r, k, k) [3].

(b) The nets of degree $r (\geq 2)$ and order $k (\geq 2)$ are the partial geometries (r, k, r-1) [3].

(c) The partial geometries for which t = 1 are the generalized quadrangles [3].

(d) In a finite projective plane of order q, any non-void set of l points may be described as a $\{l; d\}$ -arc, where $d(d \neq 0)$ is the greatest number of collinear points in the set. For given q and $d(d \neq 0)$, l can never exceed (d-1)(q+1)+1, and an arc with that number of points will be called a maximal arc [1]. Equivalently, a maximal arc may be defined as a non-void set of points meeting every line in just d points or in none at all. It is not difficult to prove that a necessary condition for the existence of a maximal arc (as a proper subset of a given plane) is that d should be a factor of q [1]. But the condition is not sufficient; J. A. Thas [10] has proved that, in the desarguesian plane of order $q = 3^h$ (h > 1), there is no $\{2q+3; 3\}$ -arc. In [6] R. H. F. Denniston proves that the condition does suffice in the case of any desarguesian plane of order 2^h .

Let K be a $\{qd-q+d;d\}$ -arc, I < d < q, of a projective plane π (not necessarily desarguesian) of order q. Define points of the partial geometry S as the points of π which are not contained in K. Lines of S are the lines of π which are incident with d points of K. The incidence is that of π . Now it is easy to prove that the configuration S so defined is a partial geometry with parameters (q-q/d+1, q-d+1, q-q/d-d+1) ([8], [9], [11]). Moreover, if π is desarguesian then it is also possible to construct partial geometries (qd-q+d, q, d-1) and (q(q-d+1)/d, q, (q-d)/d) ([8], [9]).

2. MAIN THEOREM

2.1. Theorem. If there exists a partial geometry $S=\left(P\;\text{, }B\;\text{, }I\right)$ with parameters

r = u + I, k = s + I, t for which $\gamma = s - t > 0$, $t \mid us$,

 $u\gamma \leq (\gamma + 1) (s - \gamma)$ and $u(2s - \gamma(\gamma + 2)(\gamma^2 + 1)) > (s - \gamma)(\gamma(\gamma + 1) - 2)$, then there also exists a partial geometry $\overline{S} = (\overline{P}, \overline{B}, \overline{I})$ with parameters $\overline{r} = s + 1 - t$, $\overline{k} = (su + t)/t$, $\overline{t} = u(s - t)/t$.

Proof. The graph G = (P, E) of S has parameters

$$v = (s + 1) (su + t)/t, \quad n_1 = (u + 1) s, \quad p_{11}^1 = (s - 1) + u(t - 1),$$

$$p_{11}^2 = (u + 1) t \quad (u \ge 1, s \ge 1, 1 \le t \le u + 1, 1 \le t < s).$$

The complementary graph $\overline{\mathbf{G}} = (\mathbf{P}, \overline{\mathbf{E}}), \ \overline{\mathbf{E}} = \{\{x, y\} \in \mathbf{P} \mid | x \neq y\}, \text{ of } \mathbf{G} \text{ is strongly regular with parameters } \overline{v} = v = (s + 1)(su + t)/t, \ \overline{n_1} = n_2 = su(s + 1 - t)/t, \ \overline{p_{11}}^1 = p_{22}^2 = su(s + 1 - t)/t - (u + 1)(s - t) - 1, \ \overline{p_{11}}^2 = \overline{p_{22}}^2 = u(s + 1 - t)(s - t)/t.$ Let $\overline{k} = (su + t)/t, \ \overline{r} = s + 1 - t \text{ and } t = u(s - t)/t.$

Then \bar{r} , \bar{k} , \bar{t} are integers with $\bar{k} \ge 2$, $\bar{r} \ge 2$, $1 \le \bar{t} < \bar{k}$, $1 \le \bar{t} \le \bar{r}$ (this follows from $\gamma = s - t > 0$, $t \mid us$ and $u\gamma \le (\gamma + 1) (s - \gamma)$). Now it is easy to check that \overline{G} is pseudo geometric $(\bar{r}, \bar{k}, \bar{t})$. Since $u(2s - \gamma(\gamma + 2)$ $(\gamma^2 + 1)) > (s - \gamma) (\gamma(\gamma + 1) - 2)$, it follows from (2) that \overline{G} is geometric $(\bar{r}, \bar{k}, \bar{t})$. Consequently there exists a partial geometry $(\bar{r}, \bar{k}, \bar{t})$.

Remark. $\overline{P} = P$, the elements of \overline{B} are the grand cliques of the graph \overline{G} , and \overline{I} is the natural incidence relation [2].

2.2. Corollaries.

(a) By applying this theorem to nets, we obtain the well-known theorem of Bruck-Shrikhande [5].

(b) If there exists a partial geometry (q-q/d+1, q-d+1, q-d+1, q-q/d-d+1), with 1 < d < q and $2q > \delta^4 - \delta^3 + \delta^2 + \delta - 2(q = \delta d)$, then there exists a partial geometry (q/d, q+1, q/d) and consequently a balanced incomplete block design with parameters $k^* = q/d$, $r^* = q + 1$, $\lambda^* = 1$.

3. Embedding of the complement of a maximal arc in a projective plane

3.1. Ovoids and spreads.

Let S = (P, B, I) be a partial geometry (u + I, s + I, t). If V is a set of points (resp. lines) of S no two of which are collinear (resp. concurrent), then it is easy to prove that $|V| \le (su + t)/t$. If |V| = (su + t)/t, then V is called an ovoid (resp. spread) of S. A necessary condition for the existence of an ovoid (resp. spread) is that t should be a factor of su.

3.2. The complement of a maximal arc.

Let K be a $\{qd - q + d; d\}$ -arc, I < d < q, of a projective plane π of order q (not necessarily desarguesian). If we delete the points of K from π , then the incidence structure of the remaining points and lines has the following properties:

(i) there are two types of lines: lines of type (I) are incident with q + 1 points and lines of type (II) are incident with q + 1 - d points (1 < d < q);

(ii) each point is incident with q/d lines of type (I) and q + I - q/d lines of type (II);

(iii) any two distinct points are both incident with exactly one line.

Conversely let D be an incidence structure with the above properties. We may ask the question whether or not it is possible to embed D in a projective plane of order q by suitably extending the lines of type (II).

3.3. THEOREM. If D = (P, B, I) is an incidence structure with the above properties (i)-(iii) and if $2q > d^4 - d^3 + d^2 + d - 2$, then D is embeddable in a projective plane π of order q by suitably extending the lines of type (II). Moreover the set of the "new" points is a $\{qd - q + d; d\}$ -arc of that plane.

Proof. Suppose that L is a line of type (I) and that $M \in B - \{L\}$. We shall prove that L and M are concurrent. Let $x \mid M$ and $x \nmid L$. From (iii) follows that there are exactly q + I lines incident with x and concurrent with L. Moreover x is incident with exactly q + I lines (see (ii)). Consequently L and M are concurrent.

Let $D_1 = (P, B_1, I_1)$, where B_1 is the set of lines of type (I) and where I_1 is induced by the incidence relation I. From the previous remark follows easily that D_1 is a partial geometry (q/d, q + I, q/d).

Let $D_2 = (P, B_2, I_2)$, where B_2 is the set of lines of type (II) and where I_2 is induced by the incidence relation I. Suppose that $L \in B_2$ and $x \nmid L$. There are exactly q + I - d lines of B incident with x and concurrent with L. Among these lines are the q/d lines of B_1 which are incident with x. Consequently B_2 contains exactly q + I - d - q/d lines which are incident with x and concurrent with L. Hence D_2 is a partial geometry (q + I - q/d, q + I - d - q/d).

Now we consider the geometry $D_2^* = (B_2, P, I_2)$, which is a partial geometry (q + I - d, q + I - q/d, q + I - d - q/d). From I < q/d < q and $2q > d^4 - d^3 + d^2 + d - 2$ there follows that the incidence structure $D_3 = (B_2, P_1, I_3)$, with P_1 the set of grand cliques of the complement \overline{G}_2^* of the graph of D_2^* and with I_3 the natural incidence relation, is a partial geometry (d, q + I, d) (see 2.2.b.). We remark that each element of P_1 is incident with q + I = ((q - q/d) (q - d) + (q + I - d - q/d))/(q + I - d - q/d) elements of B_2 , and consequently the grand cliques of \overline{G}_2^* are the spreads of D_2 (i.e. the ovoids of D_2^*).

Let us consider the incidence structure $D' = (P \cup P_1, B_1 \cup B_2, I \cup I_3)$. First of all we remark that $|P \cup P_1| = |P| + |P_1| = (q + I)(q - d + I) + dq - q + d = q^2 + q + I$. If $x, y \in P$, $x \neq y$, then there is exactly one element of $B_1 \cup B_2$ which is incident with x and y (the element L defined by $x \ I \ L \ I \ y$); there is exactly one element of $B_1 \cup B_2$ which is incident with x = q + q + I. If $x, y \in P$, $x \neq y$, then there is exactly one element $x \ y, x \in P$ and $y \in P_1$ (the element L defined y of D_2 for which $x \ I \ L$); finally there is exactly one element of $B_1 \cup B_2$ which is incident with two given elements $x, y \in P_1$, $x \neq y$ (since D_3 is a partial geometry (d, q + I, d), the spreads $x, y \ of D_2$ have exactly one line in common). Consequently any two distinct points of D' are both incident with exactly one line of D'. Since each line of D' is incident with q + I points of D' (remark that each element of B_2 is incident with d elements of P_1), we conclude that D' is a $2 - (q^2 + q + 1, q + 1, 1)$ design, i.e. a projective plane of order q. Evidently P₁ is a $\{qd - q + d; d\}$ -arc of the plane D'.

Remarks. (a) For d = 2 we have the theorem of Bose-Shrikhande [4] about the embedding of the complement of a complete oval in a projective plane of even order.

(b) An analogous reasoning yields the following theorem: Suppose that S is a partial geometry (q + 1 - q/d, q + 1 - d, q + 1 - d - q/d), 1 < d < q, for which the following axioms are satisfied:

(i) $2q > \delta^4 - \delta^3 + \delta^2 + \delta - 2$, where $q = \delta d$;

(ii) S has a family V of spreads such that any two non concurrent lines of S are contained in exactly one element of V.

Then S is a partial geometry arising from a $\{qd - q + d; d\}$ -arc in a projective plane of order q.

References

- [1] A. BARLOTTI (1956) Sui {k; n}-archi di un piano lineare finito, «Boll. Un. Mat. Ital.», II, 553-556.
- [2] R.C. BOSE (1963) Strongly regular graphs, partial geometries and partially balanced designs, « Pacific J. Math. », 13, 389-419.
- [3] R.C. BOSE (1972) Graphs and designs, in "Finite geometric structures and their applications", «C.I.M.E.», Bressanone, 3-104.
- [4] R. C. BOSE and S. S. SHRIKHANDE (1973) Embedding the complement of an oval in a projective plane of even order, « J. of Discrete Math. ».
- [5] R. H. BRUCK (1963) Finite nets, II: Uniqueness and embedding, « Pacific J. Math. », 13, 421-457.
- [6] R. H. F. DENNISTON (1969) Some maximal arcs in finite projective planes, « J. Comb. Theory », 6, 317-319.
- [7] S. S. SHRIKHANDE (1965) On a class of partially balanced incomplete block designs, «Ann. Math. Statist.», 36, 1807–1814.
- [8] J.A. THAS (1973) Construction of partial geometries, «Simon Stevin», 46, 95-98.
- [9] J.A. THAS (1974) Construction of maximal arcs and partial geometries, «Geometriae Dedicata », 3, 61-64.
- [10] J. A. THAS (1975) Some results concerning $\{(q + 1) (n 1); n\}$ -arcs and $\{qn q + n; n\}$ -arcs in finite projective planes of order q, «J. Comb. Theory», 19, 228–232.
- [11] W. D. WALLIS (1973) Configurations arising from maximal arcs, «J. Comb. Theory A», 15, 115-119.