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Geometrie finite. — Some applications of the fundamental charac-
terization theovem of R. C. Bose to partial geometries. Nota di Josera A.
Tuas e Frank DE CLERCK, presentata ® dal Socio B. SEGRE.

RIASSUNTO. — Ad ogni assegnata geometria parziale ne viene associata un’altra (che
pud dirsi ad essa complementare). Vengono poi caratterizzate le strutture d’incidenza otte-
nibili a partire da un piano m proiettivo (non necessariamente desarguesiano) d’ordine ¢
col sopprimere da = i punti di un {gd — ¢ + & ; d}-arco, d essendo un intero soddisfacente
alle 1 <d <g.

1. INTRODUCTION

1.I. A (finite) partial geometry (»,%,¢) is an incidence structure
S=(P,B,I) with a symmetric incidence relation satisfying the following
axioms:

(i) each point is incident with » lines (» > 2) and two distinct points
are incident with at most one line;

(ii) each line is incident with £ points (£ > 2) and two distinct lines
are incident with at most one point;

(iii) if x is a point and L is a line not incident with x, then there are
exactly ¢(z >1) points xy,25, -+, % and ¢ lines L,,L,,---, L, such that
foiIinL, i=1,2,"--,%

If |P|=v and |B|=24, then v=~4((k—1)(r— 1)+ &)/t and
b=7r((r—1)(k—1)+ 2t [3]. Consequently ¢|%(£—1)(»r—1) and
t|r(r—1)(k—1). We also remark that # <<% and 7 <.

1.2. If the points x, y (resp. lines L ;M) of S are collinear (resp. con-

current), then we write x ~ y (resp. L ~M); otherwise we write x ~ y (resp.
L~ M). ,
The graph G of the partial geometry S = (P, B, I) is the graph (P, E),
where E = {{x,y}CPJlx ~y}. It is easy to prove that G is strongly
regular with parameters o= 4((k—1)(r— 1)+t , 7, =7r(k—1),
pi=G—1){t—1)+k—2, po=rt(1) [3]. The graph G of a partial
geometry (r, £,¢) is called a geometric graph (», 2, ¢).

A strongly regular graph G is defined to be pseudo geometric (7, 4, 7)
if its parameters v, , 11, p11 are given by (1), where », %, ¢ are integers
with » >2, 2>2, 1 <¢t<4% 1<¢t<r. In [2] R.C. Bose establishes a
sufficient condition for a pseudo geometric graph (r,%,7) to be geometric
(r, %, ): the pseudo geometric graph (r, £, ) is geometric (r, £,7) if

(2) k> (r—1)+tr+1)0t—27+2)).

(*) Nella seduta dell’11 giugno 1975.
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1.3. EXAMPLES OF PARTIAL GEOMETRIES

(@) The balanced incomplete block designs with A =1 are the
partial geometries (r, £, £) [3].

(6) The nets of degree » (= 2) and order £ (= 2) are the partial geo-
metries (», £ ,r— 1) [3].

(¢) The partial geometries for which #=1 are the generalized qua-
drangles [3].

(@) In a finite projective plane of order ¢, any non-void set of / points
may be described as a {/;d }-arc, where & (d==0) is the greatest number
of collinear points in the set. For given ¢ and & (4= 0), / can never exceed
(d—1)(g + 1) + 1, and an arc with that number of points will be called a
maximal arc [1]. Equivalently, a maximal arc may be defined as a non-void
set of points meeting every line in just & points or in none at all. It is not
difficult to prove that a necessary condition for the existence of a maximal
arc (as a proper subset of a given plane) is that & should be a factor of ¢ [1].
But the condition is not sufficient; J. A. Thas [10] has proved that, in the
desarguesian plane of order ¢ = 3" (%4 > 1), there is no {2¢ -+ 3; 3 }-arc.
In [6] R.H. F. Denniston proves that the condition does suffice in the case
of any desarguesian plane of order 2%

Let K be a {¢9d—g 4 d;d}-arc, 1 <d <g, of a projective plane =
(not necessarily desarguesian) of order g. Define points of the partial geometry
S as the boints of © which are not contained in K. Lines of S are the lines
of = which are incident with & points of K. The incidence is that of =. Now
it is easy to prove that the configuration S so defined is a partial geometry
with parameters (¢—g¢/d +1,9—d + 1, g—gld —d + 1) ([8], [9], [11]).
Moreover, if m is desarguesian then it is also possible to construct partial

geometries (¢9d—g +d,q,d—1) and (g (¢—d + 1)|d ¢, (g—d)|d) ([8], [9])-

2. MAIN THEOREM
2.1. THEOREM. [If there exists a partial geometry S = (P ,B, 1) with
parameters

re=1u 41, k:s-{—l,.z‘ Jor which v=s—1¢>o0, ¢|us,

wy<(y+1)—y) and u(zs—yFx+2) @+ D))>(c—1) ¢ +1)—2),
then there also exists a partial geometry S = (P,B,1) with parameters
F=s+1—¢,k=_(u-+)t,i=uls—21).

Proof.. The graph G = (P, E) of S has parameters
v = (s 4 1) (s + 0)[¢, m = (u+ 1) s, ph=(—1)+u@t—1),
Ph= @+ 1)t @w=1,s=1,1<t<u+1,1<t<s).
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The complementary graph G = (P,E), E={{x,y}CP|x~»y}, of G is
strongly regular with parameters T = v = (s 4 1) (su + 8)[t, Fi; = n, =
=su(s -+ 1—20)t, 13}1 = phy = SUL CH1—t—@+1)(s—8)—1, pr =
=pp=u(s +1—28)(—nHt. Let k= (su+dt, F=s+1—¢ and
t=u(s—20)r.

Then #,k,f are integers with k>2 7 >2, 1 <i<lk,1 <fi<F¥
(this follows from y=s-—¢ >0, ¢#|us and 2y <(y + 1) (s—7)). Now
it is easy to check that G is pseudo geometric (7, &, £). Since # (25— y(y + 2)
Y+ 1) >(—7v) (¥ + 1)—2), it follows from (2) that G is geometric
(7, k,f). Consequently there exists a partial geometry (7,% 7).

__ Remart. P = P, the elements of B are the grand cliques of the graph
G, and I is the natural incidence relation [2].

2.2. Corollaries.

(@) By applying this theorem to nets, we obtain the well-known theorem
of Bruck-Shrikhande [3].

(6) If there exists a partial geometry (¢g—gjd -+ 1,9—d + 1,
g—gqld—d + 1), with1 <d <gand2¢g > 8 —3 4 & 4+ §— 2 (¢ = 3d),
then there exists a partial geometry (¢/d,q + 1,¢/d) and consequently a
balanced incomplete block design with parameters 4" = g/d, »* = g+ 1,
2 =1.

3. EMBEDDING OF THE COMPLEMENT OF A MAXIMAL ARC
IN A PROJECTIVE PLANE

3.1. Ovoids and spreads.

Let S= (P, B, I) be a partial geometry (z 4+ 1,5+ 1,¢). If Vis a
set of points (resp. lines) of S no two of which are collinear (resp. concurrent),
then it is easy to prove that |V | < (su +£)fz. If |V | = (su + £)[t, then V
is called an ovoid (resp. spread) of S. A necessary condition for the existence
of an ovoid (resp. spread) is that # should be a factor of su.

3.2. The complement of a maximal arc.

Let K be a {¢qd—¢g +d;d}-arc, 1 <d <g, of a projective plane =
of order ¢ (not necessarily desarguesian). If we delete the points of K from =,
then the incidence structure of the remaining points and lines has the following
properties:

(i) there are two types of lines: lines of type (I) are incident with ¢ -+ 1
points and lines of type (II) are incident with ¢ + 1 —d points (1 <d < ¢);

(i) each point is incident with ¢/ lines of type (I) and ¢+ 1 —g¢g/d
lines of type (II); '

(iii) any two distinct points are both incident with exactly one line.
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Conversely let D be an incidence structure with the above properties.
We may ask the question whether or not it is possible to embed D in a
projective plane of order ¢ by suitably extending the lines of type (II).

3.3. THEOREM. [Jf D= (P ,B,1) is an incidence structure wilh the
above properties (1)-(iil) and if 2q > d*—d° - d° - d— 2, then D is embed-
dable in a projective plane w of order g by suitably extending the lines of type (11).
Moreover the set of the “‘ new” points is a {gd—q -+ d ; d}-arc of that plane.

Proof. Suppose that L is a line of type (I) and that M € B— {L}.
We shall prove that L and M are concurrent. Let x IM and #tL. From (iii)
follows that there are exactly ¢ + 1 lines incident with x and concurrent
with L. Moreover x is incident with exactly ¢ 4+ 1 lines (see (ii)). Conse-
quently L and M are concurrent.

Let D, = (P, B;, I,), where B, is the set of lines of type (I) and where
I, is induced by the incidence relation I. From the previous remark follows
casily that D, is a partial geometry (¢/d,q + 1 ,¢/d).

Let D, = (P, B,, L), where B, is the set of lines of type (II) and where
I is induced by the incidence relation I. Suppose that L € B, and x 1t L.
There are exactly ¢ + 1 — & lines of B incident with x and concurrent with L.
Among these lines are the ¢/d lines of By which are incident with x. Conse-
quently B, contains exactly ¢ 4+ 1 — & — ¢/d lines which are incident with x
and concurrent with L. Hence D, is a partial geometry (¢ -+ 1 — ¢/d,
g+1—d,g+1—d—qld).

Now we consider the geometry Dj = (B,, P, 1), which is a partial
geometry (¢ +1—d,qg +1—qld,qg+1—d—gq|d). From 1 <gld <gq
and 2¢ > d*—d® 4+ d® - d— 2 there follows that the incidence structure
Dy = (B;, Py, I3), with P, the set of grand cliques of the complement Gy
of the graph of D, and with I, the natural incidence relation, is a partial geo-
metry {d,¢g + 1,d) (see 2.2.b.). We remark that each element of P, is inci-
dent withg + 1 = ((¢—¢/d) (¢g—d) + (¢g+ 1 —d—gld)(g+ 1 —d—qg/d)
elements of B, and consequently the grand cliques of G, are the spreads
of D, (i.e. the ovoids of Dj).

Let us consider the incidence structure D'= (PUP;,B,UB,, 1UI,).
First of all we remark that |PUP, | = |P |+ | P, | = (¢g+1)(g—d+1)+
+dg—qg+d=¢"+q+1. If x,y€P, x==y, then there is exactly one
element of B; U B, which is incident with x and y (the element L defined by
x 1L 1y); there is exactly one element of B; UB, which is incident with
two given elements x,y,x €P and y € P; (the element L of the spread y
of D, for which x I L); finally there is exactly one element of B; UB, which
is incident with two given elements x,y € P;, x==y (since D; is a partial
geometry. (d,q + 1,d), the spreads x,y of D, have exactly one line in
common). Consequently any two distinct points of D’ are both incident with
exactly one line of D’. Since each line of D’ is incident with ¢ + 1 points
of D’ (remark that each element of B, is incident with & elements of P,), we



Q0 Lincei — Rend. Sc. fis. mat. e nat. — Vol. LIX — Ferie 1975

conclude that D' is a 2—(¢> +¢ + 1;¢ + 1, 1) design, ie. a projective
plane of order ¢. Evidently P, is a {¢d—g¢ ++d;d }-arc of the plane D’.

Remarks. (a) For d = 2 we have the theorem of Bose-Shrikhande [4]
about the embedding of the complement of a complete oval in a projective
plane of even order.

(6) An analogous reasoning vyields the following theorem: Suppose
that S is a partial geometry (¢ + 1—g/d, g +1—d, g + 1 —d—qld),
I <d <gq, for which the following axioms are satisfied:

(i) 2¢g>8—8 4+ 8 +5—2, where g = 34;
(i) S has a family V of spreads such that any two non concurrent
lines of S are contained in exactly one element of V.

Then S is a partial geometry arising from a {¢d—g + d; d} -arc in a
projective plane of order g.
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