Atti Accademia Nazionale dei Lincei
 Classe Scienze Fisiche Matematiche Naturali RENDICONTI

Joseph A. Thas

Flocks of non-singular ruled quadrics in PG (3,q)

Atti della Accademia Nazionale dei Lincei. Classe di Scienze Fisiche, Matematiche e Naturali. Rendiconti, Serie 8, Vol. 59 (1975), n.1-2, p. 83-85.

Accademia Nazionale dei Lincei
http://www.bdim.eu/item?id=RLINA_1975_8_59_1-2_83_0

L'utilizzo e la stampa di questo documento digitale è consentito liberamente per motivi di ricerca e studio. Non è consentito l'utilizzo dello stesso per motivi commerciali. Tutte le copie di questo documento devono riportare questo avvertimento.

> Articolo digitalizzato nel quadro del programma
> bdim (Biblioteca Digitale Italiana di Matematica)
> SIMAI \& UMI
> http://www.bdim.eu/

Geometrie finite. - Flocks of non-singular ruled quadrics in PG $(3, q)$. Nota di Joseph A. Thas, presentata ${ }^{(*)}$ dal Socio B. Segre.

Abstract

Riassunto. - Se Q è una quadrica rigata non singolare di $S_{3, q}, q+1$ coniche non degeneri tracciate su Q diconsi costituire un fascio (flock) quando esse ricoprono Q completamente, il che val quanto dire che tali coniche risultano a due a due prive di punti comuni. Qui si dimostra che, mentre per q pari ossia potenza di 2) ogni fascio risulta lineare (e cioè formato dalle sezioni di Q coi piani passanti per una retta priva di punti a comune con Q), quando q è dispari esistono sempre dei fasci non lineari.

I. Introduction

An ovoid O of the threedimensional projective space $\operatorname{PG}(3, q), q>2$, is a set of $q^{2}+1$ points no three of which are collinear. The circles of O are the sets $\mathrm{P} \cap \mathrm{O}$, where P is a plane of $\mathrm{PG}(3, q)$ with $|\mathrm{O} \cap \mathrm{P}|>\mathrm{I}$. A flock of O is a set F of mutually disjoint circles such that, with the exception of precisely two points, every point of O is on a (necessarily unique) circle of F .

If L is a line of $\operatorname{PG}(3, q)$ which has no point in common with O , then the circles $\mathrm{P} \cap \mathrm{O}$, where P is a plane containing L with $|\mathrm{P} \cap \mathrm{O}|>\mathrm{I}$, constitute a so-called linear flock of O. That each flock of O is linear was proved by the Author in the even case [2] and by W.F. Orr in the odd case [1].

This paper deals with the flocks of a non-singular ruled quadric Q of PG $(3, q)$. First of all we remark that the circles of the quadric Q are by definition the irreducible conics on Q . A flock of Q is a set F of $q+\mathrm{I}$ mutually disjoint circles of Q . If L is a line of $\mathrm{PG}(3, q)$ which has no point in common with Q, then the circles $P \cap Q$, where P is a plane containing L, constitute a_{i} so-called linear flock of Q.
2. Theorem. Each flock of the non-singular ruled quadric Q of $\mathrm{PG}(3, q)$, q even, is linear.

Proof. Suppose that $\mathrm{F}=\left\{\mathrm{C}_{1}, \mathrm{C}_{2}, \cdots, \mathrm{C}_{q+1}\right\}$ is a flock of the nonsingular ruled quadric Q . The nucleus of the circle C_{i} is denoted by n_{i}.

We shall prove that $\mathrm{L}=\left\{n_{1}, n_{2}, \cdots, n_{q+1}\right\}$ is a line. For that purpose it is sufficient to show that every plane of $\operatorname{PG}(3, q)$ has at least one point in common with L [2].
a) Let P be the tangent plane of Q at $x \in \mathrm{Q}$. Through x passes a circle of the flock, say C_{i}. The tangent line of C_{i} at x is contained in P , and so $n_{i} \in \mathrm{P}$.
b) Let P be a plane for which $\mathrm{P} \cap \mathrm{Q} \in \mathrm{F}$. If $\mathrm{C}_{i}=\mathrm{P} \cap \mathrm{Q}$, then $n_{i} \in \mathrm{P}$.
(*) Nella seduta dell' I I giugno 1975.
c) Finally let P be a plane for which $\mathrm{P} \cap \mathrm{Q}=\mathrm{C}$ is an irreducible conic which is not contained in F . Then $\left|\mathrm{C}_{i} \cap \mathrm{C}\right| \in\{0, \mathrm{I}, 2\}$. As $q+\mathrm{I}$ is odd there exists a C_{j} such that $\left|\mathrm{C}_{j} \cap \mathrm{C}\right|=\mathrm{I}$. There follows that C_{j} and C have a common tangent line T. at their common point. So $n_{j} \in T \subset P$, from which $n_{j} \in \mathrm{P}$.

Hence every plane of $\operatorname{PG}(3, q)$ has at least one point in common with L . Consequently L is a line of $\operatorname{PG}(3, q)$. Next we remark that the polar planes of $n_{1}, n_{2}, \cdots, n_{q+1}$, with respect to the symplectic polarity π defined by Q , are the planes of the circles $\mathrm{C}_{1}, \mathrm{C}_{2}, \cdots, \mathrm{C}_{q+1}$. As L is a line, these $q+\mathrm{I}$ planes all pass through the polar line of L with respect to π. We conclude that the flock F is linear.
3. Theorem. Each non-singular ruled quadric Q of $\mathrm{PG}(3, q), q$ odd, has a non-linear flock.

Proof. We shall use a technique which is due to W. F. Orr [r].
a) Without loss of generality we assume that Q is represented by the equation $x_{0}^{2}+x_{1}^{2}-x_{2}^{2}-x_{3}^{2}=0$. If $y\left(y_{0}, y_{1}, y_{2}, y_{3}\right) \notin \mathrm{Q}$ and if P_{y} is the polar plane of y with respect to Q , then the circle $\mathrm{Q} \cap \mathrm{P}_{y}$ is denoted by C_{y} or $\mathrm{C}_{y}\left(y_{0}, y_{1}, y_{2}, y_{3}\right)$. For any two points $y\left(y_{0}, y_{1}, y_{2}, y_{3}\right)$ and $z\left(z_{0}, z_{1}, z_{2}, z_{3}\right)$, we pose $y \cdot z=y_{0} z_{0}+y_{1} z_{1}-y_{2} z_{2}-y_{3} z_{3},\|y\|=y \cdot y(\|y\|=0 \Longleftrightarrow y \in Q)$, $y \times z=(y \cdot z)^{2}-\|y\|\|z\|$.
b) Consider two distinct circles $\mathrm{C}_{y}\left(y_{0}, y_{1}, y_{2}, y_{3}\right)$ and $\mathrm{C}_{z}\left(z_{0}, z_{1}, z_{2}, z_{3}\right)$. The common points of the line $y z$ and Q are determined by the equation $\left(y_{0}+h z_{0}\right)^{2}+\left(y_{1}+h z_{1}\right)^{2}-\left(y_{2}+h z_{2}\right)^{2}-\left(y_{3}+h z_{3}\right)^{2}=\mathrm{o}$ or $\|z\| h^{2}+2(y \cdot z) h+$ $+\|y\|=0$. The discriminant of this equation is $4(y \times z)$.

Consequently we have:

$$
\begin{aligned}
& \left|\mathrm{C}_{y} \cap \mathrm{C}_{z}\right|=2 \Longleftrightarrow|y z \cap \mathrm{Q}|=2 \Longleftrightarrow y \times z \text { is a nonzero square in } \mathrm{GF}(q) ; \\
& \left|\mathrm{C}_{y} \cap \mathrm{C}_{z}\right|=\mathrm{I} \Longleftrightarrow|y z \cap \mathrm{Q}|=\mathrm{I} \Longleftrightarrow y \times z=\mathrm{o} ; \\
& \left|\mathrm{C}_{y} \cap \mathrm{C}_{z}\right|=\mathrm{o} \Longleftrightarrow|y z \cap \mathrm{Q}|=\mathrm{o} \Longleftrightarrow y \times z \text { is a nonsquare in GF }(q) .
\end{aligned}
$$

c) We write $\mathrm{C}_{y} \sim \mathrm{C}_{z}$ if and only if the circles C_{y} and C_{z} have a common tangent circle; otherwise we write $\mathrm{C}_{y} \nsim \mathrm{C}_{z}$.

Suppose that $\mathrm{C}_{y} \sim \mathrm{C}_{z}$. Then there exists a circle C_{u} for which $y \times u=$ $=z \times u=\mathrm{o}$. Hence $(y \cdot u)^{2}=\|y\|\|u\|$ and $(z \cdot u)^{2}=\|z\|\|u\|$. Consequently $\|y\|\|z\|\|u\|^{2}=(y \cdot u)^{2}(z \cdot u)^{2}$, and so $\|y\|\|z\|$ is a square in GF (q).

Conversely, consider two circles C_{y} and C_{z} for which $\|y\|\|z\|$ is a square in GF (q). If $\mathrm{C}_{y}=\mathrm{C}_{z}$, then C_{y} and C_{z} have a common tangent circle. So we suppose that $\mathrm{C}_{y} \neq \mathrm{C}_{z}$. Let $v\left(v_{0}, v_{1}, v_{2}, v_{3}\right)$ be a point of $\mathrm{C}_{y}-\mathrm{C}_{z}$. Then we have $v \cdot y=0$ and $v \cdot z \neq 0$. If $t\left(y_{0}+h v_{0}, y_{1}+h v_{1}, y_{2}+h v_{2}, y_{3}+h v_{3}\right), h \neq 0$, then $\mathrm{C}_{t} \cap \mathrm{C}_{y}=\{v\}$. We remark that $\|t\|=\|y\|+2 h(y \cdot v)+h^{2}\|v\|=\|y\|$. Now there holds $t \times z=((y \cdot z)+h(v \cdot z))^{2}-\|y\|\|z\|=(v \cdot z)^{2} h^{2}+2(y \cdot z)(v \cdot z) h+$ $+(y \cdot z)^{2}-\|y\|\|z\|$. As the discriminant $4(y \cdot z)^{2}(v \cdot z)^{2}-4(y \cdot z)^{2}(v \cdot z)^{2}+$
$+4\|y\|\|z\|(v \cdot z)^{2}$ is a nonzero square in $\mathrm{GF}(q)$, there is at least one circle C_{t} for which $t \times z=0$ or $\left|\mathrm{C}_{t} \cap \mathrm{C}_{z}\right|=\mathrm{I}$. Hence $\mathrm{C}_{y} \sim \mathrm{C}_{z}$.

From the preceding follows that $\mathrm{C}_{y} \sim \mathrm{C}_{z}$ if and only if $\|y\|\|z\|$ is a square in $\mathrm{GF}(q)$. Consequently the relation \sim is an equivalence relation, separating the circles of Q into two equivalence classes.
d) Suppose that the circles C_{y} and C_{z} are disjoint and that $\mathrm{C}_{y} \sim \mathrm{C}_{z}$ (it is easy to show geometrically that such circles always exist). Now we consider the $q+\mathrm{I}$ circles C_{v} which are orthogonal to C_{y} and C_{z} (remark that the circles C_{v} are mutually disjoint). There holds $v \cdot y=v \cdot z=0$ and consequently $v \times y=-\|v\|\|y\|, v \times z=-\|v\|\|z\|$. Hence $(v \times y)(v \times z)=$ $=\|v\|^{2}\|y\|\|z\|$ is a nonzero square in GF (q), and so $v \times y$ and $v \times z$ are both nonzero squares or both nonsquares in $\mathrm{GF}(q)$. There follows that $\left|\mathrm{C}_{v} \cap \mathrm{C}_{y}\right|=$ $=\left|\mathrm{C}_{v} \cap \mathrm{C}_{z}\right|=2$ or $\left|\mathrm{C}_{\nu} \cap \mathrm{C}_{y}\right|=\left|\mathrm{C}_{v} \cap \mathrm{C}_{z}\right|=\mathrm{o}$. The set of the $(q+\mathrm{i}) / 2$ circles C_{v} for which $\left|\mathrm{C}_{v} \cap \mathrm{C}_{y}\right|=\left|\mathrm{C}_{v} \cap \mathrm{C}_{z}\right|=2$ (resp. $\left|\mathrm{C}_{v} \cap \mathrm{C}_{y}\right|=\left|\mathrm{C}_{v} \cap \mathrm{C}_{z}\right|=0$) is denoted by V (resp. V^{\prime}).

If $\mathrm{C}_{v_{1}}, \mathrm{C}_{v_{2}} \in \mathrm{~V}$ (resp. $\mathrm{C}_{v_{1}}, \mathrm{C}_{v_{2}} \in \mathrm{~V}^{\prime}$), then - $\left\|v_{1}\right\|\|y\|$ and $-\left\|v_{2}\right\|\|y\|$ are both nonzero squares (resp. nonsquares) and so $\mathrm{C}_{\mathrm{v}_{1}} \sim \mathrm{C}_{\mathrm{v}_{2}}$. If $\mathrm{C}_{v_{1}} \in \mathrm{~V}$ and $\mathrm{C}_{v_{g}} \in \mathrm{~V}^{\prime}$, then - $\left\|v_{1}\right\|\|y\|$ is a nonzero square and - $\left\|v_{2}\right\|\|y\|$ is a nonsquare, and so in this case $\mathrm{C}_{\mathrm{v}_{1}} \nsim \mathrm{C}_{v_{2}}$. Consequently all elements of V belong to one equivalence class of \sim, and all elements of V^{\prime} belong to the other equivalence class of \sim.

Next we consider the circles C_{w} which are orthogonal to each circle C_{v}. From the preceding follows that for each circle C_{w} we have $\left|\mathrm{C}_{w} \cap \mathrm{C}_{v}\right|=2 \forall \mathrm{C}_{v} \in \mathrm{~V}$ (resp. V^{\prime}), or $\left|\mathrm{C}_{w} \cap \mathrm{C}_{v}\right|=\circ \forall \mathrm{C}_{v} \in \mathrm{~V}$ (resp. V^{\prime}). The set of the $(q+1) / 2$ circles C_{w} for which $\left|C_{w} \cap C_{v}\right|=2 \forall C_{v} \in V$, or $\left|\mathrm{C}_{w} \cap \mathrm{C}_{v}\right|=o \forall \mathrm{C}_{v} \in \mathrm{~V}^{\prime}$, is denoted by W^{\prime}; the set of the $(q+\mathrm{I}) / 2$ circles C_{w} for which $\left|\mathrm{C}_{w} \cap \mathrm{C}_{v}\right|=\mathrm{o} \forall \mathrm{C}_{v} \in \mathrm{~V}$, or $\left|\mathrm{C}_{w} \cap \mathrm{C}_{v}\right|=2 \forall \mathrm{C}_{v} \in \mathrm{~V}^{\prime}$, is denoted by W . Evidently $\mathrm{V} \cup \mathrm{W}=\mathrm{F}$ and $\mathrm{V}^{\prime} \cup \mathrm{W}^{\prime}=\mathrm{F}^{\prime}$ are non-linear flocks of Q , and so the theorem is completely proved.

References

[1] W. F. OrR (1973) - The Miquelian inversive plane IP (q) and the associated projective planes, Thesis submitted to obtain the degree of Doctor of Philosophy at the University of Wisconsin.
[2] J. A. Thas (1972) - Flocks of finite egglike inversive planes, «C.I.M.E.», Il ciclo, Bressanone, 189-191.

