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Analisi funzionale. — M nimal displacement of points under weakly
inward  pseudo—lipschitzian mappings. Nota @ di Simeon Rrich,
presentata dal Socio G. SANSONE. '

RIASSUNTO. — Sia C un sottinsieme limitato, chiuso e convesso di uno spazio di Banach
(E,||) e sia T una trasformazione continua, debolmente interna pseudo-lipschitziana. In
questa Nota si considera inf {|x—Tx|:x ¢C}. T appartiene a questa classe di rappre-
sentazione se e soltanto se T —1I (I indica I'identitd) & un generatore fortemente continuo di
semigruppo non lineare di C.

INTRODUCTION

Let E be a real Banach space with norm | |, and let B (E) denote the
family of all non-empty bounded closed convex subsets of E. For each C in
B (E) the Chebyshev radius of C is R (C) = inf {sup { [x —y | : y €C}: x €C}.
If 2>o0 we denote by L (C, 4) the family of those mappings T:C —C
which satisfy a Lipschitz condition with constant £ (that is, | Tx — Ty | <
< k|x—y | for all x and ¥ in C). In a recent paper [6], Goebel studied the
quantity inf{ |x — Tx | : x €C} for T in L (C, £). He defined, for each E
and 4, a function g(E,£):[0,00) = [0, 1) by g(E, £) =sup {inf { | x —
—Tx|:2€C}R(C):CeB(E), TeL(C, 4}, and determined some of its
properties. (We have, of course, inf {|x—Tx|:2€C} < ¢ (E, £ R (C)
for arbitrary C in B (E) and T in L (C, 4)).

In this note we wish to consider inf { |x — Tx | : x €C} for continuous
weakly inward pseudo-lipschitzian T :C — E (see the definitions in Section
1 below). This wider class of mapping is important Lecause a mapping T
belongs to it if and only if T —1I (I stands for the identity) is a continuous
(strong) generator of a nonlinear semigroup on C [11, p. 411].

I. PRELIMINARIES

Let £ be a real number, and let C be a subset of E. A mapping T:C — E
will be called pseudo-lipschitzian with constant £ il for all positive 7 and x
and y inC, |[x—y—rTx—Ty) | >0 —7E) |x—y].

It is clear that a lipschitzian mapping (with constant £) is pseudo-lips-
chitzian (with constant £). (The converse is false). A psaudo-contraction
[2, p. 876] is a pseudo-lipschitzian mapping with 2= 1.

Let E* be the dual space of E. The conjugate norm on E* will also be
denoted by | |. The duality mapping J from E into the family of non-empty

(*) Pervenuta all’Accademia 1’8 agosto 1975.
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weak-star compact convex subsets of E* is defined by J(x)= {«" € E¥
(x,2) = |x|"=]2*[*}. The following lemma is essentially known [9,
p. 509 and 10, p. 416].

LEMMA 1. [f 2 and w are in E and % is real, z‘lze}z the following are equiva-
lent:

(I)‘ lz—rw | >0 —7k) |z | for all positive 7.

@) lim (| 2 —rew | — |2 DJ—r) < & |2 ]
7r—0+

(3) (w,j)< ke  for some j€J(2).

Proof. (1)=(2) is clear because the limit in (2) always exists. In order
to prove that (2) = (3), we may assume that | z—7w | == 0. Letj, € J (3 — rw)
and g, =7,/ 7, |. Let a subnet {g;} of {g,} weak-star converge to a certain
g in the unit ball of E*. Since (w,g,) < (| 2—tw | — | 2 )/(— £), we have
(w,j) < k|z|["forj=|z|g€](2). Finally, (3)= (1) because (1 —74) |z |*
= (e, ) —rk |2 < (o, )— (w0, j) = (e—rw, ) < | 5—rw | | 5]

This lemma immediately implies the following proposition.

PROPOSITION 1. Let C be a non-empty subset of a Banach spaﬁe E. For
a mapping T :C — K the following are equivalent:

(1) T s pseudo-lipschitzian with constant f.
(2) ._lirori (lx—=y—r(Tx—=Ty) | —lx—y DI < k|x—y|

Jor all x and y in C.

(3) For each x and y in C, there is j € | (x —y)
such that (Tx — Ty, )< k|x—y |"

If C is a convex subset of E and x is in C, we define I1(C,x») =
={s€Eiz2=x 1+ a(y—=x) for some y€C and @ >o0}. The closure
cl (I (C,x)) of this subset is sometimes called the support cone to C at x [8,
p. 23]. A mapping T:C — E is said to be weakly inward [7, p. 353] if
Tx €cl (I (C,x)) for each x in C. For zin E we set (z,C) = inf {| 2—y | :
:y €C}. A functional #* 5= 0 in E* is said to support C at x €C if (x, x*) =
— max {(y, +") 1y €C}.

Our hext lemma is also essentially known [12, p. 62, 3, 13, and 5,
p. 368]. It yields Proposition 2.

LEMMA 2. Let C be a comvex subset of E. For zin E and x in C, the follo-
wing ave equivalent:

(1) zecl(I(C,x)).

(2) lim & (1 — &) x + hz, C)Jh = o.
h—>0+

3 If x*eE" supports C ar x, then z,’x* < (x,x).
?
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Progf. (1)=(3) is immediate. If z does not belong to ¢l (I (C, %)), then
there exists 2* in E* such that (z, x¥) >sup{(y,x*):y €cl (I(C,x)}.
The functional x* must support cl (I (C,x)) at . Consequently, (3)=(1).
(2)= (1) is also immediate. To prove (1) = (2), let ¢ > o be given. There
are @ >0 and y €C such that |z —(x +a(y—2x) | <e Leto<4s < 1/a.
Then & (1 — )y x + 4z , Ok < | (1 — By x + he—((1 — ak) x + ahy) |k <.

PROPOSITION 2. Let C be a convex subset of E. For a mapping T : C — E,
the following are equivalent:

(1) T s weakly inward.

(2) lim & (1 —A)x + /Tx,C)l/h =0  for each «x €C.
h—>0+
(3) If x* e E* supports C at x, then (Tx, x*) < (x,2%).

We remark in passing that by Proposition 2 T satisfies Bony’s condition
[1] in Hilbert space if and only if it is weakly inward (cf. [4] and [13]).

We shall denote the family of continuous T:C — E which are both
weakly inward and pseudo-lipschitzian with constant 2 by W (C , 4). In order
to investigate inf{|x —Tx|:x€C} for T in W(C, %) we define, for
each E and £,p (E, %) = sup {inf{|x—Tx|:2€C}/R(C):CeB (E) and
TeW(C, &}.

2. MAIN RESULTS

If # <1, then p(E, %) = o for all E. This follows from [11, p. 413].
The Halpern-Bergman fixed point theorem [7, p. 356] shows that p (E , £) = o
for all £ provided E is finite-dimensional. Therefore we shall assume in
the sequel that E is infinite-dimensional and that 2>1. If E is fixed
(but arbitrary), we shall write p (£) (and g (#)) instead of p(E, £ (and
£(E, A).

THEOREM 1. p (&) < k—1 for kb >1.

Proof. Let = be positive, and let o <7< 1/k. . Let y €C satisfy
sup{|y—x|:x€C} <R(C)+ ¢ and defineS: C - E by Sx = (1 — 8y +
+ ¢Tx for each x in C. S belongs to W (C, #£). Therefore it has a (unique)
fixed point z[11,p. 413]. Since |z—Tz|=(1—4)|y—z|/t <(1 — )
(R(C) + ¢)/¢, the result follows.

- Goebel’s examples [6, p. 154] show that in some cases the upper bound
obtained in Theorem 1 is exact.

A lemma will precede the derivation of a lower bound for p (4).
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LEMMA 3. The right derivative p, (1) exists.

Proof. Suppose that T belongs to W (C, £) and that 1 <m < 4. Let
t = (m—1)/(k—1) and define S:C —E by S=(1—4# 1 +¢T. A simple
computation shows that S belongs to W (C,m). Since |x—Sx|=
=1¢|x—Tx |, we obtain p (m) >1p (£). In other words, p (m)/(m— 1) >
> p (&)J(F—1). This yields our assertion.

Observe that p (£) = o for some (hence all) £ > 1 if and only if p; (1) = o.

THEOREM 2. 4 (1) (1 — 1/&) < p (&) for k > 1.

Proof. Let 1 <m <k, TeE€EW(C,m), and o <?¢ < 1/m. For each
z in C, define S:C —E by Sx = (1 —#)z +¢Tx. S belongs to W (C , tm)
and has a unique fixed point Fz. Consider the mapping B:C — E defined
by B =TF. B is weakly inward (in fact, it is also inward in the sense of [7])
because Bz = z 4 (Fz—2)/t. Now let x and y be in C and choose
J €] (Fx — Fy) such that (TFx—TFy,;) <m |Fx—Fy [>. We have
<(—2&|x—y||Fx—Fy |+ tm| Fx — Fy |*. Consequently, | Fx — Fy |<
<(Q—t|x—y|/(1—mt) and if j€J(x—y) then (Bx— By,)) =
=0 —1/f)|x—y "+ Fxr—Fy, Nt <(—1)t)|x—y "+ | Fx —Fy |
lx—y |/t <m(1—2¢) |x—2y [J(1 —m¢t). Thus B is continuos and belongs
to W(C,m (1 —12)/(1 —mt)). Therefore | Fx —TFx | = (1 —¢) |x — Bx |
implies that p (m) << (1 —#) p (m (1 —8)[(1 —mt)).  Setting ¢ = (b—m)|
[(m (£ — 1)) we obtain mep (m)|(m — 1) < kp (B)|(f—1). Since 1 <m < k
was arbitrary, the result follows by letting » tend to 1.

We now return to Goebel’s function g (£). It is clear that g (£) < p ().
Here is a result in the other direction.

THEOREM 3. p (&) < (b— 1) gy (1) < kg (B) for k> 1.

Proof. Let T bein W (C, £). For each positive » such that » (£—1) < 1,
the image of C under the mapping I -+ » (I —T) contains C. Therefore one
may define a mapping J,:C—Cby J,= [I4+»I—T)]"". This mapping
is lipschitzian with constant # = 1/(1 — 7 (#— 1)). Therefore it belongs to
L(C,? and for each positive ¢ there exists x in C such that |x— J,x | <
<(¢)+7r9R(C). We have |J,x—TJ,x|=|x—J,x|Ir <(g@r
+¢) R (C). Consequently, p (&) <g@)lr = (b—1)tg (O]t —1). This
means  that P <(b—1)g. (1). This completes the proof because
gl (1) < kg Bk —1).

3. SOME REMARKS

The bounds established in Theorem 3 enable us to see that p (4) = o
for £>1 if and only if g(#) =o0. (In fact, it can be shown that
p+ (1) =g4 (1)). Thus our results seem to suggest that sometimes p = g.
We do not know when this is indeed true.
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Let H be a Hilbert space. By [6, p. 160] g (H, 1) < 1/V2. Therefore
pH, A< (— 1)/1/5. This bound is smaller than the bound obtained in
Theorem 1. If p(H,%)>o0 for 2> 1 (by [6, p. 161] this is the case
if and only if there exists a lipschitzian retraction of the unit ball of
H onto its boundary), then klim p (k) = oco. Therefore the lower bound in

Theorem 2 is also not exact if pH, 2 >o.

Added in proof. In a supplementary note it is shown that D (k)=
= (k—1)gy (1). Consequently, p(£)=g(#) if and only if g (k) = o.
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