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Analisi funzionale. — FEigenvalues of densifying mappings. Nota
di Kannava LaL SingH, presentata @ dal Socio B. SEGRE.

RIASSUNTO. — Vengono stabiliti risultati sugli autovalori degli operatori non lineari
negli spazi di Banach e Hilbert detti « densifying mappings ».

1.1. Nonlinear operator equations in Banach spaces and Hilbert spaces
have been studied in recent years by several mathematicians. The aim of the
present paper is to prove some results about the eigenvalues of densifying
mappings.

The notion of measure of noncompactness was introduced by C. Kura-
towskii [1]. Let X be a real Banach space and D be a bounded subset of X.
The measure of noncompactness of D, denoted by y (D) is defined as follows

vy (D) = inf {e > o/D can be covered by a finite number of subsets of
diameter < e}.

v (D) has the following properties:

(1) o<yD)<d(®D), where d (D) denotes the diameter of D,

2) y(D)=o0 if and only if D is precompact,

(3) y[CUD] =max{y(C),y D),

@4 YyCD,e) <D)+2¢, where C(D,¢) = {x in X/d(x,D) <e},
(s) CCD implies v (C) <y (D),

6 y(C+D)<y(©C +v(D)), where C+D={c+d/ceC,deD}.

Closely related to the notion of measure of noncompactness is the
concept of £-set contraction defined by Darbo [2] as follows:

DEFINITION 1.1. Let X be a Banach space. Let D be a bounded
subset of X. Let T:D — X be continuous. T is said to be &-sez contraction
if v(T (D)) <4y (D) for some £ >o0. If £ <1, ie.

y(TD) <y®D
T is called densifying.
The degree theory for densifying mapping was introduced by Nussbaum [3]
and Sadovskii [4], although Sadovskii’s measure of noncompactness is not

the same as that of Kuratowskii’s, but yet they share few properties in
common. '

(*) Nella seduta dell’r1 giugno 1975.
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DEFINITION 1.2. A densifying mapping T : D — X is said to be positive
if it transforms positive vectors into positive vectors.

THEOREM 1.1. Let D be open, bounded subset of a Banackh space X such
that origin belongs to D. Let ¥ :D — X be densifying. Suppose T does not
have a fixed point D. Then there exists \ >0 and Ny < 0 and x,, %, such
that ¥ (x;) =Nx;,j = 1,2, i.e. F has a negativecigen value and a positive
(nonnegative) eigenvalue.

Proof. In the proof of Theorem 1.1 we will make use of the degree theory
for densifying mappings. Consider the homotopy H (x,#) : Dx [0, 1] - X
defined by

Hx,)=0—)F&),r in D,z in [o,1].

Then H (x, ) is densifying. Clearily H (x,#) is continuous. Let A be
any bounded but not precompact subset of D, then by definition of H (v, 7)
we have

HA,H)=1—2/FA).
Hence Y(HA,0)=y(1—)F@)<y(—HA <y(A).

Now we claim that H (x, #) is uniformly continuous in # for # in [0, 1].
Indeed, let |#—s|3/M; we need to show that ||H (x,d)—H (x,s)| <=.
Now by definition of H (x,#) we have

IHE,H)—H@E, )ll=I10—)F (@) —0—9F@®| =
== F@I=I1¢—9F@®I<|¢—sIM
where M > || F (x)|l. Thus taking ¢ = § we get
[HE#,H—H@, 9l <e.

Thus H (x,#) is a well defined homotopy.

Finally we claim that x —H (x,#) = o, for all x in 9D and # in [o, 1].
Suppose the contrary, i.e. x-—H (x,#) ==0 for some x in D and ¢ in [0, 1].
Then

Deg(I—H(-,0),D,0)=Deg(I—H(-,1),D,0).
But Deg(I—H(-,0),D,0)=Deg(I,D,0), and
Deg(I—H(-,1),D,0)=Deg(I1—F,D,0).

Hence Deg(I—F,D,0)=Deg(I,D,0)==0.

Thus there exists a x in D such that +—F (x) = o, i.. Fx)==x a
contradiction to the hypothesis that F does not have a fixed point.

Thus we conclude that x —H (x,#) =x— (1—#) F (x) = o for all x
in D and # in [0, 1]. Now we have following three cases.
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Case 1. If t= o0, then x—TF (x) = o, which implies F (x) = x, i.e.
F has a fixed point, a contradiction to the hypothesis.

Case 2. If ¢t =1 ,x = o, which in turns implies that x is an interior
point, a contradiction to the fact that x is boundary point.

Case 3. 1If, o <t <1, then % — (1 —#) F () = o implies x = (1 —7¢)
*1

F (xy), which in turns implies F(x;) = -

I
2(1ft—1)”
first half of the theorem is proved.

For the second half, we define the homoyopy H (x,#) ; Dx [0, 1] = X
as follows

Let ) = ‘then clearly 2y, >0 and F (x) = x. Thus the

Hx,)=20—H)x—0—#F(@),rinD,zin I, where I=[o,1].

Clearly H (x,#) is densifying. Indeed, let A be any bounded but not pre-
compact subset of D, then

HA,)=20—)A—0—HFQA).
Hence y(H(A, )=y (1 —)@A)—y(1—HFQA) <
S2(0=HyA)—(0—r@A) =
=G—2t— 1+ DA = (1 —yA) <r(A).
As in the case of first part it can be easily shown that H (x, #) is uniformly
continuous in ¢ for ¢ in I.

Now we ciaim that x —H (x,/) = 2¢—1)x + (1 —#) F (x) = o for
all x in D and for all # in I. Suppose the contrary, i.e. x— H (x,6)=Fo.
Then by the homotopy theorem Deg (I—H (x,7#),D,0) is constant in ¢#
for # in I. Thus

Deg(ImH(-,O),D,o)=Deg(I—H'(-, 1),D,0).
But Deg (I—H(-,0),D,0) =Deg(—(I—F),D,0)
and Deg (I—H(-,1),D,0)=Deg(I,D,0)==o0.

Therefore there exists an x in D such that — (I —F)x = o, i.e. F (1) =z,
a contradiction to the hypothesis that F does not have a fixed point.

Thus we conclude that x —H (x,¢) = (2¢— 1)x + (1 —2) F(x¥) = o.
Now we have the following three cases:

Case 1. If t=o0, then (2¢—1)x 4 (1—#) F(x) =0 implies that
— (I —F)x = o, which in turns implies that F (x) = x, a contradiction to
the hypothesis.

Case 2. If t=1, then (2¢—1)x 4 (1—¢) F(x) =0 implies that
x = 0, i.e. x is an interior point, a contradiction to the fact that x is a bound-
ary point.
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Case 3. If o<z<1, then (2¢/— 1)y + (1—2) F (%) = o0 implies
that (27— 1) %y = — (1 —£) F (x,), which in turns implies that

F<°52>= (22—1)x, (2—;I/t)x2 .

t—1 (1 —1/2)

2— 1/t
1—1/t’
is proved.

Let 2, = then clearly 2, < o and F () = 2, 4,. Thus the Theorem

Now we prove a theorem on the eigenvalues of positive densifying
mappings.

DEFINITION 2.1. Let X be a Banach space. Let D be a subset of X.
D is said to be convex, if for any two points x,y in D, the line segment
joining x and y also belongs to D, i.e.

ax +(1—a)y €D,

where 0 << a < 1.

The closed, convex subset D of X is said to be a cone if the following
conditions are satisfied: '

(@) If x in D, then #zx in D for all #>o0;

(6) If x==o0, then at least one of the vectors (points) x, —x in X
does not belong to D.

Notation. We will denote by D, the set of positive vectors with norm
not exceeding 7. Clearly the set D, is convex, since it is intersection of two

convex sets, namely the cone D and the ball B, of vectors with norm not
exceeding 7.

THEOREM 2.1. Let T be a positive densifving operator such that for
some 79 > O

d(®,T (D,)) = inf|| Tx || > o
xD .

Then the operator T has at least one eigenvector x| x,|| = r, in the cone D,
corresponding to a positive eigenvalue g ,'T (x,) = gx,.
Progf. Define the operator T on D,, by the equation

g 7o T (x)
Fay=) TG

o otherwise .

if xinD

Then clearly T is densifying. Indeed, taking £, (¥) = T (x), /s (x) = 0
ay (%) =7 if x in D, and a,(x) =1—a, (¥) we conclude by Theorem
(9, pp- 17, 3) that T is densifying. Moreover T maps D,, into itself. Since,
for x in D,

7o T (%) l = .
TT@T I = 70

1T @I =] 75
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Hence by Darbo’s Theorem there exists a point x, in D,, such that
T (%) = x,. Hence

T(

(2) T (x0) = ro xoﬁ %o

or T (xo) — Zo ”"I;O(xO) H .

Let ¢ = ”T—;x‘ﬂ, then clearly ¢ >0 and equation (1) is satisfied with ¢,

0
and clearly from (2) we have
7T o) || _ 7ol Tx)| _
ol = | Pret | = “tre =

Hence the Theorem.
As a corollary of Theorem 2.1 we have the foliowing corollary, which
is a generalization of a Theorem of E. Rothe [5]. :

COROLLARY 2.1. Let X be a Banach space. Let D be a cone in X.
Let T:D — X be a positive densifying mapping satisfying
inf  [|T@)]| >o.

z€D, el =1ro

Then T has an eigenvector x,, moreover || x, || = 7,.

Proof. Define the mapping F (x) on D,, (where D, has the same
meaning as in the paragraph preceding to Theorem 2.1) by

T (70 %)
=]

F@) =l +0o—llxlDu (x€D,y,

where % is some fixed element of the cone D. Then clearly (in fact this can
be seen by a direct application of a Lemma due to Porter) F (x) is a A-set
contraction with 2 < 1, moreover for F (x) the condition of Theorem 2.1

d(@,F(D,)) = mf | Fx| >0
is satisfied. Hence for x in D, x| =7, and F(x) _rOT(x) Indeed,

F(r)=x= ] (T”(;o"x) ) (ro—Ilx[}) . But for x in D we have || x| = 7,

hence
Fx)=»T ().

Remark 2.1. Since every completely continuous mapping is densifying,
as a corollary of Corollary 2.1 we have the following Corollary due to
E. Rothe [5].

COROLLARY 2.2. A positive completely continuous operator T has an
eigenvalue x,, || x|l = r, if the following condition is satisfied

inf | T@|>o0.

zeD, [|z|| = 1o
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