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Analisi funzionale. —• Eigenvalues of densifying mappings. Nota 
di K a n h a y a  L a l  S i n g h , p resen ta ta^  dal Socio B. S e g r e .

R iassunto. ■— Vengono stabiliti risultati sugli auto valori degli operatori non lineari 
negli spazi di Banach e Hilbert detti « densifying mappings ».

i . i .  Nonlinear operator equations in Banach spaces and H ilbert spaces 
have been studied in recent years by several m athem aticians. T he aim of the 
present paper is to prove some results about the eigenvalues of densifying 
m appings.

T he notion of m easure of noncompactness was introduced by C. K ura- 
towskii [1 ]. Let X be a real Banach space and D be a bounded subset of X. 
T he m easure of noncom pactness of D, denoted by y (D) is defined as follows

y (D) =  inf {£ >  o/D can be covered by a finite num ber of subsets of 
diam eter <  s}.

y (D) has the following properties:

(1) o <  y (D) <  d (D) , where d (D) denotes the diam eter of D,

(2) y (D) =  0 if and only if D is precom pact,

(3) Y [C U D] =  m ax {y (C) , y (D)} ,

(4) Y (C (D , e)) <  (D) +  2 s , where C (D , e) =  {x  in X /d  (x , D) <  e} ,

(5) C C D  implies y (Q  <  Y (D) ,

(6) y (C +  D) <  y (C) +  y (D) , where C +  D =  { r +  d/*: € C , 'd € D } .

Closely related to the notion of measure of noncom pactness is the 
concept of /è-set contraction defined by D arbo [2] as follows:

D e f in i t io n  i . i . Let X  be a Banach space. Let D be a bounded 
subset of X. Let T  : D -> X be continuous. T  is said to be k-set contraction 
if y (T (D)) <  ky  (D) for some k >  o. If  k <  1, i.e.

y ( T ( D ) ) < y (D)

T is called densifying.
T he degree theory for densifying m apping was introduced by Nussbaum  [3] 

and Sadovskii [4], although Sadovskii’s m easure of noncom pactness is not 
the same as th a t of K uratow skii’s, but yet they share few properties in 
common.

(*) Nella seduta dell’u  giugno 1975.
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D e f in it io n  1.2. A  densifying m apping T  : D -> X is said to be positive 
if it transform s positive vectors into positive vectors.

T h eo rem  i . i .  Let D be open, bounded subset of a Banach space X such 
that origin belongs to D. Let F  : D -> X be densifying. Suppose T  does not 
have a fixed  point D . Then there exists \  >  o and  X2 <  o and x x , x 2 such 
that F  (xf) =  "kjXj , j  — I , 2, i.e. F  has a negativeeigen value and a positive 
(nonnegative) eigenvalue.

Proof. In the proof of Theorem  i . i  we will m ake use of the degree theory
for densifying m appings. Consider the hom otopy H (x , t) : Dx [o , 1] -> X 
defined by

H (x , t) — (1 —  t) F (x) , x  in D , t in [o , 1 ] .

Then H (x , t) is densifying. Clearily H (x , t) is continuous. Let A  be 
any bounded but not precom pact subset of D, then by definition of H (x , t) 
we have

H ( A , 0  =  ( i —  O F  (A) .

Hence y (H (A , t)) =  y ((1 —  t) F  (A)) <  y (1 — t) A  <  y (A) .

Now we claim th a t H (x , t) is uniform ly continuous in t  for t  in [o , 1]. 
Indeed, let | t  —  s \ 8 /M; we need to show that || H (x , t) — H (x , s') || <  e. 
Now by definition of H (x , t) we have

Il H (x , t) — H (x , s) Il =  II (1 —  t) F  (x) — (1 — s) F  (x) || =

=  Il (t —  *) F  (x) Il =  Il ( t — s) F  (x) Il <  I ( t — s) I M

where M >  || F  (x) ||. Thus tak ing  s — 8 we get

\ \ H ( x , t )  —  H ( x , s ) \ \ < z .

Thus H (x , t) is a well defined homotopy.
F inally  we claim tha t x  — H (x , t) =  o, for all x  in 3D and t in [ 0 , 1 ] .  

Suppose the contrary, i.e. x  —  H (x , t) =(= o for some x  in D and t in [o , 1]. 
Then

Deg (I —  H ( .,  o) , D , O) -  Deg (I — H (•, 1) , D , O) .

But Deg (I —  H (-, o) , D , O) =  Deg (I , D , O) , and

Deg (I —  H (•, 1) , D , O) =  Deg (I — F , D , O) .

Hence Deg (I — F , D , O) =  Deg (I , D , O) 4 = o .

Thus there exists a x  in D such tha t ; r— F (x) =  o, i.e. F (x) =  x, a 
contradiction to the hypothesis tha t F  does not have a fixed point.

Thus we conclude th a t x —■ H (x , t) — x — (1 — /) F (x) =  o for all x  
in D and t in [ 0 , 1 ] .  Now we have following three cases.
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Case I .  I f  t — o, then x — F (x) — o, which implies F  (x) — x-, i.e. 
F  has a fixed point, a contradiction to the hypothesis.

Case 2. If  t =  I , x  =  o, which in türns implies tha t x  is an interior 
point, a contradiction to the fact tha t x  is boundary point.

Case 3 . If, o <  /  <  I ,  then x x —  ( 1 — t) F (by) == o implies x 1 =  (1 — t) 
F (bty), which in turns implies F (ay) =  ^Xl  ̂ »

Let 1̂ =  j )' > Lien clearly Xi >  o and F (hy) =  Xx .ly. Thus the

first half of the theorem  is proved.
For the second half, we define the hom oyopy H (x , t) ; D# [o’, 1] -> X 

as follows

H (x , f) =  2(1 —  zf) ^  —- (1 — /) F  (at) , at in D , t in I , where I =  [o , 1 ] .

Clearly H (x , /) is densifying. Indeed, let A be any bounded but not pre
com pact subset of D, then

H (A , /) =■ 2 ( I  — t) A  —  (1 —  t) F  (A) .

Hence y (H (A , /)) =  y (2 (1 — t) (A)) —  y (1 —  /) F  (A) <

<  2 (1 — *) Y (A) — (1 — O.Y (A) =

=  (2 — 2 / — I + / ) y ( A )  =  (I — t) y (A) <  y (A ) .

As in the case of first part it can be easily shown that H (x , t) is uniform ly 
continuous in t  for t in I.

Now we ciaim th a t x  —  H (x , t) — (2 t —  1) x  +  (1 ■—■ /) F (x) — o for 
all x  in D and for all t  in I. Suppose the contrary, i.e .~ x -— H (x ,£)={= o. 
Then by the hom otopy theorem  Deg* (I —  H (x , /) , D , O) is constant in t 
for t in I. Thus

Deg (I -  H (-, O) , D , o) =  Deg (I —- H (•, 1) , D , O) .

But Deg (I —  H (•, o) , D , o) =  Deg (—  (I —  F) , D , O)

and Deg (I —  H (*, 1) , D , O) =  Deg (I , D , O) o .

Therefore there exists an x  in D such tha t — (I —  F) x  =  o, i.e. F  (x) =  x,
a çontradiction to the hypothesis tha t F does not have a fixed point.

Thus we conclude th a t x  —  H (x , t) =  (2 t — r) x  +  (1 —  t) F  (x) =  o. 
Now we have the following three cases:

Case I .  I f  t =  o, then (2 t —  1) x  +  (1 —  t) F  (x) =  o implies that 
—  (I —  F) x  =  o, which in turns implies tha t F  (x) =  x, a contradiction to 
the hypothesis.

Case 2 . I f  t =  I ,  then (2 t —  1) x  +  (1 — t) F (x) =  o implies that 
x  =  o, i.e. x  is an interior point, a contradiction to the fact that x  is a bound
ary  point.
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Case j .  I f  o <  t  <  i, then (2 t —  0  t 2 ~F C1 !— 0  F  ( x f  =  o implies 
that (2 t —  1) #2 =  —  (1 ■— /) F which in turns implies that

F (pcf) ^ x2
t — I

(2 I ft) X%
(ï “  I/O

2 __ l i t '
Let X2 == -  — ^  , then clearly X2 <  o and F (x2) =  X2 #2. 

is proved.
Now we prove a theorem  on the eigenvalues of 

m appings.

Thus the Theorem  

positive densifying

D e f in i t io n  2.1. L et X  be a Banach space. Let D be a subset of X . 
D is said to be convex, if for any two points x  , y  in D, the line segment 
joining x  and y  also belongs to D, i.e.

ax +  (1 —  à) y £ D ,

where o <  a <  1.
The closed, convex subset D of X is said to be a cone if the following 

conditions are satisfied:

(a) If  x  in D, then tx  in D for all t >  o ;

(b) If  at =J= °, then at least one of the vectors (points) x , — x  in X 
does not belong to D.

Notation. W e will denote by Dr the set of positive vectors with norm 
not exceeding r. C learly the set D r is convex, since it is intersection of two 
convex sets, nam ely the cone D and the ball Br of vectors with norm  not 
exceeding r.

T h eo rem  2.1. Let T  be a positive densifying operator such that for 
some r0 >  o

d (0 , T  (Dro)) =  inf [I Tx  || >  o .

Then the operator T  has at least one eigenvector x 0 , \\x0\\ =  r0 in the cone D, 
corresponding to a positive eigenvalue q , T  (xf) =  qx0.

Proof. Define the operator T  on D ro by the equation

r0 T (x) 
I !  T  (x) ' J if x  in D 

otherwise .

Then clearly T  is densifying. Indeed, taking f L (x) =  T  (x) , / 2 (x) =  o 
ai(x)  =  r0 if x  in D.ro and a2( x ) =  1 — at (x) we conclude by Theorem  
(9, pp. 17,' 3) th a t T  is densifying. M oreover T  m aps D ro into itself. Since, 
for ^  in D yo

Il T  (x) \\ — n>T ( )̂ _  r
IT ( x )  I , r °
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Hence by D arbo’s Theorem  there exists a point x 0 in D ro such that 
T  (x0) =  x 0. Hence

(2) f  o „ ) = r0 T (x0) 
IT(*o)fl

=  x 0

or "p (x  \  __ xa 1T Ĉo) I
V 0 r0

Let q =  -5 H- , then clearly q >  o and equation (1) is satisfied with q , 

and clearly from (2) we have

II *oll = r0 T (x0)
I! T {x0) I

ro 1 T Qo) 1
«T(*0) I

Hence the Theorem.
As a corollary of Theorem  2.1 we have the following corollary, which 

is a generalization of a Theorem  of E. Rothe [5].

C o r o l l a r y  2.1. Let X be a Banach space. Let D be a cone in X. 
Let T : D - > X  be a positive densifying mapping satisfying

in f II T  (x) II >  o .
x e D  , \\x II =  ro

Then T  has an eigenvector x 0, moreover || x 0 || — r0.

Proof. Define the m apping F (x) on D ro (where D ro has the same 
m eaning as in the paragraph  preceding to Theorem  2.1) by

F ^  =  Il ^ Il - - [ { y  +  (r* — Il x II) u (x eD f0) ,

where u is some fixed element of the cone D. Then clearly (in fact this can 
be seen by a direct application of a Lem m a due to Porter) F  (x) is a >è-set 
contraction with k  <  r, m oreover for F (x) the condition of Theorem  2.1

d (0 , F  (Dro)) == inf y Fx || > 0
x e D r 0

is satisfied. Hence for * in D , || *  j| =  r0 and F  (x) =  r0 T  (x). Indeed,
F  (x) =  x  —--- Il x  II ^ ^  — I! nr II) zz. But for x  in D we have || ;r || — r0,
hence

F (x) — r0 T  (x) .

Retnark 2.1. Since every completely continuous m apping is densifying, 
as a corollary of Corollary 2.1 we have the following Corollary due to 
E. Rothe [5].

COROLLARY 2 .2 . A positive completely continuous operator T  has an 
eigenvalue x 0 , || x 0 || =  r0 i f  the following condition is satisfied

in f II T  (x) II >  0 .  
seD, |jic|| = f0
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