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Analisi funzionale. — Or#hogonality Preserving Operators Nota 11 ®,
di W.A. AL-Savram e A. VErRMA, presentata *” dal Socio G. SANSONE.

RIASSUNTO. — Richiamandosi alla Nota I in cui si riprende un problema considerato
da S. Pincherle (1928), da W. Hahn (1949) e successivamente da altri, i due Autori trovano
classi di polinomi ortogonali per le quali esiste una trasformazione preservante I’ortogonalita.

1. INTRODUCTION

In this note we continue our previous note (we refer to it as (1)). We
consider this time the linear operator defined on polynomials by means of

(1.1) L{a"} =y, 2" " (n=0,1,2"-),

where @g=0, w,=n_ 90 (n=1,2, 3,-++). This opeator can be
written as ‘

(1.2) L=23 oD = ) b (+DY'D

so that
A = kﬁ_o (Z) a .

As in (I) we raise the question for what operators L of the type (1.1) and
Jor what OPS {p, ()} is the set {g,(x) = Lpns (%)} also an OPS?

Hahn [3] posed and solved this problem for p, = 7 (L. = D). In this
respect our problem is a generalization of Hahn’s. Krall and Sheffer [4]
considered the problem of finding OPS such that

k
On(x) = ]ZO a; (%) 551" (%)
is also an OPS. They gave necessary and sufficient conditions so that this
will happen. They gave several, but not exhaustive, examples of such cases.
In this note we give necessary and sufficient conditions and solve the
problem completely in case the OPS is symmetric. We are however unable
to solve completely the non-symmetric case. We only give examples.

(*) These «Rend. Lincei, Sc. fis. mat. ¢ nat.», 58 (6), 833-838.
(**) Nella seduta del 10 maggio 1975.
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2. NECESSARY AND SUFFICIENT CONDITIONS

We give now the following

THEOREM 1. Let {p,(x)} be an OPS with associated moments {a,}.
In order that {gq,(x) = Lpy, (x)} where L is of type (1.1) be also an OPS it
is necessary and sufficient that there exist constants {oy} and {A};} such that

(2'1) 7%:{:0 ‘<%:O’I)2"">; (2'2) A§+1,s+1:!;:o
S * * |

(2.3) Z A1,k Gtk = Mgy Upggg (n,s=0,1,2,-)
k=0

when these conditions are satisfied { oy} are the moments associated with {g, (x)}.

The proof of this theorem is similar to that given by Krall and Sheffer
and we omit it.

3. THE SYMMETRIC CASE

We first note that putting s = o in (2.3) and using the fact that the odd
moments are zero, we get Aj, = o0 and we can take Af, = 1. Thus we can
rewrite (2.3) as

s+1

N .
(3.1) kz:JO ASii Fptrn = ;f:il Oy ts+2 (n,s=0,1,2,3,-).

Now put s =1,2,3 in (3.1) and replacing » by 22— 1,27 and 22— 1
respectively and putting &, = o4, /0,40 We get

(3-2) A Byt Ap = 2

(3-3) Ap byt Agy = !Lan—l/}LGH

and ; |

(3.9) Al En En + Al Ea - Al = tanitanss

Substituting for (Wy/tanss) in (3.4) from (3.2) and (3.3) we get that {£,} must
satisfy a recurrence relation of the form

3.5) CEn Eupy + BEn+ Ay =D
As in (I) this has the solution
(3.6) En = Olon[Op s = 1 1—Fr Le., ay=a" (o],

a 1—ogn’ [Blx

Again we have disregarded solutions of the form £, = constant for all 7 or
for 7 >N or for » < N as these would lead to Hankel determinants for the
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moments which vanish, in contradiction to well known necessay conditions
for {a,} to be a moment sequence.
Thus we have proved the theorem

THEOREM 2. Let {p,(x)} be a symmetric OPS such that there exists an
operator of the form (1.1) with the property that {Lp,., (x) = g,(x)} is also
an OPS.  Then we have

(37) Pz»z(@ = Ju(g, o, B;**a) ) P2n+1<x> :xJn<gr “q , Bg;x2/a>

whereas the transformed set is

. .[‘19]:1 . 2
S (t—¢"1) [og]
Gana () = ed —[gm& xJ, (g, 3%, Bg? dx2/d)

and the operator L. is given by

2n n wy [%9Tuoy  2n—i
LX = e d (I —4q > W x
(3.9)

Lx2n+1 — dn [O(Q]l 2n
[3g1n

We can verify the orthogonality of {p,(x)} and of {gn{x)} n the
above theorem using the same method that was used at the end of § 3
in (I). However we make instead the following observation. First recall that
Sp(®) =Ju(g,®, B ;xla) a® are orthogonal on (o, oo) with respect to di (x)
(see I). Secondly the polynomials Q, (x) =a"],(¢,aq,Bqg;x/a) are the
kernel polynomials K, (o, x) given by

Sn+
Ku(,0) = L[S @ — 228 s, ()

which are orthogonal on (o0, co) with respect to xdy (x). Hence the polyno-
mial set {p,(x)} of (3.7) are those symmetric OPS constructed by means of
(2] pon (%) = S, (2% and p,,,,; (x) = 2Q, (#%). Similar remarks apply to (3.8).

4. SPECIAL CASES

We mention now some interesting special cases for the results of our
note (I) and of our present note.

- First recall the results of (I-§ 4). If we replace « by ¢*™ B by g**#+?
and, y by ¢"™" and then let ¢ —1 we obtain the special result that

I

(4.1) J=Z<‘—;,I)—2F1(—~,é,a—{—1;y—|—1;é)x"D"
7]
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takes the polynomial set P® (1 —2x) into the set

@+ D priats-v
A P, (1 —26x).

To see this we only need to observe that as ¢ — 1

atB42 ) n! (a,8) (1

a+1 . —_
Il e 0 B > e, 27).

If we specialize further by putting 6 =1 in (4.1) we see that the
operator of

(4-2) I=2 e (1:"3” 2" D" = ,F;(—aD,y —a;y 4+ 1;1) =

T'(y+1)I'(e + 1 +2D)
P+1)T(y+1+2D)

takes the polynomial set p{*® (1 —2x) to the polynomial set

@4+ s ety
En. P, (1—22x).

Specializing still further by putting « =y - N where N is a positive
integer we get that the finite operator

_ (r+1+4+aD)y
“3) I="%%,
takes the Jacobi polynomial py™® (1 —22) to the set

Y+ N+1)n prpr™
e N )

This case appeared in [4, p. 440].
If we'now go back to the operator (4.1) replace 4 by 4/ and then let
o —> oo we see that the operator

o -E s wory

takes the Bessel polynomials (for notation and references see [1]) Y& (x)

J:Y®(x) > PP (1 — 2 42) .

Y+ Da

In a similar fashion one can see that if

(4.5) Z —I> oFi(—n,c+1;84+1;6)+"D"

then

J L(c)< ) Eg::: i)n L(S) <& )
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If we now recall the results of §3 we first see that these results cover that
part of Hahn’s theorem for symmetric orthogonal polynomial sets.

Indeed if we put in formulas (3.9) « =¢"%, 8 =¢ "2, d =¢ =1, and
a=1[/1 —g¢ and then take the limits as ¢-—+1 we get that pu, =7,
n=o0,1,2, -+ so that L =D. If in addition to the above choices of
the constants we put 8 = o we get that p,(x) = H, (x) the monic Hermite
polynomials.

On the otherh and had we replaced B by ga“ before taking the limit
as ¢ —1 we get from (3.7) that

am,,

pm(x)=m2Fl(—n,n+B;%;x2)

and

().

- — .3 .2
pw](x)—mxl:( ”+‘B+1,2,x)
both of which combine in the single formula

Pn (%) =x”F(—n,—712n +1; I—B——n;—;?)
which is the monic ultraspherical polynomial P& (x).

Thus we get the special Hahn cases, i.e., the symmetric OPS whose deri-
vative is also an OPS is either the Hermite or the ultraspherical polynomial
set.

More generally if we replace o by gB“, B by ¢*™**2 ¢=a=1 and then

let ¢ — 1 we see that the monic OPS of (3.7) becomes the symmetric OPS
{S,(®)} where

&(@,p) — ! (@,8) 2
Sen (%) = @IBEaT T, Py (227 —1)

&(@,B 7! (2, B+1)
St (®) = Gpraga, 1 @F =D,

It is known that the system {S,(x)} is orthogonal on (— 1, 1) with
respect to the weight function

|2 [P (1 — 2P
"The case «a = o0 is due to Szego [7].

In this case the operator

L:a"—u,a"!

where

. B+ 2)na . B+ 2)n
Wop = 72 ®F 2. 2 sy Mepn = ®+2)n
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so that
LS () = (n + 1) 22 8rtoaem (g
Similarly

Lg;:f)l (x) = _@__l—.z_)” g(“+ﬁ—8,8+1) (x) '

(8 + 2)n m

Another interesting special case is the case 8 =o0, o = g S = g

@ = 1]1—g and then let ¢ — 1 we get that the operator

an = U x’n—l

where |
_ (), 3,
Mont1 = F—!———;): y Mo =17 *ﬁ%)—”l

takes the polynomial set {5, (¥)} where
B (1) = (— D" al L (o)
Bona (%) = (— 1" ! 2L ()

into the same set with w replaced by v. This polynomial set is the generalized
Hermite polynomials due to Szego [6, p. 371] orthogonal on (— oo, o)
with respect to the weight function |z |[™ ¢,

Finally we note that the operator of type (1.1) of this note with
o = (1 —¢") 6" [a],/[v]. take the non-symmetric OPS

(1— n
InGg o850 - =00 g g vy, 0500
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