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SEZIONE 1

(Matematica, meccanica, astronomia, geodesia e geofisica)

Matematica. — A4 necessary condition for the existence of wvector
bundles on the infinite dimensional quaternionic projective space. Nota ©
di Corrapo DE Concini, presentata dal Corrisp. E. MARTINELLLI

RIASSUNTO. — Si stabilisce che le radici del polinomio totale di Chern dei fibrati vetto-
riali complessi sullo spazio proiettivo quaternionale di dimensione infinita sono quadrati di
interi. Si trattano inoltre i casi di fibrati reali ¢ quaternionali.

INTRODUCTION

The purpose of this paper is to give a restriction on the Chern classes of
the complex vector bundles on the quaternionic projective space of infinite
dimension, HP®,

In order to obtain such a result we use the integrality theorems of Atiyah-
Hirzebruch [1] plus some elementary number theory.

In § 1 we recall the results of Atiyah—Hirzebruch.

In §2 we prove the main theorem, and as a consequence we also give
conditions for the quaternionic and real case.

I finally wish to express my thanks to G. Lusztig for helpful conversations.

§ 1. PRELIMINARIES

Let M be a compact differentiable manifold of dimension 7z, without

boundary, with Pontrjagin classes p; € H* (M, Z). Let {A, By s pi)}
be the multiplicative sequence with characteristic power series Q (&) = %hlZV
sin z

(for the deﬁmtlon and the properties of the multiplicative sequences, see
[3, ch. 1]). ‘

(¥) Pervenuta all’Accademia 1’11 agosto 1975.
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We have the following [1]:

THEOREM 1. Let d be an element of H2 (M , Z), whose reduction mod 2
is the Whitney class wy,(M), and n a continous complex vector bundle over M.
Then, if ch n € H" (M, Q) denotes the Chern character of w,

where B" denotes evaluation on the fundamental class of M, is an integer.
This theorem has the jfollowing:

COROLLARY. Mantaining the notation of Theorem 2, if dim X = o mod
8and if n is a quaternionic vector bundle,then A (M , % d , ) is an even integer.

If dim X = 4 mod 8 and if v is a real vector bundle, then A (M ,1d , )
is an even integer. ~

Proof. The second case is proved in [1] using periodicity of real K-theory.
The first case can be proved in exactly the same fashion by substituting qua-
ternionic to real K-theory.

q.e.d.

§ 2. BUNDLES OVER HP”"

Let us consider now HP?®, the quaternionic projective space of (quater-

nionic) dimension 7, and let HP® = lim HP".
Nn—>00

It is well known that H* (HP®, Z) o~ Z [«] where % can be taken equal
to — ¢y, ¢, being the second Chern class of the universal quaternionic line
bundle over HP®. It is also well known that H* (HP", Z) ~ Z [«]/(z"*").

 For the Pontrjagin classes we have by Hirzebruch’s computation [2],
that, if P (HP") denotes the total Pontrjagin class of HP".

P (HP") = (1 + 2)* (1 + 42,
Now consider a continuous complex vector bundle over HP® and let
c=1-+vie+ -+ Y u“”zl,

where vy, .- ,‘ Yisjz) are integers, be its total Chern class.
By the definition of ch () [3], and by the fact that the odd Chern classes
are clearly zero, it follows easily that .
8 v Vi
ch(y) = D) %" 4 o714 with

=1

yiut = o; ('— dyyooe,— d[s/2]) ut, ‘Where i (—dy, -, _d[s/2]>



CORRADO DE CONCINI, A necessary condition for the existence, ecc. 3

denotes the 7~#4 elementary symmetric function in 4, -- -, dispp- It is clear
that &, -, diys, being roots of the polynomial with integral coefficients
2B A BRI Yisj2, are complex numbers.

We are now ready to prove the following

THEOREM 2. Let v be a complex vector bundle of dimension s on HP™,
then if dy, -+, dyps are the complex numbers associated to v in the above
manner, dy, -, diys must be square integers or zevo.

Proof. We shall divide the proof in two sections. In the first section we
shall obtain a combinatorial formula for the &;’s using Theorem 1, and in the
second one we shall derive the result from the formula using elementary num-
ber theory.

SECTION 1

Let v be a complex vector bundle of dimension s over HP" and let
[s/2] ____ —
ch () = X &M% 4 ;~V4% e its Chern character. Now by the expression for
=1
P (HP?) recalled above together with the Cauchy integral formula and the
fact that H2 (HP”*,Z) = o, we get:

o [s/2] - L]/_ 2n+2 inh Vo
A (HpP" — Vau | - d,‘u) ( 3 Vu ) ( sinh Vo )] _
( ’O,YD [(;e Te ) sinh%V—u— Vu

_ 1 % { ([3/22]6 O /El’ﬂ) ( .%V;_>2n+2( sinh“]"’; ) 1 i\
2 (—1)2 =1 sinh 4 Vu Vu Vo 2rtt

where the integral is taken over a small circle centered at the origin in the Ju

plane; and where we can integrate with respect to the variable Yz since the

series expands in the same way with respect to the variables |z and .
Now by applying some easy transformations we get:

(772 E— _ — 2n+-2 . —
S Vigi Vi) 4V ) (_hi_) i
21 (— 1)5 f (;16 te ) (sinh%l/; Vu (V;‘)zn+1 d Yu

_ 1 [%“’1 f (e]/dT“ +e_1/,m) ( Wu ) sinh V' ‘”/;:

21 (— I)% i=1 sinh %V; 23 (V;DZ"_H

[s/2] — _— ’ —
/T R » _
E f 22;&2 (e] v, va; u) sinh Vz ; V

o (— 1)} =1 sinh 1 Vo 2042

: [s/2] o i —m+1)Vu - _ —
ot B [ () G () e

21 (— ;)* i=1

ll

(ST

(2] Vai+1-m+))Vu o (~VEi+1—@r)Vu
¢ [ n u 7 V% X
(I . e_ﬁ>2n+2 ’

2% (— 1)é =1

V=1tV o (~VEj—1~(t0)Vu
-+ (— e__ﬁ>2n+2 d Vu] :
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Substituting 1 — ¢! = # we get:

[s/21 —~ —
A . 2n—l—1—|-Vd,~—]—1——(n+1) 2n+I+Vd,-—-I—(n—l—l)
A<HP”’O’n>_%iZ=1[( 27 4+ 1 )'_( 27 + 1 +

wmt1—Vdi+1—(n+1))  (end+1—Vdi—1—(n+ 1)
+ 27 + 1 . 27 + 1

_«lwiwl V& + 1 — it 1) Cnt 1+ VG 1— (1)

Y (27 + 1)!

___(I-I—VLZ‘——-I——-(n-l—I))---(2n+1—[—Vé7,'—-I—-<n—}-I))_|_
(27 + 1)!

G—Vdit1—(+1)--ent1—Vdi+1—(n+1)
+ (272 + 1)!

_a=Vdi—1—(+1) - nt 11—V —1—(nt 1))
(272 + 1)l -

. [ﬁl Va; (di—1) (di—4) -+ (di— (n— 12 (di + (n + 1) V@; +
T~ (272 + 1)1

taVditn(nt 1) —dit 40 Va4 aVdi—n(n+1) _

[s/2]
di ; 'y — P §— —1)2
}; 2d; (d; — 1) (d, 4) (d (ﬂ I) ) = Hn (dl e d[sl2])'

= (27m)!

Now by Theorem 1 we have that H, (4, - - -+ djy2;) must be an integer.

When v is a complex vector bundle over HP®, by restricting to HP"® for
each 2 we clearly get the condition that H, (&, - - - dys) is equal to an integer
for each #, dy---diy being the J;’s relative to 1.

SECTION 2

In this section we shall deduce the Theorem from the conditions obtained
in section 1.
+ First of all let us consider the sequence {H, (¢)},2; where d is any complex
number; we have lim H, () = o.
n—00

In fact we have

[ 2dd— ) @d— g @—r— 1)) | _ 21d|(|d] £1)---(|d] + (r—1®) |
]Hn@’)[—“ )l = (2n)! ’

now if we take an integer ¢ such that 2 > & we get

22 (¢ 4+ 1)t n—1)? 2 ((# + n—1)1)?
IHn<d)l§ (zm)! = (27)!
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and such a sequence is easily seen to converge to zero. Now since H,, (d,, - - -,d,) =

=2 H, (d;) we also clearly have that lim H, (4, ,---,d,)=o0 for arbitrary
i=1

complex numbers, & ,---,dy; and if we require H, (d,,---,d,) to be an
integer for each # this clearly implies that there exists 7, such that
H,, -, dy)=o0 for n>n,.

Now if we put (&;—)d;— 4)--(d;— ny) = o; we get

Lemma. If H,(dy, -, d)=0 for n>n, then we have 2 di a; =0
Jor eack s > o. ‘ =t

Proof. Since Z“i: (2:)l H,, (@;,---,d,)=0 we get that the lemma
i=1

is true for s = o. Suppose it is true for each # < s— 1. Then

O:M Hno—ks (dly"':d"):

=2 (i) (da— (o +1)7) -+ (i Gro + s — 10N = X Bl o+ 0 /()
= =1
where f(;) is a polynomial of degree s — 1 in @;. Now the inductive hypothesis
implies that Y, «; f(4;) = 0 so we get D dia;=o.
i=1 i=1 q.e.d.
We come back now to the proof of our theorem.
Suppose that ¢ <y is the number of different &;’s; then, by identifying
g
the &;’s which are equal we get, by the above lemma, that Z dja;=o0
T=1
for each s where (A;,---,2,) is a partition of v and where &; # d; if j # ;.

q
Then if we consider the conditions {Z Ndf o= O}Z;ﬁ as a linear system
=1

in the variables {u,,---, o}, we get that the determinant associated to this
system is just A,---,A, times the Vandermonde determinant
I .................. I
AR d,
-1 -1
I AN d*

~ which is different from zero since we suppose d; # d;, if j # ;. This implies
q

that ‘the system Y, ; &} ¢;—=0 has solutions if and only if each of the «;’s
‘ =

is equal to.zero but, since o; = d;(d;— 1) (d;— 4)++ - (d; — (n,— 1)*) this

is verified if and only if 4; = o or &; is equal to a square integer.
Even if what we have done so far is sufficient, we want to show that
using our methods our condition is the best we can find. In fact, let # be an
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integer and let us consider H, (/). We have
2 _ 20— —4- - —(n—1)?%) _
H,(£) = (27)! -

_ 28—+ 1) (f—(n—1)) ¢+ (n—1))
(2m)!

which is zero if o <#<#—1 and which is equal to 2 (j:—nn) -—(t+ 7 I)

2n—1
if #>mn. This clearly implies that H, () is an integer and since

v

H, (dy, -, dy) :Z_Jl H, (4;) we have that if each of the J;’s is a square

integer then H, (4, ,-- -, 4,) is an integer for each . qe.d

Using the corollary to Theorem 1 we get:

THEOREM 3. Given a quaternionic vector bundle & of dimension m on
HP®, let n be the complex vector bundle of dimension 2 m associated to €. We
have, using the same notations as above, that if one of dj's of v, say dy, is even,
then theve must exist an even number of £'s including h such that d, = d,.

Proof. It follows from the corollary to Theorem 1 that H, (&, ,- -, d,,)
must be an even integer whenever 7 is even since HP™ has real dimension

= o0 (mod 8).
We have already seen that 4, ,---, 4, must be square integers.
Now let us note that H, (%) = 2 (j Z) _(Z: ;) =1, and H, () =o if

t < n. Now suppose @, = ¢, to be the largest even square such that there is
an odd number of £’s, including 4, such that &,= &}. Then since Hn(a’ -dp)=

~E H,(d;) we have that H,, (d---d,)= a-+ g, where a —E H,, ()
e

Wlth d;; running over the @;’s which are larger than that &, and where 7 is
the ((odd) number of &’s which are equat to d;. Now, since we suppose that
if d, > dj, and d, is even there is an even number of &;’s including &, which
are equal to &,, we have that the contribution given by those &;’s to a is even.
For an odd & > ¢, we have that

eh<d2)_2<d+e;,) (d—]—e;,—l):z(d—{—e;,) a’—l—e/,—l(d—l—e;ﬁ—z).

2¢; 20— 1 2¢3 20, —1 \ 2¢5—2

Since 2¢,— 1 is odd and &+ ¢,—1 is even it follows that H,, (dz) is
even, and so a must be even. Since 7 is odd this implies that H,, (¢;---4,)
is odd thus contradicting the Corollary to Theorem 1 and proving the
Theorem.
q.e.d.

. Remark. 1) As an immediate consequence we get that if a self map
of S* can be extended to a self map of HP®, such a map must have odd square
degree. In fact a self map of HP® corresponds to a quaternionic projective
line bundle and Theorem 2 can be applied.
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2) Since Sp (1) =~ SU (2) and H*(HP*,Z) = o it follows that any
complex plane bundle on HP® lifts to a quaternionic line bundle so we must
have that the second Chern class of a complex plane bundle on HP® must
be equal to —Z 2 where & is an odd square.

Finally we note that for real bundles on HP™ we get:

THEOREM 4. Given a real vector bundle & of dimension m on HP®, let
be the complex vector bundle of dimension m associated to &. We have, using the
same motations as above, that if one of the di's of v, say dy, is odd, then there
must exist an even number of k's, including h, such that d,, = dj,.

Proof. The proof is identical to that of Theorem 3, using, instead of the
quaternionic projective spaces of even (quaternionic) dimension, those of odd
(quaternionic) dimension.

g.e.d.

REFERENCES

[1] M. F. AtivAH and F. HIRZEBRUCH (1959) — Riemann—Roch theorems for differentiable
manifelds, « Bull. Am. Math. Soc.», 65, 276-281.

[2] F. HIRZEBRUCH (1954) — Uber die quaternionalen projektiven Raume, « S.—~B. Math., Nat,
Kl. Bayer. Akad. Wiss. ». .

[3]1 F. HIRZEBRUCH (1956) - Newe topologische Methoden in der algebraischen Geometrie,
Springer, Berlin.



