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Topologia. — Some applications of Darbo’s theorem. Nota di
Kanuava LaL SingH, presentata ® dal Socio B. SEGRE.

RIASSUNTO. — Usufruendo di un teorema di Darbo [2], vengono dimostrati due
teoremi concernenti le contrazioni di A-insiemi. Pilt precisamente, il Teorema 2.1 stabilisce
una proprieta di surgettivita simile a quella del teorema di Browder [3], ed il Teorema 2.2
assicura 'esistenza di punti fissi per la somma di due applicazioni. Come corollari di quest’ul-
timo teorema si ottengono fra l’altro i risultati di Nashed e Wong [4], Sing [10], Riener-
mann [8], Edmund [5], Kachuraskii, Krasnoselskii e Zabreico [11].

The notion of measure of noncompactness was introduced by C. Kura-
towski [1] as follows:

DEFINITION 1.1. Let X be a (real) Banach space. Let D be a bounded
subset of X. Then the measure of noncompactness of D, denoted by y (D)
is defined as

Y (D) = inf{e¢ > o/D can be covered by a finite number of subsets of
diameter < e}.

vy (D) has the following properties:

(1) o<y®)<d (D), where d(D) denotes the diameter of D,

(2) vy(O) =o if and only if D is precompact ,

(3) y(CUD) =max{y (C),y D)},

4 Y(CD,e)<y(D)+ 2¢, where C(D,¢) = {x in X/d(x,D) < <},

(5) CCD implies v(C)<y D),

©6) Yy(C+D)<y(C)+yD), where C+D={c+dJcinC and & in D}.
Closely related to the notion of measure of noncompactness is the concept

of £-set contraction first defined by Darbo [2] as follows.

DEFINITION 2.1. Let X be a Banach space. Let D be a bounded subset
of X. Let T:D—X be a continuous mapping. T is said to be Z-set con-
traction if v (T (D)) < &y (D) for some £2>o0. If A< 1, ie.

Y (T D) <yD),
T is called densifying (Furi and Vignoli [6]).

THEOREM A (Darbo). Let D be a closed, bounded and comvex subset of
a Banack space X. Let T :D —D be a k-set contraction with k< 1. Then T
has & fixed point.

(¥) Nella seduta dell’r1 giugno 1975.



KANHAYA LAL SINGH, Some applications of Darbo’s theorem 881

THEOREM 1.1. Let X be a reflexive Banack space and X* be its dual
space. Let T be a nonlinear operator (or not mecessarily linear) that maps X
into X Suppose that T is strictly positive (T (x),x) >0 for all x in X)
and a k-set contraction with k < 1. Then T is surjective.

Proof. 1t is enough to show that T (x) = x has a solution or equiv-
alently W (x) = x— T (x) has a fixed point. First we note that W is an
a-set contraction with « < 1. Indeed, let D be any bounded but not pre-
compact subset of X, then by definition of W we have

WD)=10)—TD).
YWO)=yID—TMDO)<yD)— 4y (D) =

=ay D), where a=1—/F<T1.

Hence

Since T is strictly positive, therefore there exists an » > o such that
(T(x),x)>o0 for all x in S,, where S, ={x in X/||x||=7}. Now using
the definition of W we have

(D) W@, 0)=EF—T@,»=@@,n)—(Tx),r)<

<|lx|* (since (T (), %) > o).

Now define
W) if [Wk|<~r
F:X—>X" as follows: F(x)= ? W (z)

wer fIWV@I=r.

Then F (x) is densifying. Inded, setting f; (x) = W (1), /3 (*) = 0, A, (&) =
= “—W—’m for || W (#) || = 7and &, (x) = 1 for || W (x) || <7and }g () = 1 — A, (%)
we have

F@)=n@fE) + 0@ f@).

Hence by Theorem [9, Theorem 9, p. 17] F (%) is a-set contraction
with « < 1. Moreover, clearly F (B,) CB,, where B, is the ball of radius »
around the origin. Thus by Darbo’s Theorem [2] F has a fixed point x,.
Now we have two possibilities, either x, belongs to the interior of B, or x,
is on the boundary S,.

Case 1. Suppose x, belongs to the interior of B,. Then F (x,) = x, =
= W (x,), i.e. x, is a fixed point of W as was claimed.

Case 2. Suppose x, belongs to the boundary of B,, i.e. z, lies on S,.
Then
. rW(x)
F<x0) =Xo = llW(x0)|| )
or :

(W (z)xo)
o, %0) = W]
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Hence
@) W (o) (L %o II* = 7 (W (o) , %o) -
Using (1) we can write (2) as

W (o) 1 0 I* < 7 )l 2o 1™

This implies || W (xo) || <7, a contradiction to the fact that | W (xo)| > 7.
Thus Theorem 2.1.

Remark 2.1. Theorem 2.1 remains true even if we assume T to be
either densifying or 1-set contraction. But in both cases the auxiliary
mapping W turns out to be o-set contraction.

Remark 2.2. A theorem similar to 2.1 has been proved by Browder [3],
where T is assumed to satisfy the condition of monotonicity emicontinuity
and coerciveness.

Remark 2.3. A theorem similar to 2.1 for Hilbert space with the
assumption that I —T is coercive has been proved by Edmund and Webb [7].
At any event since every Hilbert space is reflexive, our theorem is more
general than that of Edmund and Webb [7]. Moreover we do not require
the coerciveness of I —T.

THEOREM 2.2. Let X be a Banack space. Let D be a closed, bounded
and convex subset of X. Let A,B:D — X be two mappings such that

(1) A is densifying,
(2) B s either weakly continuous or completely continuous. Then there
exists a xy in D such that A (x,) + B (%) = x,.

Proof. Without loss of generality we may assume that the origin zero
belongs to D. Let 4, be a sequence of numbers such that o < £, < 1 for
each » and 4,—~1 as n—>oco. Clearly %, A is a #£,-set contraction with
k,< 1. Since B is weakly continuous (completely continuous) and therefore B
is a o-set contraction. Thus we conclude that T = 4, (A - B) is a 4,-set-
with £,< 1. Hence by Darbo’s Theorem [2] for each #, there exists a point x,
in D such that T (x,) = £, (A (x,) + B (x,) = z,,.

For the sequence {x,} thus determined we have

%n— (A () + B (%)) = A0 (A (%) + B () — (A () + B ()
= (ky— 1) [A (x,) + B(x,)] =0 as #n—> oo,
Since 4, — 1 and {T (x,)} CD is bounded. Hence zero lies in the closure
of (I —T) (D). But since I —T is closed (9, Lemma 1, pp. 80), therefore T

has'a fixed point in D i.e. A + B has a fixed point D. Thus there exists
some x, in D such that A (x,) + B (xy) = x,.

Remark 2.4. 1f in Theorem 2.2 instead of assuming A to be densifying
one assumes A to be I-set contraction, then the assumption (I—T) D is
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closed is enough to guarantee the existence of a point x, such that

A (xg) + B (%) = 7.

'DEFINITION 2.2. Let X be a Banach space. A mapping T:X — X
is said to be demiclosed if for any sequence x, such that x, —x (i.e. =z,
converges weakly to x) and T (x,) =~3. Then T (x) = 4.

LEMMA 2.1. Let X be a uniformly comvex Bamach space. Let D be a
closed, bounded and comvex subset of X. Let T:D —X be nonexpansive
mapping. Then the set (1—T)D is closed.

Proof. By the Theorem [14 Theorem, pp. 660] it follows that (I —T)
is demiclosed. To show that (I—T)D is closed, let x, be a sequence in D
such that (I —T) (x,) >x,. We need to show that x, lies in (I—T)D.
Since X is uniformly convex, therefore it is reflexive. Now D being closed,
bounded and convex is weakly compact. Since X is reflexive we can
replace {x,} by some subsequence, which for bravity we denote by {x,}
such that x, —y, for some y, in X. But D is weakly compact, therefore y,
belongs to D. Hence by demiclosedness of (I —T) we infer that
(I—T) %0 = 3o.

COROLLARY 2.1 ([8] Rienermann). Lez X be a uniformly convex Banach
space and let D be a nonempty, closed, bounded and comvex subset of X. Let

f:D =D, g:D—=D, 2:D =D,
be such that
(@ f=g+4,
®) llg@—gWl <llx—y| for all x,y in D (ie. g is nonexp-

ansive),

() & is strongly continuous, i.e. if x, converges weakly to x then h (x,)
converges strongly to h(x). Then f=g -+ & has at least one fixed point.

Proof. Since g is nonexpansive, therefore it is I-set contraction more-
over / (x) being strongly continuous is a o-set contraction. Thus f=g+7
is I-set contraction. Indeed, let A be any bounded but not precompact
subset of D, then by definition of f(x) we have

JA)=gA)+AA).
Therefore

Y/(A)=v[g@®) +2M]<@A).

Furthermore g being nonexpansive implies that (I —T) is demiclosed,
therefore by Lemma 2.1 we conclude that (I—T)D is closed. Thus all
the assumptions of Remark 2.4 are satisfied, hence the Corollary 2.1 follows
from Remark 2.4.
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CorOLLARY 2.2 ([11], Kachuraskii, Krasnoselskii and Zabrieko). ZLez H
be a Hilbert space. Let D be a closed, bounded and comvex subset of H.
Let T:D —D be a nonlinear operator suck that T = A + B, where A is
nonexpansive and B is completly contimuous. Then T has at least one fixed
point in D.

Proof. The Corollary 2.2 follows from Corollary 2.1 by using the fact
that every Hilbert space is uniformly convex. Moreover in a Hilbert space
if A is nonexpansive, then (I —A) is demiclosed ([12], the proof of this
fact may be found using monotonicity, without motononicity the proof is
given in Opial [13]).

CoROLLARY 2.3 ([5], Edmund). ZLet H be a Hilbert space. Let D be
closed, bounded and comvex subset of H. Let T:D —D be a nonlinear
operator suck that T = A + B, where

(1) A(x) + B (y) in D for all x,y in D,
(2) A s nonexpansive, and
(3) B s completely continuous.
Then T has a fixed point.
Remark 25 In the proof of Lemma 2.1 infact uniformcenvexity was
just used to guarantee the fact that (I—T) was demiclosed and the rest
of the proof was based on the property of reflexivity. Thus if X is reflexive

and (I —T) is demiclosed, then for any bounded, closed and convex subset D
of X, I—T)D is closed. Thus we have the following Corollary.

COROLLARY 2.4 ([10], Singh). Let X be a reflexive Banach space and A
and B be two mappings of D into X, where D is a nonempty, closed bounded
and convex subset of X such that

(1) A is nonexpansive and (1 — A) is demiclosed, and
(2) B is completely continuous.
Then there exists some x in D such that A (x) + B (x) = x.
- COROLLARY 2.5 ([10], Singh). Let X be a reflexive Banack space and
let A and B two mappings of D into X, where D is nonempty, closed bounded

and convex subset of X. If A is 1-set contraction and (1 — A) is demiclosed
and B is completely continuous, then T = A + B has a fixed point in D.

DEFINITION 2.3. Let X a Banach space. Let D be a bounded, closed
and convex subset of X. A mapping T:D — D is said to be a nonlinear
contraction if

ITEH—-TOWI<ellx—yll forall x,yinD,

where ¢ (») for » > 0 is monotone nondecreasing function with continuous
on the right such that ¢ () > 7 for all » > o.
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CoROLLARY 2.6 ([4], Nashed and Wong). Let X be a Banach space,
Let D be a bounded, closed and convex subset of X. Let A and B be two
operators on D into X such that A (x) + B (y) in D for every pair of x,y
in D. If A is nonlinear contraction and B is completely continuous, then the
equation A (x) + B (x) = x has a solution in D.

Proof. We first note that A is densifying. Indeed, let C be a bounded
but not precompact subset of D, such that vy (C)> o, let us take ¢ > v (C).
Then there exists a finite covering {C,,C,,C;,---,C,} of C such that
d(Cy) <e (for k=1,2,3,---,%). Clearly

A =0 AC).

Let 1 <4< be fixed. Let x,y in C; then clearly ||x —y| <e=.
Hence [A () —A W) <ellx—y[ <¢(e). Therefore (A (Cy) < ¢ (o).
Thus vy (A(C) <o (). Ife} y(A), then by the right continuity of ¢ we

have

YAC)<eG@A)<v@).

Now B being completely continuous is o-set contraction, therefore A + B
is densifying. Thus the result follows from Theorem 2.2.
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