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Equazioni funzionali. — Adstract integral equations of Volterra
type. Nota di SERGIU A1zicovici, presentata @ dal Socio B. SEGRE.

RIASSUNTO. — Siano H uno spazio di Hilbert reale,  (#) una funzione reale su [0, 4 oo[
ed A(?) (¢ > o) una famiglia di operatori non lineari a piti valori su H. In questo lavoro
si studia P’equazione integrale di Volterra:

t
u(t)+[A‘(s)u(s) dssf () (0 <#< + o),
¢

dove f:[0,4 oco[->H & una funzione assegnata. Fra l’altro, si ottengono teoremi di esi-
stenza che generalizzano risultati di Barbu [1] coll’impiego di metodi di monotonicita.

1. INTRODUCTION

This paper is concerned with the existence and behaviour of solutions of
the integral equation

(1.1) u(t)—}—fa(z‘-—s)A(s)u(s)dsaf(z‘), 0:l¢ < + oo

Here # , f are functions with values in a real Hilbert space H , 2 (¢) is a scalar
kernel and A(#), for each # > o, belongs to a class of maximal monotone graphs
in HxH.

Eq (1.1) has been thoroughly studied in the literature in the case where
H = R and A (#) do not depend on # (see e.g. [4], [5]). MacCamy and Wong [6]
investigated equations of a related form pointing out the role played by posi-
tive functions as convolution kernels of the Volterra operators. In [3], Fried-
man and Shinbrot have proved existence, uniqueness and differentiability
theorems for solutions of (1.1) under the assumption that A(f) are linear,
unbounded operators in a Banach space X, with domain independent of 2

In a recent paper [1], Barbu has presented a discussion of the absiract
equation ‘

o, :
(1.2) u(t)—I—fa(z‘——s)Au(s)dsaf(t), - t>o,

0
where A = 99 is the subdifferential of a convex, lower semicontinuous func-
tion ¢:H —]-—o00, 4 c0]. His idea was to approach Eq. (1.2) through

the theory of monotone operators.
Our purpose is to extend the method of [1] to the time dependent case.

(*) Nella seduta dell’r1 giugno 1975.
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2. PRELIMINARIES AND NOTATION

Throughout this paper H will denote a real Hilbert space with norm | | and inner
product ( , ).

Consider a nonlinear multivalued operator (graph) A from H into itself, that is a subset
of HXH. We will use the notations

(2.1) DA)={reH;Ax==¢} , R(A)=U{Ax;xeDA)} , Ay ={xecH;ycAx}.
DEFINITION 2.1. The operator A is said to be monotone on H provided that
(2.2) (y1—Y2, 21— 23) >0, for all x;eD (A),y;eAx;, i=1,2.

If in addition it admits no proper monotone extensions, we say that A is maximal monotone.
If (2.2) is strengthened to

(2.3) (y1—y2,%1—2x2) 2> 0, for all y;eAx;,i=1,2, with x; # x,,
then A is called strongly monotone.

DEFINITION 2.2. Let ¢ : H—]— 00, + o0] be a lower semicontinuous, convex funct-
ion, @ & + oo. We set

(2.4) Domo ={reH;p(x) < + o0}.
The subdifferential 9¢ of ¢ is defined by
(2.5) dp(x)={reH;o)—o @) =(y,u—x),VuecH}.

It is well known (see e.g. [2]) that 9p is maximal monotone in H xH.
In the following lemmas we collect for later use some elementary properties of maximal
monotone operators.

LEMMA 2.1. (i) 4 monotone operator A :D (A)CH — 2v is maximal monotone if and

only if R(I +2A) =H for any A> o.
Here, as is usual 1 stands for the identity operator on H.

(i2) For eack \ > o define
(2.6) D=0, A= ().

Then Jy is a monotone contraction on H, while Ay is maximal monotone, Lipschitz continuous
with Lipschitz” constant 1/\.

LEMMA 2.2. Let @ be alower semicontinuous, convex mapping from H into 1— oo, + o0],
nonidentically + oo. Then the function

(2.7) o) = inf { | = “ —|-q>(0)} ueH; A>o,
is convex, Fréchet differentiable and 3¢, = (3¢),. Moreover,

A
(2.8) 5 (%) = @ (Jau) + 5 | Ax 2|2, uweH,

(2.9) e(a#) <@ (W) <o), ueH.

The proofs of Lemmas 2.1, 2.2 may be found in [2]. We close this section with other
usual notations and definitions. ’
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DEFINITION 2.3. IfTelo,+ o0],L2 (0, T ; H) is the space of all (classes of) strongly
measurable functions #: Jo, T[ - H such that

T

(2.10) b s o,mamy = [ 1 01 d2 < + oo,

0
For T = + oo, denote by leoc (6 , 00 : H) the corresponding local space, i.e.,
(211) L (0,00:H) = {u;uel?(c,T:H) for every 0 <T < + c0}.

DEFINITION 2.4. For each T,0 < T < 4 oo we use the notation W% %(o, T : H)
to indicate the space of H-valued distributions # on Jo, T[ satisfying

(2.12) u,uel?0,T;H).

Here #’ denotes the distributional derivative of .
Finally, set

(2.13) Wi2(0,00;H) = {#;ue Wo2(0,T;H), VYT e]o,+ oo[}.

We recall that every uerlo’f (0,00 ; H) is locally absolutely continuous on [0, + oo[,

almost everywhere differentiable and its ordinary derivative coincides with #’, for almost
all z>o.

3. STATEMENT OF RESULTS
Let a:[o,+oco[—+R and ¢: [0, + oo XH —]-— o0, +o0] be subject
to the following conditions:

(1) a(#) is continuous on [o, + oco[ and continuously differentiable on
lo, + oo[ satisfying

(3.1) (— 1 a® @) >o0, E=o0,1,t>o0.
(3:2) @' (¢) is nondecreasing,
(3-3) a(®)£o , t=o

(IT) For each ¢ > o, the function # — ¢ (¢, %) is convex, lower semicon-
tinuous and nonidentically 4+ co. Moreover, there exist two functions:

k:H — [0, + oo, Lipschitzian with Lipschitz constant equal to p and

b € Wh? (0, 00; R),
such that

(3-4) o* (2, u) < @*(s,u) + A |6 —56(s)], for all s,¢>o.
Here @* (¢, -) denotes the conjugate function of ¢ (¢, -), namely

(3.5) @*(t,v)=§gg{(u:ﬂ)—<?(f,u)}-
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Remark 3.1. Hypotheses (I) imply (see [6]) that a (#) defines a positive
kernel, i.e.,

(3.6) fT<u ® ,fta @E—s)u(s)ds >dt >o,

for all € C (0, 00; H) and T > o, where C (0, co; H) stands for the space
of continuous functions on [0, co[ with values in H.

Remark 3.2. Conditions (II) were introduced by Peralba [7]. Obviously
from (3.5) it follows

3.7 Dom ¢* (¢, -) =D, independent of .

Consider next the equation
¢
(3.8) u(z‘)—l—fa(t——s)A(s)u(s)dst(t), 0 <t < + oo,
; .

where A (H)x =29 (¢,x),t >0,x €H.

DEFINITION 3.1. A function #: [0, +oo[ -H is called a solution
to Eq. (3.8) if

(3.9) u €Wl (0,00;H); u(?) €D (A (), ae. on]o, + co [,
and there exists v €L}, (0, c0; H) such that

(3.10) v(t) €A (D) u(?),ae on]o, + oof,

(3.11) u (%) —|—fa(z‘———s)v(s)ds=f(t), ¢t >o.

0

For simplicity we will sometimes write A () % (£) instead of v (7).
We can now state our basic results:

THEOREM 1. Swuppose that (I) and (II) hold. Let f:[o, -+ co[—>H
satisfy

(3.12) f€Wie(0,00;H) , f(o)€Domo (o, -).
Then Eq. (3.8) has at least one solution wu(f) such that
(3.13) t =9, u@)

is absolutely comtinuous on every inmterval [o,T].

If A (2) is strictly monotone, a.e. on Jo, + oo[, the solution u (£) is unique.
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THEOREM 2. Let (1), (II) and (3.12) be fulfilled. In addition suppose

(3.14) a (c0) = lim a (¢) > o,
t—>o00
(3.15) 5 €L*(0,00;R),
(3.16) _ o, u) >w(m) forall ueH, t>o,

where w :H — R is such that o (u) - + oo as|u| — + oo.

(3.17) There exist po €D and a real constant M such that ¢* (¢, po) <M
Jor all t > o.

(3.18) F €L (o0, 00; H).

Then Eq. (3.8) has a solution satisfying

(3.19) (@)  bounded on [0, + oo,
(3.20) “ (@), A@u@)eL? (0, 00;H)
(3.21) @ (¢,u(2)) is absolutely continuous on [0, + oof and

lim @ (¢, % (2)) < + oo.
t—>o00

THEOREM 3. Besides (I), (II), (3.12), (3.14), (3.15) assume that (3.17)
holds with po = o and that :

o0

(3.22) ([ a(®)|dt < + o0, (3-23) feEW"? (0, 00 ; H).

v
0

Then there exists at least one solution of Egq. (3.8) satisfying (3.21) and
(3.24) w €W (0,005 H) ; A(Du(d)eL?(0,00;H).

COROLLARY. Suppose that Hypotheses (1) hold. Let a (¢) be a continuous
scalar function on o, + oo| such that

(3.25) a is negative, nondecreasing on o, -+ ool,
t
(3:26) m—}—[a(s)dszo, 0 <t < - o0,

0

for some positive constant m.
If f:[o, oo [—>H and u, €H satisfy

2
(3:27) f€Li. (0, 00;H) ;J.f(s) ds €Ly, (0, c0; H) Jor each t > o,
0

(3.28) #y € Dom ¢ (0, -),



SERGIU AIZICOVICI, Abstract integral equations of Volterra type 873

then there exists a solution (in the semse of Definition (3.1)) of the integro-
differential equation

G29) WO me(u@) a6, w0,

2 (0) = a.e. on o, 4 oof

such that
(3.20) t =@ ,u(t)) is absolutely continuous on each [0, T].
If in addition (3.14)-(3.17) are fulfilled and

[

(3.31) m—}—{a(s)ds >0,

(3-32) f€L*(0,00;H),

then Eq. (3.29) has a solution satisfying the conclusions of Theorem 2.

4. PROOFS

In the proofs we shall need the following results due to Peralba [8].

LEMMA 4.1. Let ¢: [0, +oo[sH — ] — oo, + co] satisfy Conditions
(II). Suppose we are given T €lo, o[ ,u:[0,T]—+H and g:]o, T[+H
such that

(4.1) uweW" (0, T; H)
(4.2) g€Ll?(0,T;H);g()€sp(t,u () ae on lo,T[.

Then wu () €Dom o (¢, ) for all t€[o,T] and the function t — ¢ (¢, u (z‘))
is absolutely continuous on [0,T). More specificallv the following inequa-
lities hold

43) 0, u@) <[EO) +olloe, ¢, )18 @O+

| + (o0, (¢, u (), #' (&) )ae onlo,T[
(4.4) L, u(t))‘ <h(@®, for abmost all t€lo,T[,
where

@) =10 +ellg@®ITIE @I +Ig@lll# @l
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LEMMA 4.2. Let Conditions (II) be satisfied and let T be fixed in o , + ool.
Consider in L* (0, T ; H) the multivalued operator

45)  Au={vell(0,T;H);0() esp(t,u (), ae. on Jo,T[}
Then o is maximal monotone and
(4-6) () (£) = 39, (¢, u (2)), for almost all te€lo,T[ and all \>o.

In the sequel, various finite positive constants independent of A or T will
be denoted by the same symbol C.

Proof of Theorem 1. Unigqueness. Let u, (£),uy(¢) be two solutions of

Eq. (3.8). Then %, — u, satisfies

(4-7) uy () — uy () —f—fa (E—9)[A)uy () — A (S) uy ()] ds = 0,
0 o< ¢ <oo.

Form the inner product of (4.6) with A (¢)u, (£)— A (¢) uy (/) and integrate
over Jo, T[, T >o. Taking into account Remark 3.1 and the monotonicity
of A (#), we have

(48) f (2, (t) —uy (), A u; () —A D us(t) )dt =0, for any T > o.

Consequently
()~ (), A () —A @D us (2) ) = o, a.e. on Jo, + ool.

Since A (#) is assumed to be strictly monotone and # , uy are continuous we
conclude that z; (#) = u, (#) for all # > o.

Existence. For each A > o consider the approximating equation
4
(49) u;\(z‘)—l—fa(z‘-—s)A;\(s)ul(s) ds =7, 0 <# < oo,
: ,

Inasmuch as A, (¢) is Lipschitzian for all # > o, with Lipschitz constant equal
to 1/}, it follows easily that Eq. (4.9) has a unique solution %, € Wiz2(0 , oo ; ; H).
Dlﬁerentlatlng (4.9) then yields

410) 1% () +a(©) Ay (1) 1, (2) +fd =A@ wm()ds =),

a.e. on Jo, ocol.



SERGIU AIZICOVICL, Abstract integral equations of Volterra type 875

If we multiply (4.10) by A, (¥) #, (#) and use the estimate (4.3), we get
(4.11) % o (8,2, () + a () | Ay B, DI < If @I A, @) 2, D) +

FIA O 6Ol 18 ¢ 118,60 @l ds +

F[2©) + oA O % @8 ®], ae on Jo,oo.

Integrate (4.11) over Jo, T[, where T > o is such that @ (T) > o. Using the
‘
fact that the operator x —Lx defined by (Lx)(#) = f |a' (¢—s)| % (s)ds
0

is linear and bounded from L? (o, T; R) into itself, one obtains

@12) (T, M) +aD | 14O 6OFd <, 0./ O) +
T ° T
+£0 [ 18013+ [ 18,00 Q10 O+ 015 O .

Then by (2.9) and Schwarz’s inequality, we have

(4.13) ex (T, 2, (T)) + . 2T) f | Ay (8) %, @I dz < C.

From (2.8), (3.5) and (4.13) we deduce that
(4-14) (2, 1, (D) 2, (D)) + > [ Ay (T) 26, (DI +

T

+ 2D A, Qu@F d<C,  for any fixed peD.

0

If we can take p = o we find that {A, (¢) %, (¥) ; A >0} is bounded in L.*(0, T ; H).
Otherwise, use (4.14) to obtain after simple computations

(4-15) 2 (=) [ A, (T) s (D) +
T
+ 20 14,0 1Ol d < C + 121 (D

By (4.9),
1/2

|2, (DI < £ DI +( le a @)’ dt)llz( qu; @ ur @) dt)-
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Hence, (4.135) yields
(4.16)  {A, @) u,(®)} and {u, (9} are bounded in L* (o, T ; H), as A — o.

We now choose a sequence A, — 0 as # — oo such that u,, (£) and A, (#) uy,, (2)
converge weakly in L*(o,T;H) to » and v respectively. Take A = A, ;
A=, in (4.9) and subtract the corresponding equations to obtain

‘
(4.17) uy, () —wa, (£) + f a(t—15) (As, (8) 2, (s) — Az, (5) 3, (s)) ds = o,
0 o0 <t <+ oo
Multiply (4.17) by A, (¥ u;\"‘ (&) — Ay, @), (#) and integrate over Jo, TJ.
By Remark 3.1,
T

(4.18) f (As, (D) wr, (&) — As,, @) wa,,, () , 23, (&) — w3, (1) ) d2 < o,

0 for all %, > o.

In view of Lemma 4.2, the last inequality implies (cf. also [2, Proposition 2.5])
that % (#) €D (A (#)) and v (¥) €A (¥) » (¢), a.e. on Jo, T[.
Putting A = 2, in Eq. (4.9) and letting A, =0, we have

(4.19) u () + f a(t—s)A)u(s)dsaf(#), ae on Jo,T[.

Differentiating (4.9) we see that #' €L*(o,T;H). Hence, by Lemma 4.1
u(#)€Dome¢ (¢, -),2€[0,T] and the function #— ¢ (¢, (¢) is absolutely
continuous on [0, T].

It remains to show that #% (#) can be continued past T. To this end let us
consider the equation

(4.20) w(t)—i—fa(z‘—s)A(T—}—s)w(s)dsaf(z‘—l—T)——

T
_fa(T +2—)A (s)u(s)ds, ' o<t <T.

If we denote

(s, x)=0(T+s,x),s>0,v€H,
T

fl(t)=f(t—l—T)——fa(T—}—z‘———s)A(s)u(s)ds, t > o,

0
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then Eq. (4.20) can be rewritten as
t
(4.21) w(z‘)—}—fa(z‘—s)ac'f;(s,w(s))dsafl(t), o<r<T.
0,

Since, as is easily seen, ¢ and f; satisfy Conditions (II) and (3.12), there
exists a solution w € W"? (0, T ; H) of (4.21). Consequently, the function

s u(@),0<t<T
a(f) =
w(¢—T),T<t<2T,

satisfies on [0, 2T] the conclusion of Theorem 1. By the same argument
one can extend #(¥) on ]2 T, ocol.

Proof of Theorem 2. Starting from Eq. (4.9) and proceeding as in the
proof of Theorem 1 we arrive at (4.15). Inasmuch as a () > a (o) > o,
it follows that { «, ()} and { A, (¥)} are bounded in L. (0, co;H) as A —o.
Therefore, by applying the diagonal process we find a sequence %, — 0 such
that u, (£) =« (¢) and A, ) ua, &) > A (D) u (£), weakly in L?(o, T ;H),
for all T > o. Thus we obtain a solution # (#) of Eq. (3.8) which clearly sati-
sfies (3.13) (see Lemma (4.1).

To prove (3.19)-(3.21) notice first that by (3.15) and (3.18), the constant
C appearing in (4.13) is independent of T and . From (2.8), (4.13) we then
conclude that ¢ (T, J, (T) %, (T)) <C, for all T, >o. Hence, by (3.16),

(4‘22> ” J)\(t) %7\<t)” SC, t20;7\ > 0.

Combining (4.13) with (2.8) and (3.5), we have

T
@2 D[ 14,0 O 4= C 11 LT DI +¢* T, 2
0 for any p €D.

Now take p = poin (4.23) and make use of (3.14), (3.17) and (4.22) to obtain

T
(4.24) f 1A, @ u, (OIfdt<C, for all T>0,r>o0.
1]

Since Ay, (2) ua, () converges weakly in L*(o,T;H) to A «(?), (4.24)
implies that A ()« (#) €L’ (0, 00;H). Differentiating (3.8) immediately
yields #' €L? (o, co; H), therefore (3.20) is established.

The remaining assertions of the theorem follow from Lemma 4.1. In
fact, taking g () = A () # () in (4.4) and using (3.15) one finds that 4 ()

60. — RENDICONTI 1975, Vol. LVIII, fasc. 6.
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is integrable over Jo, - oo[; hence,

(4.25) |<p<t,u<z>>|g|<p<o,f<o>>|+fvz<z>|dt=c, t>0

Consequently, by (3.16), || % (¢)| is bounded on [0, 4 oof.

To deduce (3.21) observe that f‘% o (2,u(2) ’ d¢ < + co. This com-

pletes the proof of Theorem. 2. °

Proof of Theorem 3. Let us again consider Eq. (4.9) and derive (4.11).
If we next integrate (4.11) over Jo, T[, T arbitrary in Jo, oco[ and use (3.13),
(3.23) we get the estimate (4.13), where C does not depend on T and A. Since,
by hypothesis o, (T, %, (T)) = ¢ (T, J, (T) %, (T)) >— M, it follows that

T
(4.26) (D) f IA, () u, P dt <C,  for all T,n>o.
. 0

Noting that a () > a(c0) >o0,¢>0 we infer from (4.26) that { A, (¢) %, (¢);
A > o0} is bounded in L? (0, co; H). Then, use (4.9) and (3.22) in conjunc-
tion with (3.23) to obtain

(4'27) “ %y, “L’(0,00;H) < ”f”L’(O,oo;H) + ( f I a (t)l dt) ”Al %y ”L’ (0,00;H) *
0

Therefore {u, ;A >0} is bounded in L?(0, co;H). Choosing a sequence
M —>0 as n—>oo, we have wu, (¢) = u(t), A, (H)w, - v (¢), weakly in
L?(0,c0; H). It is immediate (see the proof of Theorem 1) that
v() €A u(l), ae. on Jo, 4+ oo and « (¢) satisfies Eq. (3.8).

'Further, differentiating (3.8) gives %' €LL? (0, oo ; H), hence the assertion
(3.24) follows. Finally, in view of Lemma 4.1, ¢ (¢, % (¢)) is locally absolutely
continuous. Then by (4.4), (3.15) and (3.24),

ﬂ%‘PO/‘»%(t))ldtgﬁ/z(;)mz< + oo,

This implies (3.21) and the proof is complete.

Remark 4.1. Theorem 3 remains valid if we drop (3.17) and strengthen
(3.23) to

(3-23") feEW" (0, 00;H); ]l bounded on [o, ool.

To verify this, use (4.15) and derive the boundedness of {A, (@ u, ()} in
L?*(o, 00; H), as A —o.
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Proof of the Corollary. Tt suffices to notice that Eq. (3.29) is equivalent to

(3.28) u(t)+fal(t—s)acp(x,u(s))dsafl(z‘), 0<¢t<oo,

t t
where @, () = m + J a(s)ds and f; (?) = u, + f f(s)ds satisfy the condi-
0 0

tions of Theorem 1 (Theorem 2).

Acknowledgement. — The author is most grateful to Prof. V. Barbu for his helpful
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