ATTI ACCADEMIA NAZIONALE DEI LINCEI

CLASSE SCIENZE FISICHE MATEMATICHE NATURALI

RENDICONTI

SERGIU AIZICOVICI

Abstract integral equations of Volterra type

Atti della Accademia Nazionale dei Lincei. Classe di Scienze Fisiche, Matematiche e Naturali. Rendiconti, Serie 8, Vol. **58** (1975), n.6, p. 868–879. Accademia Nazionale dei Lincei

<http://www.bdim.eu/item?id=RLINA_1975_8_58_6_868_0>

L'utilizzo e la stampa di questo documento digitale è consentito liberamente per motivi di ricerca e studio. Non è consentito l'utilizzo dello stesso per motivi commerciali. Tutte le copie di questo documento devono riportare questo avvertimento.

Equazioni funzionali. — Abstract integral equations of Volterra type. Nota di Sergiu Aizicovici, presentata (*) dal Socio B. Segre.

RIASSUNTO. — Siano H uno spazio di Hilbert reale, a(t) una funzione reale su $[0, +\infty[$ ed A(t) $(t \ge 0)$ una famiglia di operatori non lineari a più valori su H. In questo lavoro si studia l'equazione integrale di Volterra:

$$u(t) + \int_{0}^{t} A(s) u(s) ds \ni f(t) \qquad (o \le t < +\infty)$$

dove $f: [0, +\infty[\to H \ è \ una \ funzione assegnata. Fra l'altro, si ottengono teoremi di esistenza che generalizzano risultati di Barbu [1] coll'impiego di metodi di monotonicità.$

I. INTRODUCTION

This paper is concerned with the existence and behaviour of solutions of the integral equation

(1.1)
$$u(t) + \int_{0}^{t} a(t-s) A(s) u(s) ds \ni f(t), \qquad 0 \le t < +\infty.$$

Here u, f are functions with values in a real Hilbert space H, a(t) is a scalar kernel and A(t), for each $t \ge 0$, belongs to a class of maximal monotone graphs in $H \times H$.

Eq (1.1) has been thoroughly studied in the literature in the case where H = R and A(t) do not depend on t (see e.g. [4], [5]). MacCamy and Wong [6] investigated equations of a related form pointing out the role played by positive functions as convolution kernels of the Volterra operators. In [3], Friedman and Shinbrot have proved existence, uniqueness and differentiability theorems for solutions of (1.1) under the assumption that A(t) are linear, unbounded operators in a Banach space X, with domain independent of t.

In a recent paper [1], Barbu has presented a discussion of the abstract equation

(1.2)
$$u(t) + \int_{0}^{t} a(t-s) \operatorname{A} u(s) ds \ni f(t), \quad t \geq 0,$$

where $A = \partial \phi$ is the subdifferential of a convex, lower semicontinuous function $\phi: H \to]-\infty$, $+\infty$]. His idea was to approach Eq. (1.2) through the theory of monotone operators.

Our purpose is to extend the method of [1] to the time dependent case.

(*) Nella seduta dell'11 giugno 1975.

2. PRELIMINARIES AND NOTATION

Throughout this paper H will denote a real Hilbert space with norm $\| \ \|$ and inner product $\langle \ , \ \rangle$.

Consider a nonlinear multivalued operator (graph) A from H into itself, that is a subset of $H \times H$. We will use the notations

(2.1)
$$D(A) = \{x \in H ; Ax = \varphi\}$$
, $R(A) = U\{Ax ; x \in D(A)\}$, $A^{-1}y = \{x \in H ; y \in Ax\}$.

DEFINITION 2.1. The operator A is said to be monotone on H provided that

$$(2.2) \langle y_1 - y_2, x_1 - x_2 \rangle \ge 0, \text{for all } x_i \in D(A), y_i \in Ax_i, i = 1, 2.$$

If in addition it admits no proper monotone extensions, we say that A is maximal monotone. If (2.2) is strengthened to

(2.3)
$$\langle y_1 - y_2, x_1 - x_2 \rangle > 0$$
, for all $y_i \in Ax_i$, $i = 1, 2$, with $x_1 \neq x_2$,

then A is called strongly monotone.

DEFINITION 2.2. Let $\varphi: H \to]-\infty, +\infty]$ be a lower semicontinuous, convex function, $\varphi \equiv +\infty$. We set

(2.4)
$$\operatorname{Dom} \varphi = \{x \in H ; \varphi(x) < +\infty\}.$$

The subdifferential $\partial \varphi$ of φ is defined by

(2.5)
$$\partial \varphi(x) = \{ y \in H ; \varphi(u) - \varphi(x) \ge \langle y, u - x \rangle, \forall u \in H \}.$$

It is well known (see e.g. [2]) that $\partial \varphi$ is maximal monotone in H×H.

In the following lemmas we collect for later use some elementary properties of maximal monotone operators.

LEMMA 2.1. (i) A monotone operator $A:D(A)\subset H\to 2^H$ is maximal monotone if and only if $R(I+\lambda A)=H$ for any $\lambda>0$.

Here, as is usual I stands for the identity operator on H.

(ii) For each $\lambda > 0$ define

(2.6)
$$J_{\lambda} = (I + \lambda A)^{-1} \quad , \quad A_{\lambda} = \frac{I}{\lambda} (I - J_{\lambda}) .$$

Then J_{λ} is a monotone contraction on H, while A_{λ} is maximal monotone, Lipschitz continuous with Lipschitz constant I/λ .

LEMMA 2.2. Let φ be a lower semicontinuous, convex mapping from H into]— ∞ , + ∞], nonidentically + ∞ . Then the function

(2.7)
$$\varphi_{\lambda}(u) = \inf_{v \in H} \left\{ \frac{\|u - v\|^2}{2\lambda} + \varphi(v) \right\}, \quad u \in H; \quad \lambda > 0,$$

is convex, Fréchet differentiable and $\partial \varphi_{\lambda} = (\partial \varphi)_{\lambda}$. Moreover,

$$\varphi_{\lambda}(u) = \varphi(J_{\lambda}u) + \frac{\lambda}{2} \|A_{\lambda}u\|^{2}, \quad u \in H,$$

(2.9)
$$\varphi(J_{\lambda} u) \leq \varphi_{\lambda}(u) \leq \varphi(u), \quad u \in H.$$

The proofs of Lemmas 2.1, 2.2 may be found in [2]. We close this section with other usual notations and definitions.

DEFINITION 2.3. If $T \in [0, +\infty]$, $L^2(0, T; H)$ is the space of all (classes of) strongly measurable functions $u: [0, T] \to H$ such that

(2.10)
$$\|u\|_{L^{2}(0,T;H)}^{2} = \int_{0}^{T} \|u(t)\|^{2} dt < + \infty.$$

For $T=+\infty$, denote by $L^2_{loc}\left(o,\infty:H\right)$ the corresponding local space, i.e.,

$$(2.11) \qquad L^2_{\rm loc}({\rm o}\,,\infty:{\rm H}) = \{\,u\,;\,u\in L^2({\rm o}\,,T:{\rm H})\quad {\rm for\ every}\quad {\rm o}\,< T\,<\,+\,\infty\,\}.$$

DEFINITION 2.4. For each T, $0 < T \le +\infty$ we use the notation $W^{1,2}(0, T : H)$ to indicate the space of H-valued distributions u on]0, T[satisfying

(2.12)
$$u, u' \in L^2 (0, T; H)$$
.

Here u' denotes the distributional derivative of u. Finally, set

(2.13)
$$W_{loc}^{1,2}(o, \infty; H) = \{u ; u \in W^{1,2}(o, T; H), \forall T \in]o, +\infty[\}$$

We recall that every $u \in W_{loc}^{1,2}(o,\infty; H)$ is locally absolutely continuous on $[o, +\infty[$, almost everywhere differentiable and its ordinary derivative coincides with u', for almost all t > o.

3. STATEMENT OF RESULTS

Let $a: [0, +\infty[\to R \text{ and } \phi: [0, +\infty[\times H \to] -\infty, +\infty]]$ be subject to the following conditions:

(I) a(t) is continuous on $[0, +\infty[$ and continuously differentiable on $]0, +\infty[$ satisfying

(3.1)
$$(-1)^k a^{(k)}(t) \ge 0$$
, $k = 0, 1, t > 0$.

$$(3:2)$$
 $a'(t)$ is nondecreasing,

$$(3.3) a(t) \equiv 0 , t \geq 0.$$

(II) For each $t \ge 0$, the function $u \to \varphi(t, u)$ is convex, lower semicontinuous and nonidentically $+\infty$. Moreover, there exist two functions:

 $k: H \to [o, +\infty[$, Lipschitzian with Lipschitz constant equal to ρ and

$$b \in W_{loc}^{1,2}$$
 (o, ∞ ; R),

such that

$$(3.4) \quad \varphi^*(t, u) \leq \varphi^*(s, u) + k(u) | b(t) - b(s) |, \quad \text{for all} \quad s, t \geq 0.$$

Here $\varphi^*(t,\cdot)$ denotes the conjugate function of $\varphi(t,\cdot)$, namely

$$\varphi^*(t,v) = \sup_{u \in H} \{\langle u, v \rangle - \varphi(t,u)\}.$$

Remark 3.1. Hypotheses (I) imply (see [6]) that a(t) defines a positive kernel, i.e.,

(3.6)
$$\int_{0}^{T} \left\langle u(t), \int_{0}^{t} a(t-s) u(s) ds \right\rangle dt \geq 0,$$

for all $u \in C(0, \infty; H)$ and $T \ge 0$, where $C(0, \infty; H)$ stands for the space of continuous functions on $[0, \infty[$ with values in H.

Remark 3.2. Conditions (II) were introduced by Peralba [7]. Obviously from (3.5) it follows

(3.7) Dom
$$\varphi^*(t, \cdot) = D$$
, independent of t .

Consider next the equation

(3.8)
$$u(t) + \int_{0}^{t} a(t-s) A(s) u(s) ds \ni f(t), \quad o \le t < +\infty,$$

where $A(t) x = \Im \varphi(t, x), t \ge 0, x \in H$.

DEFINITION 3.1. A function $u:[0,+\infty[\to H]$ is called a solution to Eq. (3.8) if

(3.9)
$$u \in W_{loc}^{1,2}$$
 (o, ∞ ; H); $u(t) \in D(A(t))$, a.e. on] o, $+\infty$ [,

and there exists $v \in L^2_{loc}(o, \infty; H)$ such that

(3.10)
$$v(t) \in A(t) u(t)$$
, a.e. on] $o, +\infty[$,

(3.11)
$$u(t) + \int_{0}^{t} a(t-s) v(s) ds = f(t), \quad t \ge 0.$$

For simplicity we will sometimes write A(t) u(t) instead of v(t). We can now state our basic results:

Theorem 1. Suppose that (I) and (II) hold. Let $f: [o, +\infty[\to H]]$ satisfy

(3.12)
$$f \in W_{loc}^{1,2}(o, \infty; H)$$
, $f(o) \in Dom \varphi(o, \cdot)$.

Then Eq. (3.8) has at least one solution u(t) such that

$$(3.13) t \rightarrow \varphi(t, u(t))$$

is absolutely continuous on every interval [o, T].

If A (t) is strictly monotone, a.e. on]0, $+\infty$ [, the solution u(t) is unique.

THEOREM 2. Let (I), (II) and (3.12) be fulfilled. In addition suppose

(3.14)
$$a(\infty) = \lim_{t \to \infty} a(t) > 0,$$

$$(3.15) b' \in L^2(o, \infty; R),$$

(3.16)
$$\varphi(t, u) \ge \omega(u)$$
 for all $u \in H$, $t \ge 0$,

where $\omega: H \to R$ is such that $\omega(u) \to +\infty$ as $||u|| \to +\infty$.

(3.17) There exist $p_0 \in D$ and a real constant M such that $\varphi^*(t, p_0) \leq M$ for all $t \geq 0$.

(3.18)
$$f' \in L^2 (o, \infty; H).$$

Then Eq. (3.8) has a solution satisfying

(3.19)
$$||u(t)||$$
 bounded on $[0, +\infty[$,

(3.20)
$$u'(t), A(t) u(t) \in L^{2}(0, \infty; H)$$

(3.21)
$$\varphi(t, u(t))$$
 is absolutely continuous on $[0, +\infty[$ and $\lim_{t\to\infty} \varphi(t, u(t)) < +\infty.$

THEOREM 3. Besides (I), (II), (3.12), (3.14), (3.15) assume that (3.17) holds with $p_0 = 0$ and that

(3.22)
$$\int_{0}^{\infty} |a(t)| dt < +\infty, \qquad (3.23) \qquad f \in W^{1,2}(0,\infty; H).$$

Then there exists at least one solution of Eq. (3.8) satisfying (3.21) and

(3.24)
$$u \in W^{1,2}(o, \infty; H)$$
; $A(t) u(t) \in L^{2}(o, \infty; H)$.

COROLLARY. Suppose that Hypotheses (II) hold. Let a(t) be a continuous scalar function on $]o, +\infty[$ such that

(3.25) a is negative, nondecreasing on
$$]0, +\infty[$$
,

$$(3.26) m + \int_{0}^{t} a(s) ds \ge 0, 0 < t < -\infty,$$

for some positive constant m.

If $f: [0, +\infty] \to H$ and $u_0 \in H$ satisfy

$$(3.27) f \in L^2_{loc}(o, \infty; H); \int_0^t f(s) ds \in L^2_{loc}(o, \infty; H) for each t > o,$$

(3.28)
$$u_0 \in \text{Dom } \varphi (o, \cdot),$$

then there exists a solution (in the sense of Definition (3.1)) of the integrodifferential equation

(3.29)
$$u'(t) + m (t, u(t)) + \int_{0}^{t} a(t-s) (s, u(s)) ds f(t),$$
$$u(0) = u_{0}$$
 a.e. on $]0, +\infty[$

such that

(3.20)
$$t \rightarrow \varphi(t, u(t))$$
 is absolutely continuous on each $[0, T]$.

If in addition (3.14)-(3.17) are fulfilled and

$$(3.31) m + \int_{0}^{\infty} a(s) ds > 0,$$

$$(3.32) f \in L^2 (o, \infty; H),$$

then Eq. (3.29) has a solution satisfying the conclusions of Theorem 2.

4. Proofs

In the proofs we shall need the following results due to Peralba [8].

LEMMA 4.1. Let φ : $[o, +\infty[xH \to] -\infty, +\infty]$ satisfy Conditions (II). Suppose we are given $T \in]o, \infty[, u : [o, T] \to H$ and $g :]o, T[\to H$ such that

(4.1)
$$u \in W^{1,2}$$
 (o, T; H)

(4.2)
$$g \in L^{2}(0, T; H); g(t) \in \partial \varphi(t, u(t)) \text{ a.e. on }]0, T[.$$

Then $u(t) \in \text{Dom } \varphi(t, \cdot)$ for all $t \in [0, T]$ and the function $t \to \varphi(t, u(t))$ is absolutely continuous on [0, T]. More specifically the following inequalities hold

$$(4.3) \qquad \frac{\mathrm{d}}{\mathrm{d}t} \, \varphi_{\lambda}(t, u(t)) \leq \left[k \, (0) + \rho \, \| \, \partial \varphi_{\lambda}(t, u(t)) \| \right] | \, b'(t) | +$$

$$+ \left\langle \, \partial \varphi_{\lambda}(t, u(t)), u'(t) \, \right\rangle \, \text{a.e. on]o, T[}$$

(4.4)
$$\left|\frac{\mathrm{d}}{\mathrm{d}t}\,\varphi\left(t\,,\,u\left(t\right)\right)\right|\leq h\left(t\right),\quad \text{for almost all}\quad t\in\left]0\,,\mathrm{T}\right[\,,$$

where

$$h(t) = [k(0) + \rho || g(t) ||] || b'(t) || + || g(t) || || u'(t) ||.$$

LEMMA 4.2. Let Conditions (II) be satisfied and let T be fixed in]0, $+\infty$ [. Consider in L² (0, T; H) the multivalued operator

(4.5)
$$\mathcal{A}u = \{ v \in L^2(0, T; H); v(t) \in \Im \phi(t, u(t)), a.e. on]0, T[\}$$

Then A is maximal monotone and

(4.6)
$$(\mathcal{A}_{\lambda} u)(t) = \partial \varphi_{\lambda}(t, u(t)), \text{ for almost all } t \in]0, T[\text{ and all } \lambda > 0.$$

In the sequel, various finite positive constants independent of λ or T will be denoted by the same symbol C.

Proof of Theorem 1. Uniqueness. Let $u_1(t)$, $u_2(t)$ be two solutions of Eq. (3.8). Then $u_1 - u_2$ satisfies

(4.7)
$$u_1(t) - u_2(t) + \int_0^t a(t-s) [A(s) u_1(s) - A(s) u_2(s)] ds = 0,$$

Form the inner product of (4.6) with $A(t) u_1(t) - A(t) u_2(t)$ and integrate over]0, T[, T > 0. Taking into account Remark 3.1 and the monotonicity of A(t), we have

(4.8)
$$\int_{0}^{T} \left(u_{1}(t) - u_{2}(t), A(t) u_{1}(t) - A(t) u_{2}(t) \right) dt = 0, \quad \text{for any } T > 0.$$

Consequently

$$\langle u_1(t) - u_2(t), A(t) u_1(t) - A(t) u_2(t) \rangle = 0,$$
 a.e. on $]0, +\infty[$.

Since A(t) is assumed to be strictly monotone and u_1 , u_2 are continuous we conclude that $u_1(t) = u_2(t)$ for all $t \ge 0$.

Existence. For each $\lambda > 0$ consider the approximating equation

(4.9)
$$u_{\lambda}(t) + \int_{0}^{t} a(t-s) A_{\lambda}(s) u_{\lambda}(s) ds = f(t), \qquad o \leq t < \infty.$$

Inasmuch as $A_{\lambda}(t)$ is Lipschitzian for all $t \geq 0$, with Lipschitz constant equal to $1/\lambda$, it follows easily that Eq. (4.9) has a unique solution $u_{\lambda} \in W^{1,2}_{loc}(0, \infty; H)$. Differentiating (4.9) then yields

(4.10)
$$u_{\lambda}'(t) + a(0) A_{\lambda}(t) u_{\lambda}(t) + \int_{0}^{t} a'(t-s) A_{\lambda}(s) u_{\lambda}(s) ds = f'(t),$$
a.e. on $[0, \infty[$

If we multiply (4.10) by $A_{\lambda}(t) u_{\lambda}(t)$ and use the estimate (4.3), we get

$$\begin{aligned} (4.11) \qquad & \frac{\mathrm{d}}{\mathrm{d}t} \, \varphi_{\lambda}(t\,,\,u_{\lambda}(t)) + a\,(\mathrm{o}) \, \|\, \mathrm{A}_{\lambda}(t) \, u_{\lambda}(t) \|^{2} \leq \|f'(t)\| \, \|\, \mathrm{A}_{\lambda}(t) \, u_{\lambda}(t) \| \, + \\ & \qquad \qquad + \|\, \mathrm{A}_{\lambda}(t) \, u_{\lambda}(t) \| \int_{0}^{t} |\, a'\,(t-s)| \, \|\, \mathrm{A}_{\lambda}(s) \, u_{\lambda}(s) \| \, \mathrm{d}s \, + \\ & \qquad \qquad + \left[k\,(\mathrm{o}) + \rho \, \|\, \mathrm{A}_{\lambda}(t) \, u_{\lambda}(t) \| \right] \, |\, b'(t) \, |\,, \qquad \text{a.e. on } \,]\mathrm{o}\,, \, \infty[. \end{aligned}$$

Integrate (4.11) over]0, T[, where T > 0 is such that a(T) > 0. Using the fact that the operator $x \to Lx$ defined by $(Lx)(t) = \int_0^t |a'(t-s)| x(s) ds$ is linear and bounded from $L^2(0, T; R)$ into itself, one obtains

$$(4.12) \qquad \varphi_{\lambda}(T, u_{\lambda}(T)) + a(T) \int_{0}^{T} \|A_{\lambda}(t) u_{\lambda}(t)\|^{2} dt \leq \varphi_{\lambda}(0, f(0)) +$$

$$+ k(0) \int_{0}^{T} |b'(t)| dt + \int_{0}^{T} \|A_{\lambda}(t) u_{\lambda}(t)\| (\|f'(t)\| + \rho |b'(t)|) dt.$$

Then by (2.9) and Schwarz's inequality, we have

$$(4.13) \varphi_{\lambda}(T, u_{\lambda}(T)) + \frac{a(T)}{2} \int_{0}^{1} ||A_{\lambda}(t) u_{\lambda}(t)||^{2} dt \leq C.$$

From (2.8), (3.5) and (4.13) we deduce that

$$\begin{aligned} \langle \, p \, , \, \mathbf{J}_{\lambda} \left(\mathbf{T} \right) \, u_{\lambda} \left(\mathbf{T} \right) \, \rangle \, + \, & \frac{\lambda}{2} \, \| \, \mathbf{A}_{\lambda} \left(\mathbf{T} \right) \, u_{\lambda} \left(\mathbf{T} \right) \|^{2} \, + \\ & + \, \frac{a \, \langle \mathbf{T} \rangle}{2} \int\limits_{0}^{\mathbf{T}} \| \, \mathbf{A}_{\lambda} \left(t \right) \, u_{\lambda} \left(t \right) \|^{2} \, \mathrm{d}t \leq \mathbf{C}, \qquad \text{for any fixed} \quad p \in \mathbf{D}. \end{aligned}$$

If we can take p = 0 we find that $\{A_{\lambda}(t) u_{\lambda}(t); \lambda > 0\}$ is bounded in L²(0, T; H). Otherwise, use (4.14) to obtain after simple computations

(4.15)
$$\frac{\lambda}{2} (I - \lambda) \|A_{\lambda}(T) u_{\lambda}(T)\|^{2} + \frac{a(T)}{2} \int_{0}^{T} \|A_{\lambda}(t) u_{\lambda}(t)\|^{2} dt \le C + \|p\| \|u_{\lambda}(T)\|.$$

By (4.9), $\|u_{\lambda}(T)\| \le \|f(T)\| + \left(\int_{0}^{T} |a(t)|^{2} dt\right)^{1/2} \left(\int_{0}^{T} \|A_{\lambda}(t) u_{\lambda}(t)\|^{2} dt\right)^{1/2}.$

Hence, (4.15) yields

(4.16)
$$\{A_{\lambda}(t) u_{\lambda}(t)\}\$$
 and $\{u_{\lambda}(t)\}\$ are bounded in $L^{2}(0, T; H)$, as $\lambda \to 0$.

We now choose a sequence $\lambda_n \to 0$ as $n \to \infty$ such that $u_{\lambda_n}(t)$ and $A_{\lambda_n}(t)$ $u_{\lambda_n}(t)$ converge weakly in $L^2(0, T; H)$ to u and v respectively. Take $\lambda = \lambda_n$; $\lambda = \lambda_m$ in (4.9) and subtract the corresponding equations to obtain

$$(4.17) u_{\lambda_n}(t) - u_{\lambda_m}(t) + \int_0^t a(t-s) (A_{\lambda_n}(s) u_{\lambda_n}(s) - A_{\lambda_m}(s) u_{\lambda_m}(s)) ds = 0,$$

$$0 \le t < +\infty.$$

Multiply (4.17) by $A_{\lambda_n}(t) u_{\lambda_n}(t) - A_{\lambda_m}(t) u_{\lambda_m}(t)$ and integrate over]o, T[. By Remark 3.1,

(4.18)
$$\int_{0}^{T} \left\langle A_{\lambda_{n}}(t) u_{\lambda_{n}}(t) - A_{\lambda_{m}}(t) u_{\lambda_{m}}(t), u_{\lambda_{n}}(t) - u_{\lambda_{m}}(t) \right\rangle dt \leq 0,$$
 for all $n, m > 0$.

In view of Lemma 4.2, the last inequality implies (cf. also [2, Proposition 2.5]) that $u(t) \in D(A(t))$ and $v(t) \in A(t) u(t)$, a.e. on [0, T].

Putting $\lambda = \lambda_n$ in Eq. (4.9) and letting $\lambda_n \to 0$, we have

(4.19)
$$u(t) + \int_{0}^{t} a(t-s) A(s) u(s) ds \ni f(t)$$
, a.e. on]o, T[.

Differentiating (4.9) we see that $u' \in L^2(o, T; H)$. Hence, by Lemma 4.1 $u(t) \in Dom \varphi(t, \cdot)$, $t \in [o, T]$ and the function $t \to \varphi(t, u(t))$ is absolutely continuous on [o, T].

It remains to show that u(t) can be continued past T. To this end let us consider the equation

$$(4.20) w(t) + \int_{0}^{t} a(t-s) A(T+s) w(s) ds \ni f(t+T) -$$

$$-\int_{0}^{T} a(T+t-s) A(s) u(s) ds, o \le t \le T.$$

If we denote

$$\tilde{\varphi}(s,x) = \varphi(T+s,x), s \ge 0, x \in H,$$

$$f_1(t) = f(t+T) - \int_0^T a(T+t-s) A(s) u(s) ds, \qquad t \ge 0,$$

then Eq. (4.20) can be rewritten as

$$(4.21) w(t) + \int_{0}^{t} a(t-s) \, \partial \tilde{\varphi}(s, w(s)) \, \mathrm{d}s \, \vartheta f_{1}(t), \qquad 0 \leq t \leq \mathrm{T}.$$

Since, as is easily seen, $\tilde{\varphi}$ and f_1 satisfy Conditions (II) and (3.12), there exists a solution $w \in W^{1,2}$ (o, T; H) of (4.21). Consequently, the function

$$\tilde{u}\left(t\right) = \begin{cases} u\left(t\right), & 0 \leq t \leq T \\ w\left(t - T\right), & T < t \leq 2T, \end{cases}$$

satisfies on [0, 2T] the conclusion of Theorem 1. By the same argument one can extend u(t) on $]2T, \infty[$.

Proof of Theorem 2. Starting from Eq. (4.9) and proceeding as in the proof of Theorem 1 we arrive at (4.15). Inasmuch as $a(t) \ge a(\infty) > 0$, it follows that $\{u_{\lambda}(t)\}$ and $\{A_{\lambda}(t)\}$ are bounded in $L^2_{loc}(0,\infty;H)$ as $\lambda \to 0$. Therefore, by applying the diagonal process we find a sequence $\lambda_n \to 0$ such that $u_{\lambda_n}(t) \to u(t)$ and $A_{\lambda_n}(t) u_{\lambda_n}(t) \to A(t) u(t)$, weakly in $L^2(0,T;H)$, for all T > 0. Thus we obtain a solution u(t) of Eq. (3.8) which clearly satisfies (3.13) (see Lemma (4.1).

To prove (3.19)-(3.21) notice first that by (3.15) and (3.18), the constant C appearing in (4.13) is independent of T and λ . From (2.8), (4.13) we then conclude that $\varphi(T, J_{\lambda}(T) u_{\lambda}(T)) \leq C$, for all $T, \lambda > 0$. Hence, by (3.16),

$$\|J_{\lambda}(t) u_{\lambda}(t)\| \leq C, \qquad t \geq 0, \lambda > 0.$$

Combining (4.13) with (2.8) and (3.5), we have

(4.23)
$$\frac{a(T)}{2} \int_{0}^{T} \|A_{\lambda}(t) u_{\lambda}(t)\|^{2} dt \leq C + \|p\| \|J_{\lambda}(T) u_{\lambda}(T)\| + \varphi^{*}(T, p)$$
 for any $p \in D$.

Now take $p = p_0$ in (4.23) and make use of (3.14), (3.17) and (4.22) to obtain

(4.24)
$$\int_{0}^{T} \|A_{\lambda}(t) u_{\lambda}(t)\|^{2} dt \leq C, \quad \text{for all } T \geq 0, \lambda > 0.$$

Since $A_{\lambda_n}(t) u_{\lambda_n}(t)$ converges weakly in $L^2(0,T;H)$ to A(t) u(t), (4.24) implies that $A(t) u(t) \in L^2(0,\infty;H)$. Differentiating (3.8) immediately yields $u' \in L^2(0,\infty;H)$, therefore (3.20) is established.

The remaining assertions of the theorem follow from Lemma 4.1. In fact, taking g(t) = A(t) u(t) in (4.4) and using (3.15) one finds that h(t)

60. - RENDICONTI 1975, Vol. LVIII, fasc. 6.

is integrable over]0, $+\infty$ [; hence,

(4.25)
$$|\varphi(t, u(t))| \le |\varphi(o, f(o))| + \int_{0}^{\infty} |h(t)| dt = C, \qquad t \ge 0$$

Consequently, by (3.16), ||u(t)|| is bounded on $[o, +\infty[$.

To deduce (3.21) observe that $\int_{0}^{\infty} \left| \frac{\mathrm{d}}{\mathrm{d}t} \varphi(t, u(t)) \right| \mathrm{d}t < +\infty$. This completes the proof of Theorem. 2.

Proof of Theorem 3. Let us again consider Eq. (4.9) and derive (4.11). If we next integrate (4.11) over]0, T[, T arbitrary in]0, ∞ [and use (3.15), (3.23) we get the estimate (4.13), where C does not depend on T and λ . Since, by hypothesis $\varphi_{\lambda}(T, u_{\lambda}(T)) \geq \varphi(T, J_{\lambda}(T)u_{\lambda}(T)) \geq -M$, it follows that

$$(4.26) \qquad \frac{a(T)}{2} \int_{0}^{T} \|\mathbf{A}_{\lambda}(t) u_{\lambda}(t)\|^{2} dt \leq C, \quad \text{for all } T, \lambda > 0.$$

Noting that $a(t) \ge a(\infty) > 0$, $t \ge 0$ we infer from (4.26) that $\{A_{\lambda}(t) u_{\lambda}(t); \lambda > 0\}$ is bounded in $L^{2}(0, \infty; H)$. Then, use (4.9) and (3.22) in conjunction with (3.23) to obtain

$$(4.27) \|u_{\lambda}\|_{L^{2}(0,\infty;H)} \leq \|f\|_{L^{2}(0,\infty;H)} + \left(\int_{0}^{\infty} |a(t)| dt\right) \|A_{\lambda} u_{\lambda}\|_{L^{2}(0,\infty;H)}.$$

Therefore $\{u_{\lambda}; \lambda > 0\}$ is bounded in $L^{2}(0, \infty; H)$. Choosing a sequence $\lambda_{n} \to 0$ as $n \to \infty$, we have $u_{\lambda_{n}}(t) \to u(t)$, $A_{\lambda_{n}}(t) u_{\lambda_{n}} \to v(t)$, weakly in $L^{2}(0, \infty; H)$. It is immediate (see the proof of Theorem 1) that $v(t) \in A(t) u(t)$, a.e. on $]0, +\infty[$ and u(t) satisfies Eq. (3.8).

Further, differentiating (3.8) gives $u' \in L^2(0, \infty; H)$, hence the assertion (3.24) follows. Finally, in view of Lemma 4.1, $\varphi(t, u(t))$ is locally absolutely continuous. Then by (4.4), (3.15) and (3.24),

$$\int_{0}^{\infty} \left| \frac{\mathrm{d}}{\mathrm{d}t} \varphi(t, u(t)) \right| \mathrm{d}t \leq \int_{0}^{\infty} |h(t)| \, \mathrm{d}t < +\infty.$$

This implies (3.21) and the proof is complete.

Remark 4.1. Theorem 3 remains valid if we drop (3.17) and strengthen (3.23) to

(3.23')
$$f \in W^{1,2}(0, \infty; H); \quad ||f|| \text{ bounded on } [0, \infty[.]]$$

To verify this, use (4.15) and derive the boundedness of $\{A_{\lambda}(t) u_{\lambda}(t)\}$ in $L^{2}(0, \infty; H)$, as $\lambda \to 0$.

Proof of the Corollary. It suffices to notice that Eq. (3.29) is equivalent to

$$(3.28) u(t) + \int_{0}^{t} a_{1}(t-s) \, \partial \varphi(s, u(s)) \, \mathrm{d}s \, \ni f_{1}(t), \qquad 0 \leq t < \infty,$$

where $a_1(t) = m + \int_0^t a(s) \, ds$ and $f_1(t) = u_0 + \int_0^t f(s) \, ds$ satisfy the conditions of Theorem 1 (Theorem 2).

Acknowledgement. — The author is most grateful to Prof. V. Barbu for his helpful suggestions.

REFERENCES

- V. BARBU (1975) Nonlinear Volterra equations in a Hilbert space, «SIAM J. Math. Anal.» 6, 728-741.
- [2] H. Brezis (1973) Opérateurs maximaux monotones et semi-groupes de contractions dans les espaces de Hilbert, «Math. Studies», 5, North Holland.
- [3] A. FRIEDMAN and M. SHINBROT (1967) Volterra integral equations in Banach space, «Trans. Amer. Math. Soc.», 126, 131-179.
- [4] J. J. LEVIN (1965) The qualitative behaviour of a nonlinear Volterra equation, « Proc. Amer. Math. Soc. », 16, 711-718.
- [5] J. J. LEVIN (1972) On a nonlinear Volterra equation, « J. Math. Anal. Appl. », 39, 458-476.
- [6] R. C. MACCAMY and J. S. WONG (1972) Stability theorems for some functional equations, «Trans. Amer. Math. Soc. », 164, 1–37.
- [7] J.C. PERALBA (1972) Un problème d'évolution relatif à un opérateur sous-différentiel dépendant du temps, «C.R. Acad. Sci. Paris », 275, 93–95.
- [8] J.C. PERALBA (1973) Equations d'évolution dans un espace de Hilbert, associées à des opérateurs sous-différentiels, Thèse, Université du Languedoc.