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Equazioni differenziali ordinarie. —  On the solutions o f certain 
non-self-adjoi?it differential equations o f fourth  order. Nota di 
W i l l i e  E. T a y l o r  J r ., presentata (*} dal Socio G. S a n s o n e .

R iassunto. — Con opportune ipotesi su fi (x) si studia il comportamento asintotico 
degli integrali dell’equazione y(4) -f- (fi (x) y)' +  fi (x) y f =  o e della sua equazione aggiunta.

i . Introduction

This paper is concerned with the solutions of the fourth order linear 
differential equation

(L) y " " +  O  ( x ) y ) '+  p  (x ) y '=  o

where p  (x) is a positive continuous function on the interval [o ,00).
T he adjoint equation of (T) is

(L*) 2""■— (fi (x) 2)'—  fi (x) 2 '=  o.

Note th a t (L) =  (L*) if and only if p  (V) — o. Thus the positivity of p  (x) 
implies (L) is non-self-adjoint.

T he oscillatory properties of non self-adjoint fourth order differential 
equations, had not been studied extensively until M. Keener [3] in a recent 
article considered a class of non-self-adjoint equations which satisfy various 
disconjugacy conditions.

For completeness, we m ake the following definitions.

D e fin it io n . T he statem ent th a t a nontrivial solution y  (x) of (L) is 
oscillatory m eans th a t y  (x) has infinitely m any zeros on [o ,00).

D e f in it io n . A  nontrivial solution of (L) has an i± —  z2— •• in distri­
bution of zeros on an interval I, provided there exist points x x <  x 2 < •  • -xn 
in I such th a t y  (x) has a zero at x k of m ultiplicity at least ik for 
k =■ I , 2 V 3 > * • * > n.

DEFINITION. For equation (L) and t  6 (o , 00) , r ili2...in (i) is the infimum 
of the num bers b >  t  such th a t there exists a nontrivial solution of (L) having 
an z’i — 4 — ' — in distribution of zeros on [ t , b]. If  no such num ber b 
exists, we write

(1.1) r i lh ...in (t) =  00.

(*) Nella seduta dell’ll  giugno 1975.
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If  (1.1) holds for each t  fi (o , 00), we write

If  -j- 12 — 4 an-d r ili2 =  00 , then (L) is said to be ix —  i2 disconjugate. 
Sim ilar definitions can be m ade for (L*).

K eener’s work centered on equations for which r22 =  r13 =  00 on [o ,00) 
(Class Kj) and those for which r22 =  r 31 =  00 on [o ,00) (Class K n). Using 
some results of Peterson [5], Keener also concluded tha t nontrivial solutions 
of Class Kj equations and Class K n equations fail to have 1-1-2 and 2-1-1 
distributions of zeros, respectively. A n im mediate consequence is tha t the 
zeros of an oscillatory solution of a Class K n equation are all simple 
(m ultiplicity one).

Ass a notational convenience we introduce the following differential 
operators:

D =  y rn+  P ( x ) y

D3 * =  p ( x ) z .

2. Preliminary Results

In  his work, Keener used the equations

(2.1) / " '  +  y'  =  o

and

(2.2) o

as his models. For p  (x) =  \ , (L) and (L*) reduces to (2.1) and (2.2), 
respectively.

O ur first result will be essential in w hat follows.

Lemma 2.1. L et y  (x) be a solution o f (L), then the functiona l 

F  [y (x)] =  y  (x) D 3y  (x) —  4/' (x) 4/" {x)

is non-increasing on [o , 00). Moreover, F [y (.x)] — o on [a , 00) fo r  some a >  o 
i f f  y  (x) — o.

Proof. U pon differentiating F [y (.x)] we find F ' [y (x)] — — y "2 (x) <  o, 
from which the first part of our theorem  follows.

To prove the rem aining part of our theorem, note tha t F  [y (x)] 
on [a ,00) implies F [y (x)] — — y "2 (x) =  o on this same interval, from 
which it follows th a t y n (x) =  o for x  >  a. Thus y  (x) =  m x  b, for some 
constants m  and b. However, if either m ^ o  or b - j= o , F [y (x)] =  
=  P W y  (ff) >  o, contradicting F \y (x)] =  o. Consequently, F  [y (x)] =  o 
implies y  (x) =  o. T he other implication follows easily.
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C o r o lla r y  2.2. I f  y  (pc) is a nontrivial solution o f (L) then y  (x) has 
at most one double zero, i.e., (L) is 2—2 disconjugate on [0 ,0 0 ).

I t should be noted tha t proof of Lem m a 2.1 does not depend on the sign 
of p  (x). However, p  (x) >  o plays an im portant role in the proof of our
next Lem m a. T he proof of this lemma is essentially the same as the one
given in L azer’s paper [4], for this reason the proof is omitted.

Lemma 2.3. L et y  (x) be a nontrivial solution o f (L) satisfying y  (a) >  o, 
y  (a) <  o , y "  (a) >  o and  D 3y  (a) <  o fo r  some a >  o. Then y  (x) >  o,
y  ( y  <  O , y n (x) >  o and  D 3y  (x) <  0 on [o , a).

From  Lem m a 2.3 we see th a t a nontrivial solution having a triple zero 
at x  =  a cannot vanish to the left of x  =  a. Thus (L) is 1-3 disconjugate 
on [o ,00). From  our beginning statem ents it follows th a t ( I )  is a Class K r 
equation. M oreover, using techniques sim ilar to those of H anan  [2] or
Peterson [5] we can show th a t (L*) is a Class K n equation. W e record 
these facts in our first theorem .

T heorem  2.4. Equation  (L) belongs to Class Kj and equation (L*) 
belongs to Class K n .

T he following pair of theorem s are due to Keener and are given for 
reference purposes.

Theorem  2.5. I f  a Class Kj equation is oscillatory, then any nontrivial 
solution having two zeros (counting multiplicities) is oscillatory.

THEOREM 2.6. I f  a Class Kj equation is oscillatory, then, given a e \  o ,00), 
there is a  nonosdilatory solution y* (x , a) which vanishes at x  — a.

For (2.1), y* (x  , a) =  (e~x — e~a), however, we also note that equa­
tion (2.1) has solutions with no zeros, e.g., y ( x )  — 1. O ur next theorem 
establishes the existence of such a solution for (L). Thus (L) always has a 
pair of linearly  independent nonoscillatory solutions.

T heorem  2.7. There exists a non-vanishing solution o f (L).

Proof. Let u (x) , v (x) , w  (x) , z  (x) be a basis for the solution space
of L. Let y n (x) =  cln u (x) -f  c2n v (x) +  c3nw  (x) +  c^n z (x) be a solution
satisfying

(n) =  y H (n) =  y'n' (n) =  o , y "  (n) <  o

and where c\n +  c\n +  c\n +  c\n ~  1. Suppose further, w ithout loss of
generality, that lim cin =  ci for i =  1 , 2 , 3 , 4 .  Let

y  (x ) =  ci u (x ) +  2̂ v (x) +  c3w  (x) +  c±z (x) .

Since {yn (x)} converges uniform ly to y ( x )  on any compact subset of [0 ,00), 
and yn (x ) >  o on (o , n), we have y ( x ) >  o on (o , 00). Now y ( x )  =$= o since

2 I 2 I 2 I 2 cl T  +  C3~\~ 4̂ = 1 .
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Furtherm ore, if there is a point x 0 such tha t y  (#0) =  o, then y  (x) has a 
double zero at x 0 and therefore y {x) oscillates. But this is clearly impossible 
since r22 — 00. Consequently, y  (x) =j= o for all x.

We now state some results concerning (L*). Since (L*) belongs to 
Class Kn , the proof of these results can be modeled after K eener’s work.

THEOREM 2.8. Suppose (L*) is oscillatory. Then (L*) has two linearly 
independent oscillatory solutions and every linear combination o f them is 
oscillatory.

Frdm  Theorem  2.5, we see that if (L) has an oscillatory solution, then 
any solution having a m ultiple zero m ust oscillate. The opposite is true 
for (L*), i.e., any nontrivial solution of (L*) having a m ultiple zero is 
nonoscillatory.

W e conclude this section by exhibiting the LaG range bilinear conco­
m itan t for solutions of (L) and (L*).

T heorem  2.9. I f  y  (x) and 2 (x) are solutions o f (L) and  (L*), respec­
tively  , then

J [ y » *] =  y  O ) D* SS (x) —  /  (x) 2•" (x) +  y n ( x ) -zr (x) — D 3 y  (x) -z (x)

is a constant, which is determined by the in itia l conditions o f y  {pc) and. 2 {oc).

Let S and S* denote the solution spaces of (L) and (L*), respectively. 
Following D olan [1], we let S* (y ) =  {2 e S*: J [y , z\ =  0} where y  is a 
fixed solution in S. It is easy to verify that S* (y) is a three-dim ensional 
subspace of S* whenever y  not the trivial solution of S. In  ä sim ilar m anner, 
for a fixed 2 e S* S {2) — { y  e S  : J [y  , 2] =  o}.

3. O s c i l la t io n  P ro p er tie s  o f  (L) and (L*)

W e assume for the rem ainder of this work th a t p  (x) satisfies the 
additional hypothesis

00

(H) j*p (x) dx  =  00.
0

The first result of this section shows that (H) is sufficient for oscillation.

T heorem  3.1. Let y  (pc) be a solution o f (L). Then y  (x) is oscillatory 
i f  and  only i f  F  [y (x)\ <  o on [c , 00) fo r  some c >  o.

Proof. Suppose F  jy  (V)] <  o and tha t y  {x) is nonoscillatory. Then 
there exists a >  c such th a t y  (x) =(= o', for # >  a. W e can suppose, w ithout 
loss of generality, th a t y  (x) >  o on [a ,00).
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Consider the function

H (x ) >"(*) 
y  (*)

x

+  j  P 00 &  ■

By differentiating H (x) we obtain

00

Consequently, H (x) is decreasing. Since j 'p  (t) d t  =  oo, it follows tha t
a

y "  (x ) <  o for large x  and since y  (x) >  o it follows th a t y ' (x) >  o for large at.
X

T he fact th a t I p ( ( ) d t - > o o  as x-> o o  implies ^  P )  -> ■— oo as x~>oo.
J r  y  (x)
a

But this implies y ” (x) is bounded away from zero for large ;r, im plying 
y  (x ) — 00 as x - + o o .  This contradiction establishes the first part of
our theorem.

Now suppose F  [y (x)] >  o on [o ,00). We will show tha t y  (x) is non- 
scillatory.

The functional

G [z (x)] =  z (x) D3 z (x) — z ! (x) z"  (x)

is decreasing whenever z  (x) is a solution of (L*). This fact is easily verified 
by com puting G< [*(*)]•

Suppose z  (x) e S* (y ) , G [z (x)] <  o for large *  and z ( x )  > o  for large x.  
Such a solution z  (x) exists because S*(y)  is a 3-dimensional subspace of S*, 
and consequently, some nontriv ial z e S * ( y )  has a double zero. Recall 
th a t (L ) is of Class K n and hence solutions with double zeros do not 
oscillate.

Now suppose y ( x )  is oscillatory. If  x 0 is a zero of y  (pc) it follows th a t 
y  (x o) 0 and y "  (x0) =|= o. For if so, then F [y (x)] =  o on [.x0 ,oo), im ply­
ing y  (x) — o.

Let a <  ß consecutive zeros of y  (x) greater than  a and suppose y  (x) >  o
on (a , ß). Differentiating y 9 w

z(pc) we get

(3-0 / ' ( * )  V _  z( .x)y'"(x)— z'(x)y"(x)( y "  (*) \ 
\ H*) !

Since z  (x) e S* (y),

y ( x )  D 3 z (x ) — y ’ (x) z "{x)  - f  y "  (x) z ’ (x ) —  T>3y  (x) z ( x )  =  o

and so

z  0*0 y ' "  0*0 — z ' 0*0y "  (x ) =  y  {x) d 3 z (x ) — y  (%) z"  ( x ) — p ( x ) y  {x) z  (x)
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for all x.  Substituting in (3.1) we obtain

i  y ” { x ) \ _  T)zz{x)— s?'(*)ÿ (x) — p ( x ) z  (x)y (x) 
J \ z{x)  ) zHx)

In tegrating (3.2) by parts yields

/ '  (fi) y" («)
z (ß) z (a) f2G [*(*)]

Z 2  (x) y  (x) dx  .

Since F [y ( x ) ]>  o for all x,  at a zero of y (x ) ,  say x 0, s g n y "  (x^) =f= sg n y '(:r0). 
From  this observation and the fact tha t y  (x) >  o on (a , ß) we conclude 
th a t the left side of (3.3) is positive and the right side of (3.3) is negative. 
This proves th a t y  (x) cannot oscillate if F  [y (x)] >  o for all x.

T h eo rem  3.4. Let  y  (x) be a nonoscillatory solution ó f (L), then
00J  y " 2 (x) d x  <  00 .

a

Proof. From  Theorem  3.2 it follows th a t F  [y (x)] >  o for all ^  € [o , 00). 
Differentiating F  [y (x)] and integrating from zero to x  we obtain the 
following inequality

X

o <  F  [y  O )] =  F [ y  (o)] -  J  y"* (t) d t .
0

Since ;r arb itrary , we obtain
00j  y " 2 (x ) dx  <  F [y  (o)] ,

0

vfhich completes our proof.
Before we investigate the behavior of the oscillatory solutions of (L), 

a lemma will be needed.

LEMMA 3.5. Let y  (x) be an oscillatory solution o f (L). Then the 
functiona l N [7 ^ ) ]  =  y  (x) y "  (x) — J y '2 (x) -> —  00 as x  oc.

Proof. Note th a t N '[ y  (x)] =  F [y (x)] — p  ( x ) y 2 (x) <  F [y (x)]. Since 
y  (x) is oscillatory, .it follows that F [y (x)] is negative and bounded away 
from zero for large x.  Thus, N [y (x)] ■—• 00 as x. -> 00.

T h eo rem  3.6. L et y  (x) be an oscillatory solution o f (L). Then

(i) ÿ  (x) is unbounded;
00

(ii) j" y '2 (x) d x  =  00, and  
a

(iii) y "  (x) is unbounded.
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Proof. From  the preceding lemma the functional

N [y (x)] =  y  (x) y "  (x) —  \ ÿ 2 (x) -> —  oo as x  -> oo,

from which (i) follows easily.
To prove (li) we integrate N [pc] from c to x  where y f (c) — o. Doing so 

we obtain
X X

j  N [y  (0] di =  y  O) y' O) — \  J / 2 09 dt ■
C G

X

But j N [y  (/)] At —  oo as and since y  (x) oscillates (ii) follows.
c

M ultiplying (L) by y ' (pc) and integrating yields
X

y ' ( x ) I ) ay ( x )  —  ^ y " 2(x) =  k  +  j J> (t) [y (t) y "  ( t ) - - y 2' (t)] à t .
C

X

As x  °o, J p  (t) [y (t) y "  (t) —  y f2(t)] At oo and therefore y " 2(x) -> oo
G

along the zeros of y ' (pc). Thus (iii) holds.
By Theorem  3.4, the second derivative of a nonoscillatory solution to (L) 

is square-integrable. W e also see from Theorem  3.6, tha t the second deriva­
tive of an oscillatory solution is unbounded. Thus, we ask “ are the non­
oscillatory solutions of (L) precisely the solutions having a square-integrable 
second-derivative? ” This question remains open. However, we offer the 
following result,

THEOREM 3.7. L et y  (x) be an oscillatory solution o f (L). I f  p ! (x) <  o,
00

then y "2 (x) Ax = 00.
0

Proof. In the proof of Theorem  3.6, we found that 

(3.4) Q [ y ( x ) ] = y ( x ) D sy ( x ) — y n2( x ) - ^ — oo

as x  00.
Integrating Q [y (x)] from zero to x  we get

y  (x) y" (x) — j ’y ''2 (t) dt - \ - \ p  (x) y 2 —
0

x x

—i J p’ ooy (t) & = k +J q (t) At.
0 0

(3-5)
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As the right side and hence the left side of (3.5) tends to — 00.
X

But this implies j 'y " 2 (t) d t -> 00 as j ; ^ o o .
0

O ur next result follows from Theorem s 3.4, 3.6 and 3.7.

Theorem  3.8. L et y ( x )  be a solution o f (L).. I f  p ' (x) <  o, then these 
are equivalent:

(i) y  (oc) is nonos cillât or y  \

(ii) F [y (x)] >  o ;
00

(iii) J  y " 2 (x) d x  <  00.
0

E xam ining equation (2.1), the reader m ay note th a t the nonoscillatory 
solutions of (2.1) form a two-dimensional subspace. The question th a t pres­
ents itself is w hether or not a sim ilar statem ent can be m ade concerning the 
non-oscillatory solutions of (L). This rem ains an open question. However; 
a result in this direction is given below.

THEOREM 3.9. I f  p ’ (x) <  o, then the set o f nonoscillatory solutions o f (L) 
together w ith the trivia l solution fo rm  a 2-dimensional subspace o f S.

Proof. Let y* (pc , a) and w  (x) be two linearly independent nonoscill­
atory  solutions whose existence was discussed in Theorem s 2.6 and 2.7. 
Suppose u ( x )  is a nonoscillatory solution of (L) which is independent of 
y * ( x , a )  and w  (x), then some nontrivial linear com bination v (x) of u (x), 
y  (x , a) and w  (x) has two zeros and hence is oscillatory. Since p '  (x) <  o,

OO

we have j  v "2 (x) d x  =  00. But each of u ( x )  , y * (x  , a) and w ( x )  have a 
d

square-integrable second derivative and thus

Vn (x) — cx u ” (x) +  c2y* n (x  , a) +  eBw "  (x)

is square-integrable, a contradiction.
A n im m ediate consequence of Theorem  3.9 is th a t y* ( x . , a )  is essentially 

unique, i.e., y * (x  , a) is the only nonoscillatory solution (except for scalar 
m ultiples) which vanishes at x  =  a. Also from Theorem  3.9 we see th a t 
the: sum of an oscillatory solution and a nonoscillatory solution is oscillatory. 
'We use this fact in our next proof.

T heorem  3-ic>- Suppose p 1 (oc) <  0. I f  (L) has a nonoscillatory solu­
tion y  (x) such that

lim inf I y  (x) | o
X -> O Q

then the oscillatory solutions o f (L) are unbounded.
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Proof. Let u (x). be an oscillatory solution of (L). Then s (x) =  u (x) — 
— ky (x) is oscillatory for all k  >  o. Since lim inf | y  (x) | =j= o, we can

x->oo
suppose lim inf | y  (x) | =  1, but s (x) oscillatory implies u (x) intersects ky (x)

x->oo

for each k  >  o and therefore lim sup u (x) =  00.
x->oo

Before we prove the existence of oscillatory solutions for. (L*) we need 
the following lemmas. T heir proofs are sim ilar to the proofs of Lem m a 2.1 
and Theorem  2.7.

Lemma 3.11. Let  z ( x )  be a solution o f (L*). Then the functiona l 
G \z (.x)] — z  (x) D 3 z  —  z r (x) D 2 z  is nonincreasing on [o , 00).

Lemma 3.12. Given b € [o ,06), there exists a solution z  (x) o f (L*) such 
that z  (b) =  o and  G [z (x f]  >  o fo r  a ll  x  € [o ,00).

We proceed to show th a t (L*) is oscillatory whenever (L) is oscillatory.

T h eo rem  3 •13 • z  (at) be a solution o f (L*) such that G [z (x)] >  o
fo r  all x~> o, then z  (x) is oscillatory.

Proof. Suppose z  (t) does not oscillate. Assume, w ithout loss of gener­
ality th a t z  {a) =  o and z  (x) > 0  for all x  >  a for some a.

L et y  (x) be the solution of (L) satisfying y  {a) =  ÿ  (a) =  y "  (a) — o, 
y '"  (a) =  I, then y  (x) is oscillatory by Theorem  3.1. L et a and ß (a <  ol <  ß) 
be consecutive zeros of y  (x) where y  (x) >  o and (a , ß).

Consider the following identity.

(3.6) ( 4 l ) = ^ = f V l .

From  the initial conditions of y  (x) and z  (x)

H y > z ]  — y  (x) Ds z  (x) —  ÿ  (x) z"  (x) +  y "  (x) z' (x) —  D 3y ( x )  z ( x ) =  o .  

Thus

z (x) ÿ "  (x) —  z' (x) y "  (x) =  y  (x) Da z  (x) —  y '  (x) z"  (x) — p ( x ) z  (x) y  (x). 

Substituting on the right side of (3.6) we get

c s .«  •

In tegrating (3.7) from  a to ß, yields

3
/ '(P )  / '( « )

;  *fp) z  (a) ~  J  «•(*) a x  ■
a

Since y  (x) >  o on (a , ß) and F  [y (a)] =  — y '  (a) y "  (a) <  o and F [y  (ß)] =  
=  — y ’ (ß )y "  (ß) <  o, we conclude th a t ÿ  (a) >  o , y "  (a) >  o , ÿ  (ß) <  o,



and y "  (ß) <  o. This implies tha t the left side of (3.8) is negative, however, 
the right side of (3.8) is positive. This contradiction proves th a t z (x) m ust 
oscillate.
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