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Equazioni differenziali ordinarie. — On the solutions of certain
non-self-adjoint differential equations of fourth order. Nota di
WiLLie E. TAavLor JR., presentata @ dal Socio G. SANSONE.

R1ASSUNTO. — Con opportune ipotesi su p (x) si studia il comportamento asintotico
degli integrali dell’equazione y® 4 (# (x) ) + p (¥) ¥’ = o e della sua equazione aggiunta.

1. INTRODUCTION

This paper is concerned with the solutions of the fourth order linear
differential equation

o) Y@@+ @Y =0

where p (x) is a positive continuous function on the interval [o,00).
The adjoint equation of (L) is

@ 21— (p () 2)—p x) &'=o.

Note that (L) = (L") if and only if p (x) =o0. Thus the positivity of p (x)
implies (L) is non-self-adjoint.

The oscillatory properties of non self-adjoint fourth order differential
equations, had not been studied extensively until M. Keener [3] in a recent
article considered a class of non-self-adjoint equations which satisfy various
disconjugacy conditions. ,

For completeness, we make the following definitions.

DEeFINITION. The statement that a nontrivial solution y (x) of (L) is
oscillatory means that y (x) has infinitely many zeros on [0 ,00).

DEFINITION. A nontrivial solution of (L) has an 7z — 7,—- - -7, distri-
bution of zeros on an interval I, provided there exist points x; <, <---x,
in I such that y(x) has a zero at x, of multiplicity at least 7, for
,é= 1,2,3, -, n

DEFINITION. For equation (L) and # € (0, 00) , Ziyig--ip (&) is the infimum
of the numbers 4 > # such that there exists a nontrivial solution of (L) having
an 7, — iy —- - -— ¢, distribution of zeros on [¢,4]. If no such number &
exists, we write

(I.I) riliz.,.i” (t) = O0.

(*) Nella seduta dell’r1 giugno 1975s.
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If (1.1) holds for each # € (o, co0), we write
7’,51,,;2...7:” = OQ.

If 4y + 4, =4 and 7;;, = oo, then (L) is said to be # — 7, disconjugate.
Similar definitions can be made for (L*).

Keener’s work centered on equations for which 7y = 773 = co on [0 ,00)
(Class K)) and those for which 7y = 73 = co on [0,00) (Class K;). Using
some results of Peterson [5], Keener also concluded that nontrivial solutions
of Class K; equations and Class K,; equations fail to have 1-1-2 and 2-I-T
distributions of zeros, respectively. An immediate consequence is that the
zeros of an oscillatory solution of a Class K equation are all simple
(multiplicity one).

Ass a notational convenience we introduce the following differential
operators:

Dyy=y"4+p(x)y
Dyz=2z"—p x)z.

2. PRELIMINARY RESULTS

In his work, Keener used the equations

(2':[) yllll+yl=o
and
(2.2) g—z'=o0

as his models. For p(x)=4,(L) and (L") reduces to (2.1) and (2.2),
respectively.
Our first result will be essential in what follows.

LEMMA 2.1. Let y (x) be a solution of (L), then the functional
Fly@l =y @®Dsy () —y ()" (%)

is non-increasing on [0,00). Moreover, F [y (x)] = 0 on [a,00) for some a > o

i y(x) =o.

Proof.. Upon differentiating F [y (x)] we find F' [y (x)] = — 9’2 (x) <o,
from which the first part of our theorem follows.

To prove the remammg part of our theorem, note that F [y ()] =o
on [a,00) implies F [y (x)] = — ¥'%(x) =0 on this same interval, from
which it follows that y" () = o for x > a. Thus y (x) = mx -+ 8, for some
constants » and 4. However, if either m==0 or 4==o, Fly@®)]=
= p (%) ¥* (x) > o, contradicting F [y (x)] =o0. Consequently, F [y x)]=o0
implies ¥ (*) = o. The other implication follows easily.
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COROLLARY 2.2. If y(x) is a nontrivial solution of (L) then y (x) has
at most one double zero, i.c., (L) is 2-2 disconjugate on [0, o).

It should be noted that proof of Lemma 2.1 does not depend on the sign
of p(x). However, p(x) > o plays an important role in the proof of our
next Lemma. The proof of this lemma is essentially the same as the one
given in Lazer’s paper [4], for this reason the proof is omitted.

LEMMA 2.3. Let y (%) be a nontrivial solution of (L) satisfying y (a) = o,
y' (@) <0,y" (@) =0 and Dy (a) <o for some a >o0. Then y(x) > o,
Y () <0,y"(x) >0 and Dyy (x) <o on [0, a).

From Lemma 2.3 we see that a nontrivial solution having a triple zero
at x = a cannot vanish to the left of x = a. Thus (L) is 1-3 disconjugate
on [0,00). From our beginning statements it follows that (L) is a Class K,
equation.  Moreover, using techniques similar to those of Hanan [2] or

Peterson [5] we can show that (L¥) is a Class K,; equation. We record
these facts in our first theorem.

THEOREM 2.4. Eguation (L) belongs to Class K, and equation )
belongs to Class K .

The following pair of theorems are due to Keener and are given for
reference purposes.

THEOREM 2.5. If a Class K, equation is oscillatory, then any nontrivial
solution having two zeros (counting multiplicities) is oscillatory.

THEOREM 2.6. [f a Class K| equation is oscillatory, then, given a €[o ,00),
there is a nonoscillatory solution y" (x , @) which vanishes at x = .

For (2.1), ¥ (x,a) = (e*—e™), however, we also note that equa-
tion (2.1) has solutions with no zeros, e.g., ¥ (*) = 1. Our next theorem
establishes the existence of such a solution for (L). Thus (L) always has a
pair of linearly independent nonoscillatory solutions.

THEOREM 2.7. There exists a non-vanishing solution of (L).

Proof. Let u(x),v(x),w (x),2(x) be a basis for the solution space
of L. Let y,(#x) == ¢y, % (%) -+ 3, v (%) + ¢3,% () + ¢4p2 (x) be a solution
satisfying ‘

YV, =y,) =y, (W) =0,y (n) <o

and where cf, + & + &, + Can = 1. Suppose further, without loss of
generality, that lim ¢, = ¢; for i=1,2,3,4. Let

vy () =cu@®) + ux) + csw (x) +cpz ().

Since {y, (x)} converges uniformly to y (%) on any compact subset of [0, o0),
and y,(x) > o on (0, 7), we have y(x) >0 on (0, 00). Now y(x) == o since

2 2 2 2
a+teateata=r1.
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Furthermore, if there is a point x, such that y (x) = o, then y (x) has a
double zero at x, and therefore y (x) oscillates. But this is clearly impossible
since 7 == co. Consequently, y (x)==o0 for all x.

We now state some results concerning (L. Since (L*) belongs to
Class K;;, the proof of these results can be modeled after Keener’s work.

THEOREM 2.8. Suppose (L) is oscillatory. Then (LYY kas two linearly
independent oscillatory solutions and every linear combination of them is
oscillatory.

From Theorem 2.5, we see that if (L) has an oscillatory solution, then
any solution having a multiple zero must oscillate. The opposite is true
for (L"), i.e., any nontrivial solution of (L") having a multiple zero is
nonoscillatory.

We conclude this section by exhibiting the LaGrange bilinear  conco-
mitant for solutions of (L) and (L*).

THEOREM 2.9. If y (%) and z(x) are solutions of (L) and (L"), respec-
tively, then ‘

Ty, sl =y (®)Dyz(x)—y ()" (x) +¥" (x):2' (x) —Dyy ()2 (x)

is a constant, whick is determined by the initial conditions of y(x) and z (x).

Let S and S” denote the solution spaces of (L) and (L*), respectively.
Following Dolan [1], we let S*(3)={z€S" J[y,2] = 0} where y is a
fixed solution in S. It is easy to verify that S*(y) is a three-dimensional
subspace of S* whenever y not the trivial solution of S. In a similar manner,

for a fixed 2 €S*,S(2) ={y€S:][y,z2] = o}

3. OSCILLATION PROPERTIES OF (L) AND (L)

We assume for the remainder of this work that p (x) satisfies the
additional hypothesis

(H) pr (%) dx = oo.

The first result of this section shows that (H) is sufficient for oscillation.

THEOREM 3.1. Let y (x) be a solution of (L). Then y (x) is oscillatory
if ‘and only if F [y (x)] <0 on [c,o0) for some ¢ > o.

Proof. Suppose F [y (¢)] <o and that y(x) is nonoscillatory. Then
there exists @ > ¢ such that y (x)5=o0, for x > 4. We can suppose, without
loss of generality, that y (x) > o on [a,0c0).
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Consider the function

H(@:J;”(Ef)) —|—fp(z)dt.

By differentiating H (x) we obtain

H'(x) — F [y )]

72 (%) < o.

oo

Consequently, H (x) is decreasing. Since ( 2 (#)dt = oo, it follows that

a

¥"" (x) <o for large x and since y (x) > o it follows that ' () > o for large x.
x

The fact that fp(z‘) dz—o0 as x-—>oo implies );I(g;) ->—o00 as x —>oo,
But this implies y’ (x) is bounded away from zero for large x, implying
y(x) >—o0 as x —oo. This contradiction establishes the first part of
our theorem:. ‘

Now suppose F [y (x)] >0 on [0,00). We will show that y (x) is non-
scillatory.

The functional

G [+ (@)] = 2 (®) Dy 2 (x) — ' (x) ' ()

is decreasing whenever z (x) is a solution of (L™). ThlS fact is easily verified
by computing G’ [z (x)]

Suppose z (x) €S* (), G [z ()] < o for large x and z (x) > o for large x.
Such a solution z (%) exists because $*(y) is a 3-dimensional subspace of S¥
and consequently, some nontrivial z€S*(y) has a double zero. Recall
that (L") is of Class K} and hence solutions with double zeros do not
oscillate.

Now suppose y (x) is oscillatory. If x, is a zero of y(x) it follows that
¥' (%)== o0 and 3" (x)) == 0. For if so, then F [y (x)] =0 on [, ,00), imply-
ing y (x) = o.

Let o << B consecutive zer(zs)of ¥ (%) greater than a and suppose y (x) > o

I

on (x,B). Differentiating ) Ve get
Y@\ 2@y ) —2 ()" (=)
3.0 (%) = &)

Since z (x) €S™ (),

y(#) Dz (2) —y' () 2" (1) + ¥ (%) #' (1) — Dy y () 2 (x) = 0

and so

2 (%) "' (%) — ' (%) y" (%) = y (@) Dyz (x) — ¥ (x) &' (x) — p (%) y (%) 5 (*)
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for all x. Substituting in (3.1) we obtain

Y@\ Dsz(x)—2"(x)y (x)—p %)z (x) y ()
(3-2) () = =) '
Integrating (3.2) by parts yields
g
4 ’7 G
3:3) o — e { 2SSy @ dr.

o

Since F[y (x)]> o for all x, at a zero of y(x), say x,, sgn ¥'' (xe) == sgn ¥’ (x,).
From this observation and the fact that ¥ () >0 on (x,B) we conclude
that the left side of (3.3) is positive and the right side of (3.3) is negative.
This proves that y (x) cannot oscillate if F [y (x)] > o for all x.

THEOREM 3.4. Let y(x) be a nonoscillatory solution of (L), then

0

fy”z (x)dx <oo.

a

Proof. From Theorem 3.2 it follows that F [y (x)] > o for all x € [0, o).
Differentiating F [y (x)] and integrating from zero to x we obtain the
following inequality

0 <Fly@I=Fly@)—[y2(ar.

Since x arbitrary, we obtain

o

[rr@ar <F iy,

0

which completes our proof.
Before we investigate the behavior of the oscillatory solutions of (L),
a lemma will be needed.

LEMMA 3.5. Let y(x) be an oscillatory solution of (L).  Then the
Sunctional N [y ()] =y (x)y" () — 1 9?%(x) > —-00 as x — co.

Proof. Note that N'[y (2)] = F [y (®)] — 2 () 3? () < F [y (¥)]. Since
y (x) is oscillatory, .it follows that F [y (x)] is negative and bounded away
from zero for large x. Thus, N [y ()] - — o0 as x — oo.

THEOREM 3.6. Let y (x) be an oscillatory solution of (L). Then
1) ¥ (x) is unbounded,

(i1) fy” (x) dx = oo, and

(iil) " (%) is unbounded.
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Proof. From the preceding lemma the functional
Ny@l=y@®y"(x)—1y? (@) ——oc0  as x-—>oo,
from which (i) follows easily.

To prove (i) we integrate N [x] from ¢ to x where 3’ (¢) = 0. Doing so

we obtain

4 T

[N@re=y @y w—2 [oa.

But fN [y ()] dt —— o0 as x — oo and since y (x) oscillates (ii) follows.

Multiplying (L) by »' () and integrating yields
Y (@) Day (@) — 4y (x) = £+ f? Oy Dy @) —y* (@) dz.
(4

As x — oo,fp Oy @y (t)—»?(@)]dt oo and therefore y''2(x) — oo

along the zeros of »' (x). Thus (iii) holds.

By Theorem 3.4, the second derivative of a nonoscillatory solution to (L)
is square-integrable. We also sce from Theorem 3.6, that the second deriva-
tive of an oscillatory solution is unbounded. Thus, we ask ‘‘are the non-
oscillatory solutions of (L) precisely the solutions having a square-integrable
second-derivative? ”’  This question remains open. However, we offer the
following result.

THEOREM 3.7. Let y (x) be an oscillatory solution of (L). If p' (x) <o,

[e ]

then (y”z (%) dx = oo.

0
Proof. 1In the proof of Theorem 3.6, we found that
(34 Qly@] =y () Dyy(x) —y"*(x) >— o0
as x — oco.
Integrating Q [y (x)] from zero to v we get
z

(3-5) v (%) ¥ (x) —Jy"z(f) df + 4 p (%) 2 —

0

—t[rorou=it Qo
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As x — oo, the right side and hence the left side of (3.5) tends to — oco.
z

But this implies {y”z (#) dt — oo as x — oco.
0
Our next result follows from Theorems 3.4, 3.6 and 3.7.

THEOREM 3.8. Let y(x) be a solution of (L). If p'(x) < o, then these
are equivalent:

(D) y (x) is nonoscillatory;
(i) Fly@] =o;

(iif) f ¥ (%) dx < oo.

Examining equation (2.1), the reader may note that the nonoscillatory
solutions of (2.1) form a two-dimensional subspace. The question that pres-
ents itself is whether or not a similar statement can be made concerning the
non-oscillatory solutions of (L). This remains an open question. However;
a result in this direction is given below.

THEOREM 3.9. If p' (x) < 0, then the set of nonoscillatory solutions of @)
together with the trivial solution form a 2-dimensional subspace of S.

Proof. Let y*(x,a) and w (x) be two linearly independent nonoscill-
atory solutions whose existence was discussed in Theorems 2.6 and 2.7.
Suppose « (x) is a nonoscillatory solution of (L) which is independent of
v *(x,a) and w (x), then some nontrivial linear combination v (x) of u(x),

¥ (x,a) and w (x) has two zeros and hence is oscillatory. Since 2’ () <o,

we have [v”z (#)dx = co. But each of u(x),y*(x,a) and w(x) have a
0
square-integrable second derivative and thus
V() = au'(x) + 6y (x, @)+ cw' (%)

is square-integrable, a contradiction.

- An immediate consequence of Theorem 3.9 is that y*(x , @) is essentially
unique, ie., ¥*(x,a) is the only nonoscillatory solution (except for scalar
“multiples) which vanishes at x = 4. Also from Theorem 3.9 we see that
the sum of an oscillatory solution and a nonoscillatory solution is oscillatory.
‘We use this fact in our next proof.

THEOREM 3.10. Suppose p' (x) <o. If (L) has a nonoscillatory solu-
tion y (x) such that

lim inf |y (x) |5=o0
ZT—>00

then the oscillatory solutions of (L) are unbounded.
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Proof. Let u (x) be an oscillatory solution of (L). Then s (x) = « (x) —
— 4y (x) is oscillatory for all 2 >o. Since liminf |y (x)|==0, we can

suppose lim inf | y (x) | = 1, but s (x) oscillatory implies # (x) intersects &y (x)
T—> 00

for each £ > o and therefore lim sup # (x) = oo.
Z—>00

Before we prove the existence of oscillatory solutions for (L*) we need
the following lemmas. Their proofs are similar to the proofs of Lemma 2.1
and Theorem 2.7.

LEMMA 3.11. Let z(x) be a solution of (L. Then the functional
G [ (®)] = 2 (¥) Ds 2— 2’ (¥) Dy 2 is nonincreasing on [0, co).

LEMMA 3.12. Given b € [0 ,00), there exists a solution 2 (x) of (LYY such
that 2z (b) = o and G [z (x)] > o for all x € [0 ,00).
We proceed to show that (L) is oscillatory whenever (L) is oscillatory.

THEOREM 3.13. Let z(x) be a solution of (L) such that G [2(x)] >0
Sfor all x> o, then z (x) is oscillatory.

Proof. Suppose z (#) does not oscillate. Assume, without loss of gener-
ality that z(¢) = o0 and 2 (x) > o for all x > & for some a.

Let y (x) be the solution of (L) satisfying y (&) = ¥’ (a) = »"' (a) = o,
y'"" (@) = 1, then y (¥) is oscillatory by Theorem 3.1. Let a and P (@ < « < B)
be consecutive zeros of y (x) where y (x) > o and (a, B).

Consider the following identity.

(36) (L) =2y

From the initial conditions of y (x) and z ()

Ty, 21=y () D5z (%) — ¥' (@) 2" (x) + ¥ (%) #' (&) — Dy y () # () =0.
Thus

2(2) ¥ (%) — &' (x) ¥ (%) =y (x) Dy 2(x) — ¥’ (%) 2" () — (%) 2 () ¥ (2).

Substituting on the right side of (3.6) we get

Y yD*z —y' 2 — pyz
(3.7) (J’_) : 2 el

z

Integrating (3.7) from « to B, yields

€]
Y@ Y@ _ [ 2y#®Gz@)]
&8 o e
Since y () >0 on (x,8) and F [y ()] = — ' (@) 5" («) < 0 and F [y (8)] =

=—3"(B)y" B) <o, we conclude that ¥ («) >o0,5" (x) >0,y () <o,
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and y"” (8) <o. This implies that the left side of (3.8) is negative, however,
the right side of (3.8) is positive. This contradiction proves that 2 (x) must
oscillate.
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