Atti Accademia Nazionale dei Lincei

Classe Scienze Fisiche Matematiche Naturali Rendiconti

Willie E. Taylor

On the solutions of certainnon-self-adjoint differential equations of fourth order

Atti della Accademia Nazionale dei Lincei. Classe di Scienze Fisiche, Matematiche e Naturali. Rendiconti, Serie 8, Vol. 58 (1975), n.6, p. 851-860.
Accademia Nazionale dei Lincei
http://www.bdim.eu/item?id=RLINA_1975_8_58_6_851_0

L'utilizzo e la stampa di questo documento digitale è consentito liberamente per motivi di ricerca e studio. Non è consentito l'utilizzo dello stesso per motivi commerciali. Tutte le copie di questo documento devono riportare questo avvertimento.

> Articolo digitalizzato nel quadro del programma
> bdim (Biblioteca Digitale Italiana di Matematica)
> SIMAI \& UMI
> http://www.bdim.eu/

Equazioni differenziali ordinarie. - On the solutions of certain non-self-adjoint differential equations of fourth order. Nota di Willie E. Taylor Jr., presentata ${ }^{(*)}$ dal Socio G. Sansone.

Riassunto. - Con opportune ipotesi su $p(x)$ si studia il comportamento asintotico degli integrali dell'equazione $y^{(4)}+(p(x) y)^{\prime}+p(x) y^{\prime}=\mathrm{o}$ e della sua equazione aggiunta.

I. Introduction

This paper is concerned with the solutions of the fourth order linear differential equation

$$
\begin{equation*}
y^{\prime \prime \prime \prime}+(p(x) y)^{\prime}+p(x) y^{\prime}=0 \tag{L}
\end{equation*}
$$

where $p(x)$ is a positive continuous function on the interval $[0, \infty)$.
The adjoint equation of (L) is

$$
\begin{equation*}
z^{\prime \prime \prime \prime}-(p(x) z)^{\prime}-p(x) z^{\prime}=0 . \tag{*}
\end{equation*}
$$

Note that $(\mathrm{L})=\left(\mathrm{L}^{*}\right)$ if and only if $p(x) \equiv \mathrm{o}$. Thus the positivity of $p(x)$ implies (L) is non-self-adjoint.

The oscillatory properties of non self-adjoint fourth order differential equations, had not been studied extensively until M. Keener [3] in a recent article considered a class of non-self-adjoint equations which satisfy various disconjugacy conditions.

For completeness, we make the following definitions.
Definition. The statement that a nontrivial solution $y(x)$ of (L) is oscillatory means that $y(x)$ has infinitely many zeros on $[0, \infty)$.

Definition. A nontrivial solution of (\mathbf{L}) has an $i_{1}-i_{2}-\cdots i_{n}$ distribution of zeros on an interval I, provided there exist points $x_{1}<x_{2}<\cdots x_{n}$ in I such that $y(x)$ has a zero at x_{k} of multiplicity at least i_{k} for $k=1,2^{\prime}, 3, \cdots, n$.

Definition. For equation (L) and $t \in(0, \infty), r_{i_{1} i_{2} \cdots i_{n}}(t)$ is the infimum of the numbers $b>t$ such that there exists a nontrivial solution of (L) having an $i_{1}-i_{2}-\cdots-i_{n}$ distribution of zeros on $[t, b]$. If no such number b exists, we write

$$
\begin{equation*}
r_{i_{1} i_{2} \cdots i_{n}}(t)=\infty \tag{I.I}
\end{equation*}
$$

(*) Nella seduta dell'ı 1 giugno 1975 .

If (I.I) holds for each $t \in(0, \infty)$, we write

$$
r_{i_{1} i_{2} \cdots i_{n}}=\infty .
$$

If $i_{1}+i_{2}=4$ and $r_{i_{1} i_{2}}=\infty$, then (L) is said to be $i_{1}-i_{2}$ disconjugate. Similar definitions can be made for (L^{*}).

Keener's work centered on equations for which $r_{22}=r_{13}=\infty$ on $[0, \infty)$ (Class K_{I}) and those for which $r_{22}=r_{31}=\infty$ on $[0, \infty)$ (Class K_{II}). Using some results of Peterson [5], Keener also concluded that nontrivial solutions of Class K_{I} equations and Class K_{II} equations fail to have $\mathrm{I}-\mathrm{I}-2$ and $2-\mathrm{I}-\mathrm{I}$ distributions of zeros, respectively. An immediate consequence is that the zeros of an oscillatory solution of a Class K_{II} equation are all simple (multiplicity one).

Ass a notational convenience we introduce the following differential operators:

$$
\begin{aligned}
& \mathrm{D}_{3} y=y^{\prime \prime \prime}+p(x) y \\
& \mathrm{D}_{3}^{*} z=z^{\prime \prime \prime}-p(x) z
\end{aligned}
$$

2. Preliminary Results

In his work, Keener used the equations

$$
\begin{equation*}
y^{\prime \prime \prime \prime}+y^{\prime}=0 \tag{2.1}
\end{equation*}
$$

and

$$
\begin{equation*}
z^{\prime \prime \prime \prime}-z^{\prime}=0 \tag{2.2}
\end{equation*}
$$

as his models. For $p(x) \equiv \frac{1}{2},(\mathrm{~L})$ and (L^{*}) reduces to (2.1) and (2.2), respectively.

Our first result will be essential in what follows.
Lemma 2.1. Let $y(x)$ be a solution of (L), then the functional

$$
\mathrm{F}[y(x)]=y(x) \mathrm{D}_{3} y(x)-y^{\prime}(x) y^{\prime \prime}(x)
$$

is non-increasing on $[0, \infty)$. Moreover, $\mathrm{F}[y(x)] \equiv \mathrm{o}$ on $[a, \infty)$ for some $a \geq 0$ iff $y(x) \equiv 0$.

Proof. Upon differentiating $\mathrm{F}[y(x)]$ we find $\mathrm{F}^{\prime}[y(x)]=-y^{\prime / 2}(x) \leq 0$, from which the first part of our theorem follows.

To prove the remaining part of our theorem, note that $\mathrm{F}[y(x)] \equiv \mathrm{o}$ on $[a, \infty)$ implies $\mathrm{F}^{\prime}[y(x)]=-y^{\prime 2}(x) \equiv \mathrm{o}$ on this same interval, from which it follows that $y^{\prime \prime}(x) \equiv 0$ for $x \geq a$. Thus $y(x)=m x+b$, for some constants m and b. However, if either $m \neq 0$ or $b \neq 0, \mathrm{~F}[y(x)]=$ $=p(x) y^{2}(x)>0$, contradicting $\mathrm{F}[y(x)] \equiv \mathrm{o}$. Consequently, $\mathrm{F}[y(x)] \equiv \mathrm{o}$ implies $y(x) \equiv 0$. The other implication follows easily.

Corollary 2.2. If $y(x)$ is a nontrivial solution of (L) then $y(x)$ has at most one double zero, i.e., (L) is $2-2$ disconjugate on $[\mathrm{o}, \infty$).

It should be noted that proof of Lemma 2.1 does not depend on the sign of $p(x)$. However, $p(x)>0$ plays an important role in the proof of our next Lemma. The proof of this lemma is essentially the same as the one given in Lazer's paper [4], for this reason the proof is omitted.

Lemma 2.3. Let $y(x)$ be a nontrivial solution of (L) satisfying $y(a) \geq 0$, $y^{\prime}(a) \leq 0, y^{\prime \prime}(a) \geq 0$ and $\mathrm{D}_{3} y(a) \leq 0$ for some $a>0$. Then $y(x)>0$, $y^{\prime}(x)<0, y^{\prime \prime}(x)>0$ and $\mathrm{D}_{3} y(x)<0$ on $[\mathrm{o}, a)$.

From Lemma 2.3 we see that a nontrivial solution having a triple zero at $x=a$ cannot vanish to the left of $x=a$. Thus (L) is $\mathrm{I}-3$ disconjugate on $[0, \infty)$. From our beginning statements it follows that (L) is a Class K_{I} equation. Moreover, using techniques similar to those of Hanan [2] or Peterson [5] we can show that $\left(L^{*}\right)$ is a Class $\mathrm{K}_{\text {II }}$ equation. We record these facts in our first theorem.

Theorem 2.4. Equation (L) belongs to Class K_{I} and equation (L^{*}) belongs to Class K_{II}.

The following pair of theorems are due to Keener and are given for reference purposes.

THEOREM 2.5. If a Class K_{I} equation is oscillatory, then any nontrivial solution having two zeros (counting multiplicities) is oscillatory.

Theorem 2.6. If a Class K_{I} equation is oscillatory, then, given $a \in[0, \infty)$, there is a nonoscillatory solution $y^{*}(x, a)$ which vanishes at $x=a$.

For (2.1), $y^{*}(x, a)=\left(e^{-x}-e^{-a}\right)$, however, we also note that equation (2.1) has solutions with no zeros, e.g., $y(x) \equiv \mathrm{I}$. Our next theorem establishes the existence of such a solution for (L). Thus (L) always has a pair of linearly independent nonoscillatory solutions.

Theorem 2.7. There exists a non-vanishing solution of (L).
Proof. Let $u(x), v(x), w(x), z(x)$ be a basis for the solution space of L. Let $y_{n}(x)=c_{1 n} u(x)+c_{2 n} v(x)+c_{3 n} w(x)+c_{4 n} z(x)$ be a solution satisfying

$$
y_{n}(n)=y_{n}^{\prime}(n)=y_{n}^{\prime \prime}(n)=0, y_{n}^{\prime \prime \prime}(n)<0
$$

and where $c_{1 n}^{2}+c_{2 n}^{2}+c_{3 n}^{2}+c_{4 n}^{2}=$ I. Suppose further, without loss of generality, that $\lim c_{i n}=c_{i}$ for $i=1,2,3,4$. Let

$$
y(x)=c_{1} u(x)+c_{2} v(x)+c_{3} w(x)+c_{4} z(x) .
$$

Since $\left\{y_{n}^{\prime}(x)\right\}$ converges uniformly to $y(x)$ on any compact subset of $[0, \infty)$, and $y_{n}(x)>0$ on ($0, n$), we have $y(x) \geq 0$ on $(0, \infty)$. Now $y(x) \not \equiv 0$ since

$$
c_{1}^{2}+c_{2}^{2}+c_{3}^{2}+c_{4}^{2}=\mathrm{I}
$$

Furthermore, if there is a point x_{0} such that $y\left(x_{0}\right)=0$, then $y(x)$ has a double zero at x_{0} and therefore $y(x)$ oscillates. But this is clearly impossible since $r_{22}=\infty$. Consequently, $y(x) \neq 0$ for all x.

We now state some results concerning (L^{*}). Since (L^{*}) belongs to Class K_{II}, the proof of these results can be modeled after Keener's work.

Theorem 2.8. Suppose (L^{*}) is oscillatory. Then (L^{*}) has two linearly independent oscillatory solutions and every linear combination of them is oscillatory.

From Theorem 2.5, we see that if (L) has an oscillatory solution, then any solution having a multiple zero must oscillate. The opposite is true for (L^{*}), i.e., any nontrivial solution of (L^{*}) having a multiple zero is nonoscillatory.

We conclude this section by exhibiting the LaGrange bilinear concomitant for solutions of (L) and (L^{*}).

THEOREM 2.9. If $y(x)$ and $z(x)$ are solutions of (L) and $\left(\mathrm{L}^{*}\right)$, respectively, then

$$
\mathrm{J}[y, z]=y(x) \mathrm{D}_{3}^{*} z(x)-y^{\prime}(x) z^{\prime \prime}(x)+y^{\prime \prime}(x) \cdot z^{\prime}(x)-\mathrm{D}_{3} y(x) \cdot z(x)
$$

is a constant, which is determined by the initial conditions of $y(x)$ and $z(x)$.
Let S and S^{*} denote the solution spaces of (L) and (L^{*}), respectively. Following Dolan [1], we let $\mathrm{S}^{*}(y)=\left\{z \in \mathrm{~S}^{*}: \mathrm{J}[y, z]=0\right\}$ where y is a fixed solution in S. It is easy to verify that $S^{*}(y)$ is a three-dimensional subspace of S^{*} whenever y not the trivial solution of S . In a similar manner, for a fixed $z \in \mathrm{~S}^{*}, \mathrm{~S}(z)=\{y \in \mathrm{~S}: \mathrm{J}[y, z]=0\}$.

3. Oscillation Properties of (L) and (L^{*})

We assume for the remainder of this work that $p(x)$ satisfies the additional hypothesis

$$
\begin{equation*}
\int_{0}^{\infty} p(x) \mathrm{d} x=\infty . \tag{H}
\end{equation*}
$$

The first result of this section shows that (H) is sufficient for oscillation.
THEOREM 3.I. Let $y(x)$ be a solution of (L). Then $y(x)$ is oscillatory if and only if $\mathrm{F}[y(x)]<0$ on $[c, \infty)$ for some $c \geq 0$.

Proof. Suppose $\mathrm{F}[y(c)]<0$ and that $y(x)$ is nonoscillatory. Then there exists $a \geq c$ such that $y(x) \neq 0$, for $x \geq a$. We can suppose, without loss of generality, that $y(x)>0$ on $[a, \infty)$.

Consider the function

$$
\mathrm{H}(x)=\frac{y^{\prime \prime}(x)}{y(x)}+\int_{a}^{x} p(t) \mathrm{d} t .
$$

By differentiating $\mathrm{H}(x)$ we obtain

$$
\mathrm{H}^{\prime}(x)=\frac{\mathrm{F}[y(x)]}{y^{2}(x)}<0 .
$$

Consequently, $\mathrm{H}(x)$ is decreasing. Since $\int_{a}^{\infty} p(t) \mathrm{d} t=\infty$, it follows that $y^{\prime \prime}(x)<0$ for large x and since $y(x)>0$ it follows that $y^{\prime}(x)>0$ for large x.

The fact that $\int_{a}^{x} p(t) \mathrm{d} t \rightarrow \infty$ as $x \rightarrow \infty$ implies $\frac{y^{\prime \prime}(x)}{y(x)} \rightarrow-\infty$ as $x \rightarrow \infty$.
But this implies $y^{\prime \prime}(x)$ is bounded away from zero for large x, implying $y(x) \rightarrow-\infty$ as $x \rightarrow \infty$. This contradiction establishes the first part of our theorem.

Now suppose $\mathrm{F}[y(x)] \geq 0$ on $[\mathrm{o}, \infty)$. We will show that $y(x)$ is nonscillatory.

The functional

$$
\mathrm{G}[z(x)]=z(x) \mathrm{D}_{3}^{*} z(x)-z^{\prime}(x) z^{\prime \prime}(x)
$$

is decreasing whenever $z(x)$ is a solution of $\left(L^{*}\right)$. This fact is easily verified by computing $\mathrm{G}^{\prime}[z(x)]$.

Suppose $z(x) \in \mathrm{S}^{*}(y), \mathrm{G}[z(x)]<0$ for large x and $z(x)>0$ for large x. Such a solution $z(x)$ exists because $\mathrm{S}^{*}(y)$ is a 3 -dimensional subspace of S^{*}, and consequently, some nontrivial $z \in S^{*}(y)$ has a double zero. Recall that (L^{*}) is of Class $\mathrm{K}_{\text {II }}$ and hence solutions with double zeros do not oscillate.

Now suppose $y(x)$ is oscillatory. If x_{0} is a zero of $y(x)$ it follows that $y^{\prime}\left(x_{0}\right) \neq \mathrm{o}$ and $y^{\prime \prime}\left(x_{0}\right) \neq \mathrm{o}$. For if so, then $\mathrm{F}[y(x)] \equiv \mathrm{o}$ on $\left[x_{0}, \infty\right)$, implying $y(x) \equiv \mathrm{o}$.

Let $\alpha<\beta$ consecutive zeros of $y(x)$ greater than a and suppose $y(x)>0$ on (α, β). Differentiating $\frac{y^{\prime \prime}(x)}{z(x)}$ we get

$$
\begin{equation*}
\left(\frac{y^{\prime \prime}(x)}{z(x)}\right)^{\prime}=\frac{z(x) y^{\prime \prime \prime}(x)-z^{\prime}(x) y^{\prime \prime}(x)}{z^{2}(x)} . \tag{3.I}
\end{equation*}
$$

Since $z(x) \in \mathrm{S}^{*}(y)$,

$$
y(x) \mathrm{D}_{3} z(x)-y^{\prime}(x) z^{\prime \prime}(x)+y^{\prime \prime}(x) z^{\prime}(x)-\mathrm{D}_{3} y(x) z(x)=0
$$

and so

$$
z(x) y^{\prime \prime \prime}(x)-z^{\prime}(x) y^{\prime \prime}(x)=y(x) \mathrm{D}_{3} z(x)-y^{\prime}(x) z^{\prime \prime}(x)-p(x) y(x) z(x)
$$

for all x. Substituting in (3.1) we obtain

$$
\begin{equation*}
\left(\frac{y^{\prime \prime}(x)}{z(x)}\right)^{\prime}=\frac{\mathrm{D}_{3} z(x)-z^{\prime \prime}(x) y^{\prime}(x)-p(x) z(x) y(x)}{z^{2}(x)} . \tag{3.2}
\end{equation*}
$$

Integrating (3.2) by parts yields

$$
\begin{equation*}
\frac{y^{\prime \prime}(\beta)}{z(\beta)}-\frac{y^{\prime \prime}(\alpha)}{z(\alpha)}=\int_{\alpha}^{\beta} 2 \frac{\mathrm{G}[z(x)]}{z^{3}(x)} y(x) \mathrm{d} x . \tag{3.3}
\end{equation*}
$$

Since $\mathrm{F}[y(x)]>0$ for all x, at a zero of $y(x)$, say x_{0}, $\operatorname{sgn} y^{\prime \prime}\left(x_{\mathrm{c}}\right) \neq \operatorname{sgn} y^{\prime}\left(x_{0}\right)$. From this observation and the fact that $y(x)>0$ on (α, β) we conclude that the left side of (3.3) is positive and the right side of (3.3) is negative. This proves that $y(x)$ cannot oscillate if $\mathrm{F}[y(x)]>0$ for all x.

THEOREM 3.4. Let $y(x)$ be a nonoscillatory solution of (L), then

$$
\int_{a}^{\infty} y^{\prime / 2}(x) \mathrm{d} x<\infty .
$$

Proof. From Theorem 3.2 it follows that $\mathrm{F}[y(x)]>0$ for all $x \in[0, \infty)$. Differentiating $\mathrm{F}[y(x)]$ and integrating from zero to x we obtain the following inequality

$$
\mathrm{o}<\mathrm{F}[y(x)]=\mathrm{F}[y(\mathrm{o})]-\int_{0}^{x} y^{\prime / 2}(t) \mathrm{d} t
$$

Since x arbitrary, we obtain

$$
\int_{0}^{\infty} y^{\prime / 2}(x) \mathrm{d} x<\mathrm{F}[y(\mathrm{o})],
$$

which completes our proof.
Before we investigate the behavior of the oscillatory solutions of (L), a lemma will be needed.

Lemma 3.5. Let $y(x)$ be an oscillatory solution of (L). Then the functional $\mathrm{N}[y(x)]=y(x) y^{\prime \prime}(x)-\frac{1}{2} y^{\prime 2}(x) \rightarrow--\infty$ as $x \rightarrow \infty$.

Proof. Note that $\mathrm{N}^{\prime}[y(x)]=\mathrm{F}[y(x)] \cdots p(x) y^{2}(x) \leq \mathrm{F}[y(x)]$. Since $y(x)$ is oscillatory, it follows that $\mathrm{F}[y(x)]$ is negative and bounded away from zero for large x. Thus, $\mathrm{N}[y(x)] \rightarrow-\infty$ as $x \rightarrow \infty$.

THEOREM 3.6. Let $y(x)$ be an oscillatory solution of (L). Then
(i) $y^{\prime}(x)$ is unbounded;
(ii) $\int_{a}^{\infty} y^{\prime 2}(x) \mathrm{d} x=\infty$, and
(iii) $y^{\prime \prime}(x)$ is unbounded.

Proof. From the preceding lemma the functional

$$
\mathrm{N}[y(x)]=y(x) y^{\prime \prime}(x)-\frac{1}{2} y^{\prime 2}(x) \rightarrow-\infty \quad \text { as } \quad x \rightarrow \infty,
$$

from which (i) follows easily.
To prove (ii) we integrate $\mathrm{N}[x]$ from c to x where $y^{\prime}(c)=0$. Doing so we obtain

$$
\int_{c}^{x} \mathrm{~N}[y(t)] \mathrm{d} t=y(x) y^{\prime}(x)-\frac{3}{2} \int_{c}^{x} y^{\prime 2}(t) \mathrm{d} t
$$

But $\int_{c}^{x} \mathrm{~N}[y(t)] \mathrm{d} t \rightarrow-\infty$ as $x \rightarrow \infty$ and since $y(x)$ oscillates (ii) follows.
Multiplying (L) by $y^{\prime}(x)$ and integrating yields

$$
y^{\prime}(x) \mathrm{D}_{3} y(x)-\frac{1}{2} y^{\prime \prime 2}(x)=k+\int_{c}^{x} p(t)\left[y(t) y^{\prime \prime}(t)-y^{2^{\prime}}(t)\right] \mathrm{d} t .
$$

As $\quad x \rightarrow \infty, \int_{c}^{x} p(t)\left[y(t) y^{\prime \prime}(t)-y^{\prime 2}(t)\right] \mathrm{d} t \rightarrow \infty \quad$ and therefore $y^{\prime \prime 2}(x) \rightarrow \infty$ along the zeros of $y^{\prime}(x)$. Thus (iii) holds.

By Theorem 3.4, the second derivative of a nonoscillatory solution to (L) is square-integrable. We also see from Theorem 3.6, that the second derivative of an oscillatory solution is unbounded. Thus, we ask " are the nonoscillatory solutions of (L) precisely the solutions having a square-integrable second-derivative?" This question remains open. However, we offer the following result.

Theorem 3.7. Let $y(x)$ be an oscillatory solution of (L). If $p^{\prime}(x) \leq 0$, then $\int_{0}^{\infty} y^{\prime / 2}(x) \mathrm{d} x=\infty$.

Proof. In the proof of Theorem 3.6, we found that

$$
\begin{equation*}
Q[y(x)]=y^{\prime}(x) \mathrm{D}_{3} y(x)-y^{\prime / 2}(x) \rightarrow-\infty \tag{3.4}
\end{equation*}
$$

as $x \rightarrow \infty$.
Integrating $Q[y(x)]$ from zero to r we get

$$
\begin{gather*}
y^{\prime}(x) y^{\prime \prime}(x)-\int_{0}^{x} y^{\prime \prime 2}(t) \mathrm{d} t+\frac{1}{2} p(x) y^{2}- \tag{3.5}\\
-\frac{1}{2} \int_{0}^{x} p^{\prime}(t) y^{2}(t) \mathrm{d} t=k+\int_{0}^{x} \mathrm{Q}(t) \mathrm{d} t
\end{gather*}
$$

As $x \rightarrow \infty$, the right side and hence the left side of (3.5) tends to $-\infty$. But this implies $\int_{0}^{x} y^{\prime / 2}(t) \mathrm{d} t \rightarrow \infty$ as $x \rightarrow \infty$.

Our next result follows from Theorems 3.4, 3.6 and 3.7.
THEOREM 3.8. Let $y(x)$ be a solution of (L). If $p^{\prime}(x) \leq 0$, then these are equivalent:
(i) $y(x)$ is nonoscillatory;
(ii) $\mathrm{F}[y(x)] \geq 0$;
(iii) $\int_{0}^{\infty} y^{\prime / 2}(x) \mathrm{d} x<\infty$.

Examining equation (2.1), the reader may note that the nonoscillatory solutions of (2.1) form a two-dimensional subspace. The question that presents itself is whether or not a similar statement can be made concerning the non-oscillatory solutions of (L). This remains an open question. However; a result in this direction is given below.

Theorem 3.9. If $p^{\prime}(x) \leq 0$, then the set of nonoscillatory solutions of (L) together with the trivial solution form a 2-dimensional subspace of S .

Proof. Let $y^{*}(x, a)$ and $w(x)$ be two linearly independent nonoscillatory solutions whose existence was discussed in Theorems 2.6 and 2.7. Suppose $u(x)$ is a nonoscillatory solution of (L) which is independent of $y^{*}(x, a)$ and $w(x)$, then some nontrivial linear combination $v(x)$ of $u(x)$, $y^{*}(x, a)$ and $w(x)$ has two zeros and hence is oscillatory. Since $p^{\prime}(x) \leq 0$, we have $\int_{0}^{\infty} v^{\prime \prime 2}(x) \mathrm{d} x=\infty$. But each of $u(x), y^{*}(x, a)$ and $w(x)$ have a square-integrable second derivative and thus

$$
v^{\prime \prime}(x)=c_{1} u^{\prime \prime}(x)+c_{2} y^{* \prime \prime}(x, a)+c_{3} w^{\prime \prime}(x)
$$

is square-integrable, a contradiction.
An immediate consequence of Theorem 3.9 is that $y^{*}(x, a)$ is essentially unique, i.e., $y^{*}(x, a)$ is the only nonoscillatory solution (except for scalar multiples) which vanishes at $x=a$. Also from Theorem 3.9 we see that the sum of an oscillatory solution and a nonoscillatory solution is oscillatory. We use this fact in our next proof.

Theorem 3.Io. Suppose $p^{\prime}(x) \leq 0$. If (L) has a nonoscillatory solution $y(x)$ such that

$$
\lim _{x \rightarrow \infty} \inf |y(x)| \neq 0
$$

then the oscillatory solutions of (L) are unbounded.

Proof. Let $u(x)$ be an oscillatory solution of (L). Then $s(x)=u(x)$ -- $k y(x)$ is oscillatory for all $k>0$. Since $\lim _{x \rightarrow \infty} \inf |y(x)| \neq 0$, we can suppose $\lim _{x \rightarrow \infty} \inf : y(x) \mid=\mathrm{I}$, but $s(x)$ oscillatory implies $u(x)$ intersects $k y(x)$ for each $k>0$ and therefore $\lim _{x \rightarrow \infty} \sup u(x)=\infty$.

Before we prove the existence of oscillatory solutions for (L^{*}) we need the following lemmas. Their proofs are similar to the proofs of Lemma 2.I and Theorem 2.7.

Lemma 3.1i. Let $z(x)$ be a solution of (L^{*}). Then the functional $\mathrm{G}[z(x)]=z(x) \mathrm{D}_{3}^{*} z-z^{\prime}(x) \mathrm{D}_{2}^{*} z$ is nonincreasing on $[\mathrm{o}, \infty)$.

Lemma 3.12. Given $b \in[0, \infty)$, there exists a solution $z(x)$ of $\left(\mathrm{L}^{*}\right)$ such that $z(b)=0$ and $\mathrm{G}[z(x)]>0$ for all $x \in[0, \infty)$.

We proceed to show that $\left(\mathrm{L}^{*}\right)$ is oscillatory whenever (L) is oscillatory.
THEOREM 3.13. Let $z(x)$ be a solution of $\left(\mathrm{L}^{*}\right)$ such that $\mathrm{G}[z(x)]>0$ for all $x \geq 0$, then $z(x)$ is oscillatory.

Proof. Suppose $z(t)$ does not oscillate. Assume, without loss of generality that $z(a)=0$ and $z(x)>0$ for all $x>a$ for some a.

Let $y(x)$ be the solution of (L) satisfying $y(a)=y^{\prime}(a)=y^{\prime \prime}(a)=0$, $y^{\prime \prime \prime}(\alpha)=\mathrm{I}$, then $y(x)$ is oscillatory by Theorem 3.1. Let α and $\beta(a<\alpha<\beta)$ be consecutive zeros of $y(x)$ where $y(x)>0$ and (α, β).

Consider the following identity.

$$
\begin{equation*}
\left(\frac{y^{\prime \prime}}{z}\right)^{\prime}=\frac{z y^{\prime \prime \prime}-z^{\prime} y^{\prime \prime}}{z^{2}} . \tag{3.6}
\end{equation*}
$$

From the initial conditions of $y(x)$ and $z(x)$

$$
\mathrm{J}[y, z]=y(x) \mathrm{D}_{3}^{*} z(x)-y^{\prime}(x) z^{\prime \prime}(x)+y^{\prime \prime}(x) z^{\prime}(x)-\mathrm{D}_{3} y(x) z(x) \equiv 0 .
$$

Thus

$$
z(x) y^{\prime \prime \prime}(x)-z^{\prime}(x) y^{\prime \prime}(x)=y(x) \mathrm{D}_{3}^{*} z(x)-y^{\prime}(x) z^{\prime \prime}(x)-p(x) z(x) y(x) .
$$

Substituting on the right side of (3.6) we get

$$
\begin{equation*}
\left(\frac{y^{\prime \prime}}{z}\right)^{\prime} \frac{y \mathrm{D}_{3}^{*} z-y^{\prime} z^{\prime \prime}-p y z}{z^{2}} \tag{3.7}
\end{equation*}
$$

Integrating (3.7) from α to β, yields

$$
\begin{equation*}
\frac{y^{\prime \prime}(\beta)}{z(\beta)}-\frac{y^{\prime \prime}(\alpha)}{z(\alpha)}=\int_{\alpha}^{\beta} \frac{2 y(x) \mathrm{G}[z(x)]}{z^{3}(x)} \mathrm{d} x . \tag{3.8}
\end{equation*}
$$

Since $y(x)>0$ on (α, β) and $\mathrm{F}[y(\alpha)]=-y^{\prime}(\alpha) y^{\prime \prime}(\alpha)<0$ and $\mathrm{F}[y(\beta)]=$ $=-y^{\prime}(\beta) y^{\prime \prime}(\beta)<0$, we conclude that $y^{\prime}(\alpha)>0, y^{\prime \prime}(\alpha)>0, y^{\prime}(\beta)<0$,
and $y^{\prime \prime}(\beta)<0$. This implies that the left side of (3.8) is negative, however, the right side of (3.8) is positive. This contradiction proves that $z(x)$ must oscillate.

References

[1] J. Dolan (1970) - On the Relationship Between the Oscillatory Behavior of a Linear Third Order Differential Equation and Its Adjoint, «J. of Differential Equations», 7, 367-388.
[2] M. Hanan (196I) - Oscillation Criteria for Third Order Differential Equations, «Pacific Journal of Math.», II, 919-944.
[3] M. Keener (1972) - On Oscillatory Solutions of Certain Fourth Order Linear Differential Equations, "Siam Journal of Math. Anal.», 3, 599-605.
[4] A.C. Lazer (1966) - The Behavior of Solutions of the Differential Equation $y^{\prime \prime \prime}+p(x) y^{\prime}+q(x) y=0$, "Pacific Journal of Mathematics», 17, 435-465.
[5] A. C. Peterson (1969) - Distribution of Zeros of Solutions of a Fourth Order Differential Equation, «Pacific Journal of Math.», 30 (3), 751-763.
[6] W. E. Taylor - On Certain Classes of Linear Fourth Order Differential Equations (to appear).

