ATTI ACCADEMIA NAZIONALE DEI LINCEI

CLASSE SCIENZE FISICHE MATEMATICHE NATURALI

RENDICONTI

WILLIE E. TAYLOR

On the solutions of certainnon-self-adjoint differential equations of fourth order

Atti della Accademia Nazionale dei Lincei. Classe di Scienze Fisiche, Matematiche e Naturali. Rendiconti, Serie 8, Vol. **58** (1975), n.6, p. 851–860. Accademia Nazionale dei Lincei

<http://www.bdim.eu/item?id=RLINA_1975_8_58_6_851_0>

L'utilizzo e la stampa di questo documento digitale è consentito liberamente per motivi di ricerca e studio. Non è consentito l'utilizzo dello stesso per motivi commerciali. Tutte le copie di questo documento devono riportare questo avvertimento.

Articolo digitalizzato nel quadro del programma bdim (Biblioteca Digitale Italiana di Matematica) SIMAI & UMI http://www.bdim.eu/

Atti della Accademia Nazionale dei Lincei. Classe di Scienze Fisiche, Matematiche e Naturali. Rendiconti, Accademia Nazionale dei Lincei, 1975.

Equazioni differenziali ordinarie. — On the solutions of certain non-self-adjoint differential equations of fourth order. Nota di WILLIE E. TAYLOR JR., presentata (*) dal Socio G. SANSONE.

RIASSUNTO. — Con opportune ipotesi su p(x) si studia il comportamento asintotico degli integrali dell'equazione $y^{(4)} + (p(x)y)' + p(x)y' = 0$ e della sua equazione aggiunta.

I. INTRODUCTION

This paper is concerned with the solutions of the fourth order linear differential equation

(L)
$$y'''' + (p(x)y)' + p(x)y' = 0$$

where p(x) is a positive continuous function on the interval $[0,\infty)$. The adjoint equation of (L) is

(L*)
$$z'''' - (p(x)z)' - p(x)z' = 0.$$

Note that $(L) = (L^*)$ if and only if $p(x) \equiv 0$. Thus the positivity of p(x) implies (L) is non-self-adjoint.

The oscillatory properties of non self-adjoint fourth order differential equations, had not been studied extensively until M. Keener [3] in a recent article considered a class of non-self-adjoint equations which satisfy various disconjugacy conditions.

For completeness, we make the following definitions.

DEFINITION. The statement that a nontrivial solution y(x) of (L) is oscillatory means that y(x) has infinitely many zeros on $[0,\infty)$.

DEFINITION. A nontrivial solution of (L) has an $i_1 - i_2 - \cdots + i_n$ distribution of zeros on an interval I, provided there exist points $x_1 < x_2 < \cdots + x_n$ in I such that y(x) has a zero at x_k of multiplicity at least i_k for $k = 1, 2, 3, \cdots, n$.

DEFINITION. For equation (L) and $t \in (0, \infty)$, $r_{i_1 i_2 \dots i_n}(t)$ is the infimum of the numbers b > t such that there exists a nontrivial solution of (L) having an $i_1 - i_2 - \dots - i_n$ distribution of zeros on [t, b]. If no such number b exists, we write

(*) Nella seduta dell'11 giugno 1975.

If (1.1) holds for each $t \in (0, \infty)$, we write

$$r_{i_1i_2\cdots i_n} = \infty.$$

If $i_1 + i_2 = 4$ and $r_{i_1i_2} = \infty$, then (L) is said to be $i_1 - i_2$ disconjugate. Similar definitions can be made for (L^{*}).

Keener's work centered on equations for which $r_{22} = r_{13} = \infty$ on $[0,\infty)$ (Class K_{I}) and those for which $r_{22} = r_{31} = \infty$ on $[0,\infty)$ (Class K_{II}). Using some results of Peterson [5], Keener also concluded that nontrivial solutions of Class K_{I} equations and Class K_{II} equations fail to have I-I-2 and 2-I-I distributions of zeros, respectively. An immediate consequence is that the zeros of an oscillatory solution of a Class K_{II} equation are all simple (multiplicity one).

Ass a notational convenience we introduce the following differential operators:

$$D_{3} y = y''' + p(x) y$$

 $D_{3}^{*} z = z''' - p(x) z$.

2. PRELIMINARY RESULTS

In his work, Keener used the equations

(2.1) y'''' + y' = 0

and

as his models. For $p(x) \equiv \frac{1}{2}$, (L) and (L^{*}) reduces to (2.1) and (2.2), respectively.

Our first result will be essential in what follows.

LEMMA 2.1. Let y(x) be a solution of (L), then the functional

 $F[y(x)] = y(x) D_{3} y(x) - y'(x) y''(x)$

is non-increasing on $[0, \infty)$. Moreover, $F[y(x)] \equiv 0$ on $[a, \infty)$ for some $a \ge 0$ iff $y(x) \equiv 0$.

Proof. Upon differentiating F[y(x)] we find $F'[y(x)] = -y''^2(x) \le 0$, from which the first part of our theorem follows.

To prove the remaining part of our theorem, note that $F[y(x)] \equiv 0$ on $[a,\infty)$ implies $F'[y(x)] = -y''^2(x) \equiv 0$ on this same interval, from which it follows that $y''(x) \equiv 0$ for $x \ge a$. Thus y(x) = mx + b, for some constants m and b. However, if either $m \neq 0$ or $b \neq 0$, F[y(x)] = $= p(x)y^2(x) > 0$, contradicting $F[y(x)] \equiv 0$. Consequently, $F[y(x)] \equiv 0$ implies $y(x) \equiv 0$. The other implication follows easily. COROLLARY 2.2. If y(x) is a nontrivial solution of (L) then y(x) has at most one double zero, i.e., (L) is 2-2 disconjugate on $[0, \infty)$.

It should be noted that proof of Lemma 2.1 does not depend on the sign of p(x). However, p(x) > 0 plays an important role in the proof of our next Lemma. The proof of this lemma is essentially the same as the one given in Lazer's paper [4], for this reason the proof is omitted.

LEMMA 2.3. Let y(x) be a nontrivial solution of (L) satisfying $y(a) \ge 0$, $y'(a) \le 0$, $y''(a) \ge 0$ and $D_3 y(a) \le 0$ for some a > 0. Then y(x) > 0, y'(x) < 0, y''(x) > 0 and $D_3 y(x) < 0$ on [0, a].

From Lemma 2.3 we see that a nontrivial solution having a triple zero at x = a cannot vanish to the left of x = a. Thus (L) is I-3 disconjugate on $[0,\infty)$. From our beginning statements it follows that (L) is a Class K_I equation. Moreover, using techniques similar to those of Hanan [2] or Peterson [5] we can show that (L^{*}) is a Class K_{II} equation. We record these facts in our first theorem.

THEOREM 2.4. Equation (L) belongs to Class K_{I} and equation (L*) belongs to Class K_{II} .

The following pair of theorems are due to Keener and are given for reference purposes.

THEOREM 2.5. If a Class K_1 equation is oscillatory, then any nontrivial solution having two zeros (counting multiplicities) is oscillatory.

THEOREM 2.6. If a Class K_1 equation is oscillatory, then, given $a \in [0, \infty)$, there is a nonoscillatory solution $y^*(x, a)$ which vanishes at x = a.

For (2.1), $y^*(x, a) = (e^{-x} - e^{-a})$, however, we also note that equation (2.1) has solutions with no zeros, e.g., $y(x) \equiv 1$. Our next theorem establishes the existence of such a solution for (L). Thus (L) always has a pair of linearly independent nonoscillatory solutions.

THEOREM 2.7. There exists a non-vanishing solution of (L).

Proof. Let u(x), v(x), w(x), z(x) be a basis for the solution space of L. Let $y_n(x) = c_{1n} u(x) + c_{2n} v(x) + c_{3n} w(x) + c_{4n} z(x)$ be a solution satisfying

$$y_n(n) = y'_n(n) = y''_n(n) = 0, y''_n(n) < 0$$

and where $c_{1n}^2 + c_{2n}^2 + c_{3n}^2 + c_{4n}^2 = 1$. Suppose further, without loss of generality, that $\lim c_{in} = c_i$ for i = 1, 2, 3, 4. Let

$$y(x) = c_1 u(x) + c_2 v(x) + c_3 w(x) + c_4 z(x).$$

Since $\{y_n(x)\}$ converges uniformly to y(x) on any compact subset of $[0, \infty)$, and $y_n(x) > 0$ on (0, n), we have $y(x) \ge 0$ on $(0, \infty)$. Now $y(x) \equiv 0$ since

$$c_1^2 + c_2^2 + c_3^2 + c_4^2 = 1$$

Furthermore, if there is a point x_0 such that $y(x_0) = 0$, then y(x) has a double zero at x_0 and therefore y(x) oscillates. But this is clearly impossible since $r_{22} = \infty$. Consequently, $y(x) \neq 0$ for all x.

We now state some results concerning (L^*) . Since (L^*) belongs to Class K_{II} , the proof of these results can be modeled after Keener's work.

THEOREM 2.8. Suppose (L^*) is oscillatory. Then (L^*) has two linearly independent oscillatory solutions and every linear combination of them is oscillatory.

From Theorem 2.5, we see that if (L) has an oscillatory solution, then any solution having a multiple zero must oscillate. The opposite is true for (L^{*}), i.e., any nontrivial solution of (L^{*}) having a multiple zero is nonoscillatory.

We conclude this section by exhibiting the LaGrange bilinear concomitant for solutions of (L) and (L^*) .

THEOREM 2.9. If y(x) and z(x) are solutions of (L) and (L^{*}), respectively, then

$$J[y, z] = y(x) D_{3}^{*} z(x) - y'(x) z''(x) + y''(x) \cdot z'(x) - D_{3} y(x) \cdot z(x)$$

is a constant, which is determined by the initial conditions of y(x) and z(x).

Let S and S^{*} denote the solution spaces of (L) and (L^{*}), respectively. Following Dolan [I], we let $S^*(y) = \{z \in S^*: J [y, z] = 0\}$ where y is a fixed solution in S. It is easy to verify that $S^*(y)$ is a three-dimensional subspace of S^{*} whenever y not the trivial solution of S. In a similar manner, for a fixed $z \in S^*$, $S(z) = \{y \in S : J [y, z] = 0\}$.

3. Oscillation Properties of (L) and (L^*)

We assume for the remainder of this work that p(x) satisfies the additional hypothesis

(H)
$$\int_{0}^{\infty} p(x) \, \mathrm{d}x = \infty.$$

The first result of this section shows that (H) is sufficient for oscillation.

THEOREM 3.1. Let y(x) be a solution of (L). Then y(x) is oscillatory if and only if F[y(x)] < 0 on $[c, \infty)$ for some $c \ge 0$.

Proof. Suppose F[y(c)] < o and that y(x) is nonoscillatory. Then there exists $a \ge c$ such that $y(x) \ne o$, for $x \ge a$. We can suppose, without loss of generality, that y(x) > o on $[a, \infty)$.

Consider the function

$$H(x) = \frac{y''(x)}{y(x)} + \int_{a}^{x} p(t) dt.$$

By differentiating H(x) we obtain

$$\mathbf{H}'(x) = \frac{\mathbf{F}[\mathbf{y}(x)]}{\mathbf{y}^2(x)} < \mathbf{0}.$$

Consequently, H(x) is decreasing. Since $\int_{a} p(t) dt = \infty$, it follows that y''(x) < 0 for large x and since y(x) > 0 it follows that y'(x) > 0 for large x.

The fact that
$$\int_{a} p(t) dt \to \infty$$
 as $x \to \infty$ implies $\frac{y''(x)}{y(x)} \to -\infty$ as $x \to \infty$.

But this implies y''(x) is bounded away from zero for large x, implying $y(x) \to -\infty$ as $x \to \infty$. This contradiction establishes the first part of our theorem.

Now suppose $F[y(x)] \ge 0$ on $[0,\infty)$. We will show that y(x) is non-scillatory.

The functional

G
$$[z(x)] = z(x) D_{3}^{*} z(x) - z'(x) z''(x)$$

is decreasing whenever z(x) is a solution of (L^*) . This fact is easily verified by computing G'[z(x)].

Suppose $z(x) \in S^*(y)$, G[z(x)] < o for large x and z(x) > o for large x. Such a solution z(x) exists because $S^*(y)$ is a 3-dimensional subspace of S^* , and consequently, some nontrivial $z \in S^*(y)$ has a double zero. Recall that (L^*) is of Class K_{II} and hence solutions with double zeros do not oscillate.

Now suppose y(x) is oscillatory. If x_0 is a zero of y(x) it follows that $y'(x_0) \neq 0$ and $y''(x_0) \neq 0$. For if so, then $F[y(x)] \equiv 0$ on $[x_0,\infty)$, implying $y(x) \equiv 0$.

Let $\alpha < \beta$ consecutive zeros of y(x) greater than a and suppose y(x) > 0on (α, β) . Differentiating $\frac{y''(x)}{z(x)}$ we get

(3.1)
$$\left(\frac{y''(x)}{z(x)}\right)' = \frac{z(x)y'''(x) - z'(x)y''(x)}{z^2(x)} .$$

Since $z(x) \in S^*(y)$,

$$y(x) D_3 z(x) - y'(x) z''(x) + y''(x) z'(x) - D_3 y(x) z(x) = 0$$

and so

$$z(x) y'''(x) - z'(x) y''(x) = y(x) D_3 z(x) - y'(x) z''(x) - p(x) y(x) z(x)$$

for all x. Substituting in (3.1) we obtain

(3.2)
$$\left(\frac{y''(x)}{z(x)}\right)' = \frac{D_3 z(x) - z''(x) y'(x) - p(x) z(x) y(x)}{z^2(x)}$$

Integrating (3.2) by parts yields

(3.3)
$$\frac{y''(\beta)}{z(\beta)} - \frac{y''(\alpha)}{z(\alpha)} = \int_{\alpha}^{\beta} 2 \frac{G[z(x)]}{z^3(x)} y(x) dx.$$

Since F[y(x)] > 0 for all x, at a zero of y(x), say x_0 , sgn $y''(x_0) \neq \text{sgn } y'(x_0)$. From this observation and the fact that y(x) > 0 on (α, β) we conclude that the left side of (3.3) is positive and the right side of (3.3) is negative. This proves that y(x) cannot oscillate if F[y(x)] > 0 for all x.

THEOREM 3.4. Let
$$y(x)$$
 be a nonoscillatory solution of (L), then

$$\int_{a}^{\infty} y'^{2}(x) dx < \infty.$$

Proof. From Theorem 3.2 it follows that F[y(x)] > 0 for all $x \in [0, \infty)$. Differentiating F[y(x)] and integrating from zero to x we obtain the following inequality

$$0 < F[y(x)] = F[y(0)] - \int_{0}^{x} y'^{2}(t) dt.$$

Since x arbitrary, we obtain

$$\int_{0}^{\infty} y^{\prime \prime 2}(x) \, \mathrm{d}x < \mathrm{F}\left[y\left(0\right)\right],$$

which completes our proof.

Before we investigate the behavior of the oscillatory solutions of (L), a lemma will be needed.

LEMMA 3.5. Let y(x) be an oscillatory solution of (L). Then the functional N $[y(x)] = y(x)y''(x) - \frac{1}{2}y'^2(x) \rightarrow -\infty$ as $x \rightarrow \infty$.

Proof. Note that $N'[y(x)] = F[y(x)] - p(x)y^2(x) \le F[y(x)]$. Since y(x) is oscillatory, it follows that F[y(x)] is negative and bounded away from zero for large x. Thus, $N[y(x)] \to -\infty$ as $x \to \infty$.

THEOREM 3.6. Let y(x) be an oscillatory solution of (L). Then

(i) y'(x) is unbounded; (ii) $\int_{a}^{\infty} y'^{2}(x) dx = \infty$, and (iii) y''(x) is unbounded.

_ _

Proof. From the preceding lemma the functional

$$N[y(x)] = y(x)y''(x) - \frac{1}{2}y'^{2}(x) \to -\infty \quad \text{as} \quad x \to \infty,$$

from which (i) follows easily.

To prove (ii) we integrate N [x] from c to x where y'(c) = 0. Doing so we obtain

$$\int_{x}^{x} N[y(t)] dt = y(x) y'(x) - \frac{3}{2} \int_{x}^{x} y'^{2}(t) dt.$$

But $\int_{c}^{x} N[y(t)] dt \to -\infty$ as $x \to \infty$ and since y(x) oscillates (ii) follows.

Multiplying (L) by y'(x) and integrating yields

$$y'(x) D_{3} y(x) - \frac{1}{2} y''^{2}(x) = k + \int_{c}^{x} p(t) [y(t) y''(t) - y^{2'}(t)] dt.$$

As $x \to \infty, \int_{c}^{x} p(t) [y(t) y''(t) - y'^{2}(t)] dt \to \infty$ and therefore $y''^{2}(x) \to \infty$

along the zeros of y'(x). Thus (iii) holds.

By Theorem 3.4, the second derivative of a nonoscillatory solution to (L) is square-integrable. We also see from Theorem 3.6, that the second derivative of an oscillatory solution is unbounded. Thus, we ask "are the non-oscillatory solutions of (L) precisely the solutions having a square-integrable second-derivative?" This question remains open. However, we offer the following result.

THEOREM 3.7. Let y(x) be an oscillatory solution of (L). If $p'(x) \le 0$, then $\int_{0}^{\infty} y'^{2}(x) dx = \infty$.

Proof. In the proof of Theorem 3.6, we found that

(3.4)
$$Q[y(x)] = y'(x) D_3 y(x) - y''^2(x) \to -\infty$$

as $x \to \infty$.

Integrating Q[y(x)] from zero to r we get

(3.5)
$$y'(x) y''(x) - \int_{0}^{x} y''^{2}(t) dt + \frac{1}{2} p(x) y^{2} - \frac{1}{2} \int_{0}^{x} p'(t) y^{2}(t) dt = k + \int_{0}^{x} Q(t) dt.$$

As $x \to \infty$, the right side and hence the left side of (3.5) tends to $-\infty$. But this implies $\int_{0}^{x} y''^{2}(t) dt \to \infty$ as $x \to \infty$.

Our next result follows from Theorems 3.4, 3.6 and 3.7.

THEOREM 3.8. Let y(x) be a solution of (L). If $p'(x) \le 0$, then these are equivalent:

- (i) y(x) is nonoscillatory;
- (ii) F $[y(x)] \ge 0$; (iii) $\int_{0}^{\infty} y''^{2}(x) dx < \infty$.

Examining equation (2.1), the reader may note that the nonoscillatory solutions of (2.1) form a two-dimensional subspace. The question that presents itself is whether or not a similar statement can be made concerning the non-oscillatory solutions of (L). This remains an open question. However; a result in this direction is given below.

THEOREM 3.9. If $p'(x) \leq 0$, then the set of nonoscillatory solutions of (L) together with the trivial solution form a 2-dimensional subspace of S.

Proof. Let $y^*(x, a)$ and w(x) be two linearly independent nonoscillatory solutions whose existence was discussed in Theorems 2.6 and 2.7. Suppose u(x) is a nonoscillatory solution of (L) which is independent of $y^*(x, a)$ and w(x), then some nontrivial linear combination v(x) of u(x), $y^*(x, a)$ and w(x) has two zeros and hence is oscillatory. Since $p'(x) \le 0$, we have $\int_{0}^{\infty} v''^{2}(x) dx = \infty$. But each of $u(x), y^*(x, a)$ and w(x) have a

square-integrable second derivative and thus

$$v''(x) = c_1 u''(x) + c_2 y^{*''}(x, a) + c_3 w''(x)$$

is square-integrable, a contradiction.

An immediate consequence of Theorem 3.9 is that $y^*(x, a)$ is essentially unique, i.e., $y^*(x, a)$ is the only nonoscillatory solution (except for scalar multiples) which vanishes at x = a. Also from Theorem 3.9 we see that the sum of an oscillatory solution and a nonoscillatory solution is oscillatory. We use this fact in our next proof.

THEOREM 3.10. Suppose $p'(x) \leq 0$. If (L) has a nonoscillatory solution y(x) such that

$$\lim_{x \to \infty} \inf |y(x)| \neq 0$$

then the oscillatory solutions of (L) are unbounded.

Proof. Let u(x) be an oscillatory solution of (L). Then s(x) = u(x) - ky(x) is oscillatory for all k > 0. Since $\liminf_{x \to \infty} |y(x)| \neq 0$, we can suppose $\liminf_{x \to \infty} |y(x)| = 1$, but s(x) oscillatory implies u(x) intersects ky(x) for each k > 0 and therefore $\limsup_{x \to \infty} u(x) = \infty$.

Before we prove the existence of oscillatory solutions for (L^*) we need the following lemmas. Their proofs are similar to the proofs of Lemma 2.1 and Theorem 2.7.

LEMMA 3.11. Let z(x) be a solution of (L^*) . Then the functional $G[z(x)] = z(x) D_3^* z - z'(x) D_2^* z$ is nonincreasing on $[0, \infty)$.

LEMMA 3.12. Given $b \in [0,\infty)$, there exists a solution z(x) of (L^*) such that z(b) = 0 and G[z(x)] > 0 for all $x \in [0,\infty)$.

We proceed to show that (L^*) is oscillatory whenever (L) is oscillatory.

THEOREM 3.13. Let z(x) be a solution of (L^*) such that G[z(x)] > 0 for all $x \ge 0$, then z(x) is oscillatory.

Proof. Suppose z(t) does not oscillate. Assume, without loss of generality that z(a) = 0 and z(x) > 0 for all x > a for some a.

Let y(x) be the solution of (L) satisfying y(a) = y'(a) = y''(a) = 0, y'''(a) = 1, then y(x) is oscillatory by Theorem 3.1. Let α and β ($a < \alpha < \beta$) be consecutive zeros of y(x) where y(x) > 0 and (α, β).

Consider the following identity.

(3.6)
$$\left(\frac{y''}{z}\right)' = \frac{zy''' - z'y''}{z^2}.$$

From the initial conditions of y(x) and z(x)

$$J[y, z] = y(x) D_3^* z(x) - y'(x) z''(x) + y''(x) z'(x) - D_3 y(x) z(x) \equiv 0.$$

Thus

$$z(x) y'''(x) - z'(x) y''(x) = y(x) D_3^* z(x) - y'(x) z''(x) - p(x) z(x) y(x).$$

Substituting on the right side of (3.6) we get

(3.7)
$$\left(\frac{y''}{z}\right)' \frac{y \mathrm{D}_{\mathbf{3}}^* z - y' z'' - p y z}{z^2}$$

Integrating (3.7) from α to β , yields

(3.8)
$$\frac{y''(\beta)}{z(\beta)} - \frac{y''(\alpha)}{z(\alpha)} = \int_{\alpha}^{\beta} \frac{2 y(x) G[z(x)]}{z^3(x)} dx.$$

Since y(x) > 0 on (α, β) and $F[y(\alpha)] = -y'(\alpha)y''(\alpha) < 0$ and $F[y(\beta)] = -y'(\beta)y''(\beta) < 0$, we conclude that $y'(\alpha) > 0, y''(\alpha) > 0, y'(\beta) < 0$,

References

- [1] J. DOLAN (1970) On the Relationship Between the Oscillatory Behavior of a Linear Third Order Differential Equation and Its Adjoint, « J. of Differential Equations », 7, 367-388.
- M. HANAN (1961) Oscillation Criteria for Third Order Differential Equations, « Pacific Journal of Math. », 11, 919-944.
- [3] M. KEENER (1972) On Oscillatory Solutions of Certain Fourth Order Linear Differential Equations, «Siam Journal of Math. Anal.», 3, 599-605.
- [4] A.C. LAZER (1966) The Behavior of Solutions of the Differential Equation y''' + p(x)y' + q(x)y = 0, «Pacific Journal of Mathematics», 17, 435-465.
- [5] A. C. PETERSON (1969) Distribution of Zeros of Solutions of a Fourth Order Differential Equation, « Pacific Journal of Math. », 30 (3), 751–763.
- [6] W. E. TAYLOR On Certain Classes of Linear Fourth Order Differential Equations (to appear).