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Analisi funzionale. — Orthogonality Preserving Operators. Nota I di
W.A.AL-SaLam e A. VERMA, presentata ® dal Socio G. SANSONE.

RIASSUNTO. — Riprendendo un problema considerato da S. Pincherle (1928), da
W. Hahn (1949) e successivamente da altri, i due Autori trovano classi di polinomi
ortogonali per le quali esiste una trasformazione preservante l’ortogonalita.

1. INTRODUCTION

In this note we shall be concerned with linear operators defined on
polynomials by means of

(I'I> Jx'.:)\nxn (%20,1,2,_3,”')

where Ay =1, A,==0 for all »>o0. Because of the identity 2"D" =
=D (xD — 1) - .- (D — » + 1), the operator (1.I1) can be represented by
either of the forms

(1.2) J=2 GnanDn =7§)i—’;(xD)”

!
A

n
where @ =16y=1, and A, = 2 (:) .
=0
In this note we raise the question: for what orthogonal polynomial sets
(henceforth we indicate by OPS) {P, (x)} and operator J of the form (1.1) is
the polynomial set {Q, (x) = JP, (x)} also orthogonal? For similar problems
see [1], /[2]-
An OPS that we shall encounter is a g-generalization of the Jacobi poly-
nomials which appeared in [3]. They may be defined by

(t2)  Jalgo,Bi2)=(— 0" EEEEEE 0,67, " s a0w)

where [a]o=1, [a], = (1 — &) (1 —ag) (1 —ag®) - -+ (1 — ag"™") and ,®, is
the Heine series
oo

e _ [a]n [6ln n
2(I’1(d,b’(:,x) _,g [g],,[c],, x.

It is easy to see that as ¢ > 1, ;@ (a,6;¢;2)—>F(a,b;c;x). Hence the
g-Jacobi’ polynomials are proper generalization of the classical orthogonal

(*) Nella seduta del 10 maggio 1975.
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polynomials. Hahn [3] gives a three term recurrence relation. We can show
that these polynomials are orthogonal with respect to a discrete function
{ () which has at the points x = ¢* the jump

T 1—ogi | & [Bfds _
{,'_1:].'; I_ng}oc . k=o0,1,2,

provided that 0 <¢ <1, 0 < B <a <1 whereas if the value of ¢ > 1
and 1 <o < then the distribution function ¢ (x) is the step function with
jump

{ [ L= } [B/ode

j=0 1—pt Y—j [9]/3

at the points x::%g Fand £=o0,1,2, -

2. NECESSARY AND SUFFICIENT CONDITIONS

We first recall that the operator (Pincherle [4])

(2.1) o= =3 AU oy

n=0

which has the property that J, f(x) = f (Ax) is of the type (1.1). This operator
takes every OPS into an OPS. As we shall see, it is the only one of the type
(1.1) which takes every OPS into an OPS.

A slightly less trivial operator is

(2.2) Jo= AN 4+ A, (— 0P

which clearly satisfies J, f(x) =A, f(2) + A, f(—wx). If {f, ()} is a
symmetric polynomial set, i.e., f,(—x) = (—1)" f,(¥) then J,f,(x) =
= (A + (— 1)"Ay) fu(Wx). Consequently the operator (2.2) takes every
symmetric OPS into an OPS (provided that Af=F AJ). If on the other hand
{#n(®)} is not symmetric then we can show that g, (x) =J, £, (%) is on OPS
if ‘and only if A; or A, (but not both) is zero. The proof of this statement is
straightforward but lengthy. We omit it here.

Because of the above discussion we shall refer to the two operators (2.1)
and (2.2) as the trivial operators.

Using the method used by Krall and Sheffer in [2] one can prove the
following theorem. Since the proof is mere paraphrasing of the proofs of similar
theorems given in [2] we omit it here.

THEOREM 1. Let { p, (%)} be an OPS with associated moments {ay,}.
In order that {q,(x) = Jp, (%)}, where ] is given by (1.1), be also an
OPS ¢ is necessary and sufficient that there exist constants {oy} and § A?i}
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such that
z n
2. = @ == o n=0,1,2, -
(2'4) Z)an+jA:,j='°(:+s7\n for n,s=0,1,2,3,""°
i=
(2.5) Aj,=Fo.

When these conditions are satisfied { oy} are moments associated with {gq, (%)}

3. SYMMETRIC POLYNOMIALS

We first note that operators of type (1.1) take every symmetric polynomial
set into a symmetric set. It is well known that such sets have odd moments
%gpy = O. On the other hand all even moments are non-zero. We now give

THEOREM 2. If {pn (%)} is a symmetric OPS with associated moments
{a,} and if ] is a non-trivial operator of the form (1.1), and if furthermore
{Jpn (%) = gn (%)} is also an OPS then there are constants a ,b,o0,p,y and
g so that

G O w=a" /B, (D) o= (5) [l (8],
and
(3-2) 1) Pew= & [2g]ul [Y7]n » (1) Pgpp =1 0" [“92]1;/ [Y92]n .

To prove this theorem we first put s =0, 1 in (2.4) and &y, = 0 we
get a, = A, a and A} = MantafAente - If then we put s = 2 in (2.4) we con-
clude that Ay = o and

A
(3-3) Ao 0z + o A, = Oonta )\&‘ :
2742
If Ajy=o0 we get MenfMamie = I[A, which implies that Xy, = A3 and
Mons1 = Ap; X3 so that J must be a trivial operator. Hence we may now
assume that Ay == 0 so that Ay /Ay == As and we have from (3.3)

A*
( onte __ 20
‘,34) ‘ on Aan *
Namsg 22
Now putting s = 3 in (2.4) we get
Aon—
(35 Aty = g (322 — AL)-

Again Aﬁl == 0 for otherwise we get (3.5) that Ay,/hense = @ constant and
] is the trivial operator. If Ay, == o but Ay A, — Ay Ay == 0 we again obtain
the trivial operator for J. Thus we may further assume AN A, — AL AN =0,
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Az ==o0. Now put s=4,2# for » in (2.4) then substitute for Ay, Aspis
from (3.3) and put & = ay,,/a,,; we get that &, must satisfy a recurrence
relation of the form

(36) Dg, + &y +BE Eun+E=0
whose general solution can be given as

— al—a)
(3'7) an - 1 — BQ”

Actually in finding solutions of (3.6) we disregarded possible cases when
g€, = o for all # or for o <% <N or for » >N because £, is the ratio of
successive moments and thus these cases would lead to Hankel determinants
which vanish in violation of well known necessary conditions for { a, } to be
a moment sequence.

Now (3.7) implies the validity of (3.1) and (3.2).

The OPS whose moments are given by (3.1-) is

38 pm@=1Ta(¢. 90,80 %) . tun (@) =2Ta(g, ua? e )

and the transformed OPS {¢, (%)} is

(3.9) o) =20 1 (g, v, By ; ba2la)
Gona ) = M LI 2] (g, g2, Be? s 6%a).

! Tyg?ln

To verify this assertion we make use of the basic analogue of the
Saalschutz Theorem for the sum of a terminating ,p,. Indeed we have
from (3.1) and (1.2)

g .

f 29 Py, (2) d§ () = K, 40,
Yo ag , Bgitl;

g, agil, Bon; ]

The sum of the 4@, in the right hand side [3] is given by

o

(71 [5 o]
[27]» [% rf""]n

which is zero for j=o0,1,---,2— 1. On the other hand
[#51 Pu @ a4 =

trivially since all odd moments are zero.
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The remaining cases
fx"Pan(x)dnp(x):o j=0,1,-,2n

can be verified similarly.
To verify (3.9) we only need to use (3.2).

4. Now-SyMMmETRIC OPS.

Let us now consider the non- symmetric case under the further condition

that the operator J in (1.2) is such that @,54=4]. This is equivalent to assuming
that A, 5= 2] in (1.1).
As above if we put s = 0,1 in (2.4) we obtain

A
(4-1) A10%+An“n+1=)‘—”:1“°‘n+1 7=0,1,2,"":

Putting # = 0, 1 in (4.1) and eliminating A, we get

oy oty (Ag — 7\?)
0= T
7\1 )\2 (“2 - “1)

Note that since { «, } is a moment sequence then «, — of == 0 and the nume-
rator does not vanish by assumption. Hence Ajy==o0. We now can see easily
that (4.1) implies that oc,,=|= o for all 7.

Now if we put —— =&, we can rewrite (4.1) in the form
Ot

)‘”
(4.2) A1o Em + Ay = Yot

Now putting s = 2 in (2.4) and usmg (4.2) we see that { £, } satisfies a
recurrence relation of the form

En+D1an+1+DéEnEn+l +Dg=o0

which has the non-trivial general solution

_ 1 1—Bg
b= @ 1—agn
for some constants @, a,p,q.
Hence
— N [a]n
(4‘3) ' “‘n a [B]ﬂ
so that

(4.4) p@=a"Ta(g,2,8;%)
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and from (4.2)

\I —_ 7 [a]n
(45/ 7‘ b [Y]"
so that
— o ],. %)

It is interesting to note that the above results show that the g-generalization
of the Jacobi polynomials form the only family of orthogonal polynomial
sets for which there exist orthogonality preserving operator of the form (r1.2)
with &} == a,. This operator is

@) ; % 4DF (D = djdx)
where
9 -S () e

The requirement 4} == @, is equivalent to @ == y. This restriction can be removed
since in this case | = ™ is the trivial operator.
We shall give special cases of these results in our following note.
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