ATTI ACCADEMIA NAZIONALE DEI LINCEI

CLASSE SCIENZE FISICHE MATEMATICHE NATURALI

RENDICONTI

PAUL VENZKE

Finite groups whose maximal subgroups are modular

Atti della Accademia Nazionale dei Lincei. Classe di Scienze Fisiche, Matematiche e Naturali. Rendiconti, Serie 8, Vol. **58** (1975), n.6, p. 828–832. Accademia Nazionale dei Lincei

<http://www.bdim.eu/item?id=RLINA_1975_8_58_6_828_0>

L'utilizzo e la stampa di questo documento digitale è consentito liberamente per motivi di ricerca e studio. Non è consentito l'utilizzo dello stesso per motivi commerciali. Tutte le copie di questo documento devono riportare questo avvertimento.

Articolo digitalizzato nel quadro del programma bdim (Biblioteca Digitale Italiana di Matematica) SIMAI & UMI http://www.bdim.eu/ Teoria dei gruppi. — Finite groups whose maximal subgroups are modular. Nota di PAUL VENZKE, presentata ^(*) dal Socio G. SCORZA DRAGONI.

RIASSUNTO. — Si indicano altre due caratterizzazioni per i gruppi finiti che hanno come sottogruppi modulari tutti i loro sottogruppi massimi.

The maximal subgroup M of the group G is called *modular* in G whenever the modular law $U \cap (V, M) = (V, U \cap M)$ holds for all subgroups U and V with $U \ge V$. When every maximal subgroup of the group G is modular in G, G is called an M (1)-group. Schmidt [2] has characterized the M (1)-groups as follows:

THEOREM (Schmidt). A finite group G is an M (1)-group if and only if G is supersolvable and for each complemented chief factor H/K of G, $|\operatorname{Aut}_{G}(H/K)|$ is prime (or 1).

In this note two additional characterizations are given for finite M(I)-groups. It is shown that a finite group G is an M(I)-group whenever the following modular law holds:

(I) $M_1 \cap \langle V, M_2 \rangle = \langle V, M_1 \cap M_2 \rangle$

for M_1 and M_2 maximal subgroups of G with $M_1 \ge V$.

Additionally it is shown that the finite group G is an M(I)-group if and only if

$$\mathrm{G}/\Phi\left(\mathrm{G}
ight)\cong \bigoplus_{i=1}^{n}\mathrm{H}_{i}$$
 ,

where each H_i is a group whose order is the product of two distinct primes.

Throughout this work G denotes a finite group. $\Phi(G)$ denotes the Frattini subgroup of G, $\operatorname{Core}_{G}(H)$ denotes the largest normal subgroup of G contained in the subgroup H. For M a maximal subgroup of G we write $M < \cdot G$, while $M \leq \cdot G$ denotes that M is a maximal subgroup of G or M = G. All other notation used is standard.

In proving the results mentioned above it is convenient to use an alternate criterion for a maximal subgroup to be modular in G. This is provided by the following proposition whose proof is elementary and has been omitted.

(*) Nella seduta dell'11 giugno 1975.

PROPOSITION 1. The maximal subgroup M and the subgroup U of the finite group G satisfy the modular law,

$$U \cap \langle V, M \rangle = \langle V, U \cap M \rangle$$
 for $U \ge V$,

if and only if $U \cap M \leq \cdot U$.

As a result of Proposition 1 the modular law (1) is precisely equivalent to the condition:

If M_1 and M_2 are maximal subgroups of G then

$$(2) M_1 \cap M_2 \leq \cdot M_1(M_2).$$

We are now prepared to prove the first result.

THEOREM 2. The following statements are equivalent:

1) If M_1 and M_2 are maximal subgroups of G, then

$$\mathbf{M}_1 \cap \langle \mathbf{V}, \mathbf{M}_2 \rangle = \langle \mathbf{V}, \mathbf{M}_1 \cap \mathbf{M}_2 \rangle$$
 for $\mathbf{M}_1 \ge \mathbf{V}$.

2) If M_1 and M_2 are maximal subgroup of G then

$$M_1 \cap M_2 \leq M_1 (M_2)$$
.

3) G is an M(1)-group.

Proof. As we have seen (I) and (2) are equivalent. As it is evident that (3) implies (I), it needs only to be shown that (2) implies (3). For this we let G be the minimal counter example. Two cases are now distinguished.

Case I. G is solvable. Using the characterization of Schmidt for M (1)groups it suffices to show that for H/K a complemented chief factor of G, |H:K| = p and $|\operatorname{Aut}_{G}(H/K)| = q$ (or 1) with p and q primes. Let H/K be a complemented p-chief factor of G complemented by the maximal subgroup M. As G is the minimal counter example we may assume that $M > \operatorname{Core}_{G}(M) = \{1\}$; so that $K = \{1\}, G = MH, M \cap H = \{1\}$ and $C_{G}(H) = H$. Let $1 \neq x \in H$. As G satisfies (2), $M^{x} \cap M \leq \cdot M$.

For $y \in M \cap M^x$, $y = z^x$ where $z \in M$ so that $z^x z^{-1} \in M$. Since $H \triangleleft G$, $z^x z^{-1} \in H$ and it follows that $z^x z^{-1} = I$. Hence x centralizes z = y and $C_G(x) \ge M \cap M^x$.

As $M \cap M^x \leq M$, $(M \cap M^x) H \leq G$. G satisfies (2) so that

$$\mathbf{M} \cap (\mathbf{M} \cap \mathbf{M}^x) \mathbf{H} = \mathbf{M} \cap \mathbf{M}^x < \cdot (\mathbf{M} \cap \mathbf{M}^x) \mathbf{H}$$
.

However, since

 $C_{G}(x) \ge M \cap M^{x}, H(M \cap M^{x}) \ge \langle x \rangle (M \cap M^{x}) > M \cap M^{x}.$

57. — RENDICONTI 1975, Vol. LVIII, fasc. 6.

Therefore $\langle x \rangle = H$ and |H| = p, p a prime. As $C_G(x) = C_G(H) = H$, it follows that $M \cap M^x = \{I\}$ hence |M| = q, q a prime. By the theorem of Schmidt G is an M(I)-group contrary to the choice of G.

Case II. G is nonsolvable. A contradiction will be arrived at by showing that each maximal subgroup of G has prime index, so that G would not only be solvable but supersolvable as well. Let M be a maximal subgroup of G and $N = \langle t: t^2 = I \rangle$. N is a normal subgroup of G and |N| > I since G is not solvable. If $N \leq M$, then by induction G/N is supersolvable so that |G:M| is prime. We may therefore assume that M is a non-normal subgroup of G and that $G = \langle t, M \rangle$ for some involution t of G.

As G satisfies (2), $M \cap M^t < \cdot M$; furthermore $(M \cap M^t)^t = M \cap M^t$ so that $t \in N_G(M \cap M^t)$. Let $H = \langle t \rangle (M \cap M^t)$, observe that $M \cap M^t < \cdot H$ and $M \cap M^t < H$.

H is a maximal subgroup of G. For if $G \cdot > M_1 \ge H$, then $M \cdot > M \cap M_1 \ge$ $\ge M \cap M^t$. As $M \cap M^t < M$, $M \cap M^t = M \cap M_1$. Conversely $M \cap M^t =$ $= M \cap M_1 < M_1$. Since $H > M \cap M_1$, $H = M_1$ and H < G.

Let $m \in M \sim (M \cap M^t)$. $H^m = \langle t^m \rangle (M \cap M^{tm})$; observe that $M \cap M^{tm} < H^m$ and $M \cap M^{tm} < H^m$. Since $H \cap H^m \leq N_G (M \cap M^t)$ and $H \cap H^m \leq M_G (M \cap M^{tm})$, it follows that $H \cap H^m \leq N_G (\langle M \cap M^t, M \cap M^{tm} \rangle)$. As $M \cap M^t$ and $M \cap M^{tm}$ are both maximal subgroups of M, either $M \cap M^t = M \cap M^{tm}$ or $M = \langle M \cap M^t, M \cap M^{tm} \rangle$.

Suppose $M \cap M^t = M \cap M^{tm}$. In this case $m, t \in N_G (M \cap M^t)$. As $G = \langle t, m, M \cap M^t \rangle$, it follows that $M \cap M^t \triangleleft G$. Were $M \cap M^t = \{I\}$, then H would be a maximal subgroup of G of order 2; thus would G be solvable, contrary to its choice. Were $M \cap M^t \neq \{I\}$, then applying induction, $G/M \cap M^t$ is supersolvable so that |G:M| is prime. We may therefore assume that $M \cap M^t \neq M \cap M^{tm}$.

If $M = \langle M \cap M^t, M \cap M^{tm} \rangle$, then $H \cap H^m \leq N_G(M) = M$. Hence $M \geq \langle H \cap H^m, M \cap M^t \rangle$. As $H \cap H^m$ and $M \cap M^t$ are maximal subgroups of H it follows, since $H \neq M$, that $H \cap H^m = M \cap M^t$. But $H^m \geq \langle H \cap H^m, M \cap M^{tm} \rangle = \langle M \cap M^t, M \cap M^{tm} \rangle = M$. As $m \in M$, H = M contrary to the choice of t. Therefore |G:M| is prime and G is supersolvable. As G had to be nonsolvable it follows that (2) implies (3).

It is clear from the work of Schmidt that a group G is an M (1)-group if and only if $G/\Phi(G)$ is an M (1)-group. With this in mind the M (1)-groups with trivial Frattini subgroup are now investigated.

PROPOSITION 3. Let G be an M(1)-group with trivial Frattini subgroup and H a subgroup of G. Then,

- I) $\Phi(H) = \{I\}, I$
- 2) H is complemented, and
- 3) H is an M (I)-group.

Proof. From Proposition I it is seen that G is an M (I)-group if and only if $M \cap U \leq U$ for all subgroups U and maximal subgroups M of G. Hence $\{I\} = H \cap \Phi(G) = \cap \{H \cap M : M < \cdot G\} \geq \cap \{M^*: M^* \leq \cdot H\} = \Phi(H)$, so that $\Phi(H) = \{I\}$. In particular if P is a Sylow *p*-subgroup of G, $\Phi(P) = \{I\}$ and P is elementary abelian. Hence as M (I)-groups are supersolvable, it follows from a result of P. Hall [I, Theorem 2] that every subgroup of G has a complement.

Let $G = G_0 \triangleright G_1 \triangleright G_2 \triangleright G_3 \triangleright \cdots \triangleright G_n = \{1\}$ be a chief series of G. As G is complemented each chief factor is complemented. Hence by Schmidt's theorem $|G_i:G_{i+1}|$ is prime and $|\operatorname{Aut}_G(G_i/G_{i+1})|$ is prime (or I) so that $C_G(G_i/G_{i-1}) \leq \cdot G$.

Let $H_i = H \cap G_i$. Since G is supersolvable,

$$\mathbf{H} = \mathbf{H}_{\mathbf{0}} \supseteq \mathbf{H}_{\mathbf{1}} \supseteq \mathbf{H}_{\mathbf{2}} \supseteq \mathbf{H}_{\mathbf{3}} \supseteq \cdots \supseteq \mathbf{H}_{n} = \{\mathbf{I}\}$$

is reducible to a chief series of H by eliminating trivial factors. If H_i/H_{i+1} is a nontrivial factor then, since $|G_i:G_{i+1}| = p$ for some prime p, $G_i = H_i G_{i+1}$. Hence $C_H(H_i/H_{i+1}) = H \cap C_G(G_i/G_{i+1})$. As $C_G(G_i/G_{i+1}) \le G$ it follows, since G is an M (I)-group, from Proposition I that $C_H(H_i/H_{i+1}) \le H$; thus $|\operatorname{Aut}_H(H_i/H_{i+1})|$ is prime or I. Since $|H_i:H_{i+1}| = |G_i:G_{i+1}| = p$, H is an M (I)-group.

From Proposition 3 it is seen that the class of M (1)-groups with trivial Frattini subgroup is both subgroup closed and factor group closed. In that the direct sum of M (1)-groups are again M (1)-groups we see that this class is also closed to direct sums. For any group G with normal subgroups N and K, $G/N \cap K$ is isomorphic to a subgroup of $G/N \oplus G/K$. Thus the class of M (1)-groups with trivial Frattini subgroup is a subgroup closed formation.

THEOREM 4. G is an M(I)-group if and only if $G/\Phi(G) \cong \bigoplus_{i=1}^{n} H_{i}$, where each H_{i} is a group whose order is the product of two distinct primes.

Proof. Without loss of generality we may assume $\Phi(G) = \{I\}$.

Suppose $G \cong \bigoplus_{i=1}^{n} H_i$, where each H_i has order the product of two distinct primes. As each H_i is an M(I)-group with trivial Frattini subgroup so is $\bigoplus \sum_{i=1}^{n} H_i$. Therefore by Proposition 3, G is an M(I)-group.

Suppose G is an M (1)-group, G a minimal counter example. If G has two minimal normal subgroups H and K, then by Proposition 3, G/H and G/K are M (1)-groups with trivial Frattini subgroup. By induction $G/H \cong \bigoplus \sum_{i=1}^{r} H_i$ and $G/K \cong \bigoplus \sum_{i=1+r}^{n} H_i$, where each H_i has order the product of two distinct primes. Since H and K are minimal normal subgroups $H \cap K = \{I\}$, so that $G \cong G/H \oplus G/K \cong \bigoplus_{i=1}^{n} H_i$. Thus we may assume G has a unique minimal normal subgroup H. As G is an M (I)-group |H| = p for some prime p. $\Phi(G) = \{I\}$ implies H is complemented so that $|\operatorname{Aut}_{G}(H)| = q$ (or I) for q a prime. Since $H = C_{G}(H)$, |G:H| = q (or I) so that $|G| = pq^{a}$ where a = 0 or I. Therefore G satisfies the theorem, contrary to its choice, and the Theorem is proven.

References

- [I] P. HALL (1937) Complemented Groups, « J. London Math. Soc. », 12, 201-204.
- [2] R. SCHMIDT (1969-1970) Endliche Gruppen mit vielen modularen Untergruppen, «Abh. Math. Sem. Univ. Hamburg », 34, 115-125.