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Teoria dei gruppi. — Finite groups whose m axim al subgroups 
are modular. Nota di P a u l  V e n z k e ,  presentata (,) dal Socio G . S c o r z a  

D r a g o n i .

R iassunto. — Si indicano altre due caratterizzazioni per i gruppi finiti che hanno 
come sottogruppi modulari tutti i loro sottogruppi massimi.

The maximal subgroup M of the group G is called modular in G 
whenever the modular law U H (V ,M ) =  (V , U OM ) holds for all sub
groups U and V with U >  V. When every maximal subgroup of the group G 
is modular in G, G is called an M (i)-group. Schmidt [2] has characterized 
the M (i)-groups as follows:

THEOREM (Schmidt). A finite group G is an M (i)-group i f  and only 
i f  G is supersolvable and fo r  each complemented chief factor  H /K of G,
I AutG(H /K )| is prime  (or 1).

In this note two additional characterizations are given for finite M (1)- 
groups. It is shown that a finite group G is an M (r)-group whenever the 
following modular law holds:

(I) M , n ( V , M t ) = ( V , M I n M l )

for M 1 and M2 maximal subgroups of G with IVb >  V.
Additionally it is shown that the finite group G is an M (i)-group if 

and only if

G/O (G) < © i ;  H , ,
i = l

where each H$ is a group whose order is the product of two distinct primes.
Throughout this work G denotes a finite group. <D (G) denotes the 

Frattini subgroup of G, CoreG (H) denotes the largest normal subgroup of G 
contained in the subgroup H. For M a maximal subgroup of G we write 
M <  • G, while M <  • G denotes that M is a maximal subgroup of G or M =  G. 
All other notation used is standard.

In proving the results mentioned above it is convenient to use an 
alternate criterion for a maximal subgroup to be modular in G. This is 
provided by the following proposition whose proof is elementary and has 
bpen omitted. (*)

(*) Nella seduta delPii giugno 1975.
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PROPOSITION i . The m axim al subgroup M  and the subgroup U  of the 
finite group G satisfy the modular law,

U n ( V , M ) =  ( V , U n M )  fo r  U > V ,

i f  and only i f  U O M <  • U.

As a result of Proposition 1 the modular law (1) is precisely equivalent 
to the condition:

If Mx and M2 are maximal subgroups of G then

(2) Mx D M2 <  • Mx (M2) .

We are now prepared to prove the first result.

T h eo rem  2. The following statements are equivalent'.

1) I f  Mx and  M2 are maximal subgroups o f G, then

Mx n  (V, M2) =  (V, Mx n  M2) fo r  Mx >  V.

2) I f  Mx and  M2 are maximal subgroup of G then

Mx O M2 <  • Mx (M2) .

3) G is an M (1)-group.

Proof. As we have seen (1) and (2) are equivalent. As it is evident 
that (3) implies (1), it needs only to be shown that (2) implies (3). For this 
we let G be the minimal counter example. Two cases are now distinguished.

Case I .  G is solvable. Using the characterization of Schmidt for M (1)- 
groups it suffices to show that for H /K  a complemented chief factor of 
G , I H : K I =  p  and | AutG (H/K) | =  q (or 1) with p  and q primes. Let H /K  
be a complemented /-ch ief factor of G complemented by the maximal sub
group M. As G is the minimal counter example we may assume that 
M > C o re G(M) =  { 1}; so that K =  { 1} , G =  MH , M O H =  { 1} and 
CG (H) =  H. Let 1 x  e H . As G satisfies (2), M* O M <  * M.

For y  ^M. n y i x, y  ==zx where z  eM so that zx z~* e M. Since H < 1  G, 
zx z~x e H and it follows that zx z~x =  1. Hence x  centralizes z — y and 
CG (x) >  M n  Mx.

As M O M.x <  • M , (M n  M35) H <  • G. G satisfies (2) so that

M n  (M n  Mx) H =  M n  Mx<  • (M n  Mx) H .

However, since

CG(*) >  M n  Mx, H (M n  Mx) >  {x) (M n  M*) >  M n  Mx.

57. — RENDICONTI 1975, Voi. LVIII, fase. 6.
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Therefore [x) =  H and | H | =  p, p  a prime. As CG ([x) =  CG (H) =  H, 
it follows that M n  M* =  { 1 } hence |M  | =  q, q a prime. By the theorem 
of Schmidt G is an M (i)-group contrary to the choice of G.

Case I I .  G is nonsolvable. A contradiction will be arrived at by showing 
that each maximal subgroup of G has prime index, so that G would not 
only be solvable but supersolvable as well. Let M be a maximal subgroup 
of G and N =  (t : t2 =  1). N is a normal subgroup of G and | N | >  1 
since G is not solvable. If N < M , then by induction G/N is supersolvable 
so that I G : M | is prime. We may therefore assume that M is a non-normal 
subgroup of G and that G =  ( / , M)  for some involution / of G.

As G satisfies (2), M n M * < - M ;  furthermore ( M f i M * / ^ M n M ^  so 
that t e  NG (M n  M*). Let H -  [t) (M n  M*), observe that M n M * < -  H 
a n d M O M ^ H .

H is a maximal subgroup of G. For if G • >  Mx >  H, thenM  • > M  n  M 1 >  
> M  O M*. As M fi M*<  • M , M O M* =  M O M x. Conversely M f) M* =  
=  M f l M 1 < * M 1. Since H > M f l M 1 , H = M 1 and H <•  G.

L e t w e M - ( M O  M*). Hm =  (tm) (M n  M tm)-} observe thatM  H M to<  • Hm 
and M O M tm <  Hw. Since H D H m <  NG (M O M*) and H O Hm <  
<  Ng (M n M tm), it follows that H O Hw <  NG ((M n  M', M D As
M O M* and M D M^w are both maximal subgroups of M, either M O =  
=  M n M tm or M =  ( M n M U n M to).

Suppose M O =  M D M.tm. In this case m , t fi NG (M O M^). As 
G =  [ t , m  , M D M*), it follows that M n  < 1  G. Were M D Mÿ =  { 1}, 
then H would be a maximal subgroup of G of order 2; thus would G be 
solvable, contrary to its choice. Were M nM *=f={i}, then applying in
duction, G/ Mn M*  is supersolvable so that | G : M |  is prime. We may 
therefore assume that M O M* =j= M O M tm.

If M - ( M H M U n  M tm), then H D Um <  NG (M) =  M. Hence 
M >  (H D Hm, M O M^}. As H D Hm and M D M* are maximal sub
groups of H it follows, since H =|= M, that H O H w =  M O But
H m >  (H n  Hm, M n  M tm) =  (M D M \  M n  M tm) — M. As m  €M  , H =  M 
contrary to the choice of t. Therefore | G : M | is prime and G is supersolv- 
able. As G had to be nonsolvable it follows that (2) implies (3).

It is clear from the work of Schmidt that a group G is an M (i)-group 
if  and only if G/O (G) is an M (i)-group. With this in mind the M (i)-groups 
with trivial Frattini subgroup are now investigated.

PROPOSITION 3. Let G be an M (1 y  group with trivial Frattini subgroup 
and  H a subgroup of G. Then,

1) ®(H) =  { ! } , '

2) H is complemented, and

3) H is an M (1 )-group.
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Proof. From Proposition 1 it is seen that G is an M (i)-group if and 
only if M n U  < -U  for all subgroups U and maximal subgroups M of G. 
Hence {1} =  H D O (G) — O {H DM  : M < •  G} >  D {M*: M* <  • H} =  <D(H), 
so that O (H) =  {1}. In particular if P is a Sylow /-subgroup of G, 
®(P) =  {i} and P is elementary abelian. Hence as M (i)-groups are 
supersolvable, it follows from a result of P. Hall [1, Theorem 2] that every 
subgroup of G has a complement.

Let G =  G0 |> Gi t> G2 D> G3 1>  • • • t> Gw =  { 1} be a chief series of G. 
As G is complemented each chief factor is complemented. Hence by 
Schmidt’s theorem | G* : Gm  | is prime and | AutG (GJGi+1) | is prime (or 1) 
so that CG (GJG^x) <  • G.

Let H^ =  H fi G*. Since G is supersolvable,

H =  H„ >  Hj j> Hä >  H3 [>• • •[> H„ =  { I }

is reducible to a chief series of H by eliminating trivial factors. If H.;/H i+1 
is a nontrivial factor then, since | G.; : Gi+1 | =  p  for some prime p , 
G» =  Hi Gm . Hence CH (H (/H i+1) =  H n  CG (GJG^O- As CG (G</Gi+1) <  ■ G 
it follows, since G is anM  (i)-group, from Proposition i tha tC H (H ;/H i+1) <  H; 
thus I AutH (H i/H i+1) I is prime or i. Since | Hi : H i+1 | =  | G4 : G i+i | =  p, 
H is an M (i)-group.

From Proposition 3 it is seen that the class of M (i)-groups with trivial 
Frattini subgroup is both subgroup closed and factor group closed. In that 
the direct sum of M (i)-groups are again M (i)-groups we see that this class 
is also closed to direct sums. For any group G with normal subgroups N 
and K, G / N f i K  is isomorphic to a subgroup of G/N © G/K. Thus the 
class of M (i)-groups with trivial Frattini subgroup is a subgroup closed 
formation.

n
Theorem  4. G is an M ( i f  group i f  and only z/ G/<E> (G) < © ^  H ^ ,

i = l
where each H % is a group whose order is the product of two distinct primes. 

Proof W ithout loss of generality we may assume ® (G) =  {1}.
n

Suppóse G <  © J ]  H i, where each l l i has order the product of two
i = 1

distinct primes. As each H^ is an M (i)-group with trivial Frattini sub-
n

group so is © 2  H {. Therefore by Proposition 3, G is an M (i)-group.
i — 1

Suppose G is an M (i)-group, G a minimal counter example. If G has 
two minimal normal subgroups H and K, then by Proposition 3, G/H 
and G/K are M (i)-groups with trivial Frattini subgroup. By induction

r n

G/H < © 2  and G/K < © 2  ^ , where each H* has order the product
i —l  i = l + r

of two distinct primes. Since H and K are minimal normal subgroups
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n
H O K =  {1}, so that G < G/H © G/K < © 2  H* . Thus we may assume G

1 — 1
has a unique minimal normal subgroup H. As G is an M (i)-group | H | =  p  
for some prime p. O (G) =  {1} implies H is complemented so that 
I A utG (H) I =  <7 (or 1) for q a prime. Since H = C G(H) , | G : H | =  q (or 1) 
so that I G I =  pqa where a =  o or 1. Therefore G satisfies the theorem, 
contrary to its choice, and the Theorem is proven.
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