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Equazioni differenziali ordinarie. — Contractive mappings and
periodically perturbed non-conservative systems. Nota di RoLr REei1ssic,
presentata ® dal Socio G. SANSONE.

RIASSUNTO. — Questa Nota si collega ad un’altra di J. Mawhin sui sistemi periodici
conservativi perturbati.

La Nota di Mawhin si basa su un teorema di rappresentazione astratta in uno spazio
di Hilbert.

L’Autore prova che con un procedimento pitt diretto, proprio dei problemi vibratori,
si perviene ad un’estensione del risultato di Mawhin anche per sistemi non conservativi con
smorzamento lineare.

Consider the differential equation
(1) 't ex'tgx)=ec(@) =c¢(t+2n)
where ¢ is a real constant, g (x) €C' (R) and ¢ (?) €C° (R).

Following an idea of Mawhin [8] let us prove:

THEOREM 1. ZFEquation (1) admits a uniquely determined solution x(f) =
=x @+ 2w) if

2 m<g=g®=p<(@m+1P VzxeR
(m a non-negétz’ve integer).

The proof is based on Banach’s contractive mapping principle; it is
constructive since the Picard iterative method can be applied in order to get
an approximate periodic solution.

Let H be the complex function space L? [o , 2] supplied with the
inner product

@)= [0 50 a

and with the corresponding norm ||z || = (x,2)"®. It is a well-known fact
that this Hilbert space is separable; the functions ¢, (#) = ¢™ (z integer)
form a complete ON-system. Hence each function x (£) € H can be represen-
ted as a (norm convergent) Fourier series

+o0

x(t).; 2 dn‘Pn@,an:(x,CPn)‘

n=—00

(*) Nella seduta del 10 maggio 1975.
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Introduce the subspace Dy consisting of all functions x (#) € H which
possess first and second order Lebesgue derivatives in H and which satisfy
periodic boundary conditions:

x(0=xCn),x 0)=x (7).
Define the linear operator L : Dy — H,

x—=Lx =ax2"4+ cx'.
Then differential equation (1) can be generalized as
(3) Lx—Nx =y

where x €Dy, and y € H (arbitrary). The nonlinear operator N: x> — g (x)
maps the Hilbert space H into itself since the function g is linearly bounded,
lgx) | =plx| +1g(0)]. According to Mawhin a real constant v, 72 <
<v <(m + 1)% is chosen, and (3) is replaced by

@ Ax—Bx =y

where A =1L 4 vI,B =N +vI (I operator of identity in H).
Let us show that A : Dy— H is one-to-one, A (D1) = H, and A™' is com-
pletely continuous. The classical solution of equation

(s) ¥t tvr=c@)=e(t+2m)

with periodic boundary conditions can be represented in the form

6) x(f) = f,é (t—s)e(s)ds

by means of the Green function £ (¢) = £ (¢ + 2 ) which is continuous and
piecewise smooth: &' (£) €C’(0,27), g (0 +)—g' (2n—) = 1. Using an
arbitrary y € H and introducing the functions

27T

(0= KO = [46—97©ds

1]
217

VO = )= [Fe—9r@©ds

0
w()=y@)—vx@#)—cv(®
we can verify that x () €Dy, v (/) €C°,w () € L? and

x(t):x(o)—I—fv(s)ds[x(o)zx(zrc)],

v(t)zv(o)—l—fw(s)ds[v(o):v(zn)].
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Note that an approximation

{3m}cC'cH , |y~ o0 (n—>oo)
yields
Kyw) @) =~ Ky) @), (K 32) (&) = (K" 9) (&)

as # —» oo, uniformly with respect to 7z € [0, 2w]. Consequently, we obtain

AKy =y vy €H ,ie. AK:identity in H.

But the converse, KAx = x Vx €Dy, i.e. KA :identity in Dy, is valid, too:
When Awx =0, €Dy, this function can be assumed as C% but the classical
homogeneous boundary value problem admits the only solution # (£) = o.

Summarizing we have K =A™, a bounded linear operator defined on H:

sup (R @] = 2=l £lHlx]-

Let A be an eigenvalue of A™", ¢ () a (normed) corresponding eigenfunction:

Ao =20 (9 €D, r==0)

or, equivalently:
A"+ o'+ ve) = 9 [9(0) = ¢ (2m), ¢’ (0) = ¢’ (2m)] .
Then we calculate:
@ (£) = €™ (n an arbitrary integer),
A=1y = ((v—m®) + inc)™".

The normed /eigenfunctions of A™! form the complete ON-system mentioned
above. Therefore A™" can be described in the following simple way:

y=2 bncpn,x———A“ly=Z @y Py where a, =1, 4,.
n n

As a result,

AT ZA gull =0 = ((—n2 +n2 ) vneN

and
__1 1
A7 = sup L2l < sup |2,
I7l neN
Hence
@ | AT = sup | %, | < max (v —#®7Y, ((n + 12— )™
' neN

(norm of A™' in case ¢ = o).
In order to show that A~! maps each bounded subset of H into a compact
set consider a sequence {y,}CH (|y,|l <R) and denote x,=A"'y,.
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Since
sup ENOIEEAVINEA p.¢

Sutplxh(l‘)l =2nl[ £yl =X

the sequence {x, (¢)} is equibounded and equicontinuous, and it contains a
uniformly convergent subsequence. Clearly, the (continuous) limit function
of this subsequence is also its limit in the H-norm.

Consider, once more, equation (4) which can be written as

(8) x=AT"Bx + A"y,
Taking account of the estimate:
| (Bx) () — Bra) D | = [v (51 () — 2 @) — (g (% @) —g (@) |
Syla@—x@®] (ae)
where v = max ((g—v|,|p—v|) we conclude that
© | B2y — By || = v [l 2, — x|
Thus, the mapping
(10) ur>A"'Bu Ay
of H into H is a contraction in case
(11) vIAT <1
which is realized by a suitable choice of v (see Mawhin [8]):
P <2y <qg+(m-+12

Now Banach’s fixed point theorem is applied; replacing the arbitrary y € H
by a (2 x)-periodic function e (£) €C’ the uniquely determined fixed point of
(10) becomes a periodic solution in the classical sense.

Moreover, consider the vector differential equation

(12) 2"+ Cx'+grad G (x) = e(t)=e(t+2m) ,% eR"
where © G (x) €C* (R"),

H (@) = Gy = H () €C’,

e (t) €C° (R),

C = diag (¢, *+, ¢,), ¢; real constants.

The oscillation problem can be solved in the same way as in case 7 = I:
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In the Hilbert space (H)" with the inner product (x;, 3,) + -+ + (2, Vi)
the differential operator and its inverse are determined by col (A, xy, -+ -, A, Zn)

and col (A7 'y, -+, At Yn), respectively. Here A; denotes the operator
A of Theorem 1 in case ¢ =g;.

The inverse operator has the properties discussed above; evidently, its
norm is equal to max (AT, -+, | A1 ). The operator originating in the
nonlinear term of the differential equation can be shown to possess a Ga-
teaux derivative; an estimate analogous to (9), with the same value ¥, can
be derived via Lagrange’s formula (see Vainberg [9], and compare Mawhin
[8]) if we propose that ¢ < H (x) < pl ¥z € R* (I:#X#n unit matrix).

Therefore Mawhin’s theorem can be generalized as follows:

THEOREM 2. Eguation (12) with an arbitrary real diagonal matrix C
has one and only ome (2 m)-periodic solution if

(13) ml<gl SH@) £ pl<(m + 1)1
(m a nonnegative integer).

COROLLARY.  The assertion of the theorem holds, too, in the more general
case when

C=C" an arbitrary real nXn matrix.
vy

Determine an orthogonal matrix Q (Q* = Q™) such that
QCQ* =D (diagonal matrix)
and fransform
¥ =Qx.
Then equation (12) is transformed into
(1) "+ Dy'+grad, G (Q*5) = Qe (1) ;
note that
grad, G = Qgrad, G,
Gine) = Q (Guyp) Q-

An immediate consequence of the last formula is that the Hessian matrix of
G (Q"y) satisfies condition (13). Thus, Theorem 2. is valid in case of
equation (14).

In case ¢ = o of equation (1) Mawhin has indicated an existence theorem
(to be proved via Schauder’s fixed point theorem) when a weaker version of
condition (2) is supposed.

THEOREM 3. Eguation (1) admits at least one (2w)-periodic solution if

(13) m<g=gx)x=p<(m-+1P Vr:lx|zh.
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We give an outline of the proof starting from the operator equation (8) where
v € H is arbitrarily chosen. The equation being solved it is clear how to proceed
in order to establish the assertion of Theorem 3.

To begin with define

& @) = e @21 =4
[ (xlh)g (Bysgnx), | x| <k

and

c(®) =g®—g @[ c] =<3
Hence ‘

v —g ()| =vy|x|+ 3 (linear boundedness),

and x () —~ (Bx) (#) = vx (#) —g (x (#)) is a mapping of the Hilbert space
H into itself for which

(16) Bzl = vl + 8.

This mapping is continuous. Assume that Bx is not continuous at x, € H.
Then there is a positive number ¢, and a sequence {x;} C H such that

| % — o[l >0 (£ —>00), [l gr —goll = e, V4 €N

where the abbreviation g (#) = — (N%) (£) =g (x (¢)) is used. Without loss
of generality we can assume that

x; (£) =20 (t) (b — o0) almost everywhere on [0, 2 «].

The same is true with the sequence { g (#) }:

& () ~go(t) (A—>o0) ae.

Taking into account that the Lebesgue integral is absolutely continuous, and
applying Egorov’s theorem (see Hewitt-Stromberg [2]) as well as Lebesgue’s
dominated  convergence theorem we can show that || g —g,|l—>o0 (4 — o)
in contrast with the assumption.

Since A7 is a compact operator the mapping (10) is completely conti-
nuous on each bounded subset of H. A closed ball S, is mapped into itself
when 7 sufficiently large:

2y AT TATH Iy 1L+ 8, vl AT < 1

According to Schauder’s theorem it contains at least one fixed point
which is a solution of (8).
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