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Equazioni differenziali ordinarie. — Upper Bounds for Conjugate
Points of Nonselfadjoint Fourth Order Differential Equations. Nota di
Arran Eperson e Kurt KRrEITH, presentata @ dal Socio M. PiconE.

R1ASSUNTO. — Nella Nota presente sono dati limiti superiori per la mutua distanza di
due punti coniugati consecutivi competenti ad un’equazione differenziale ordinaria del quarto
ordine non autoaggiunta.

In [1] criteria are established which assure the existence of conjugate
points of the real nonselfadjoint fourth order equation

(0 = —gOu) —(pr O — g (D u) + po(Ou=0
(2: (&) >0),

where by the conjugate point 7, («) we mean the smallest B > « such that
the conditions

(2) () =u' (1) =0=u@) =u 8

are realized by some nontrivial solution # (#) of (1). These criteria, however,
only assure the existence of ., («) without providing specific upper bounds.
It is the determination of upper bounds for 7,(«) which concerns us below.
The coefficients p;, (x) and ¢ (x) are assumed real and of class C* in an

interval [a, c0) with p,(x) > 0. Then, as shown in [2], it is possible to
represent (1) in the form
" Y= a@y+ b x
3 2=c)y+dx
where the 4 (£) > o and the coefficients of (3) are continuous in [&, co). The
criteria of [1] for the existence of 4, (o) are as follows:

i c@>=al@®>o;

i) 6@ =d@)>o;

(iii) 2"+ [min {6 () — d(¢), c ) — a(¥)}] v=0 is oscillatory at #= oo;

(iv) { 16 (2) dt = oo

() f; () dt = oo.

(*) Nella seduta 10 maggio 1975.
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Specifically, if (i)-(v) are satisfied, then there is a solution (x(#), v (#)) of (1)
which satisfies

y@=y(@W=0 ; x(@=1 ; x2'(0) =—v,<0;
y@=yP@ =0 ; x@)>o0:
y () >o for a<t<pB.

Such a trajectory can be decomposed into three components:

I) A path in the first quadrant which satisfies ¥ (¥) >0, ¥' (#) > o,
o<x(H)<1 and — v, <x'()<o for a<t< P and y(a)=y'(a)=o0.

IT) A path in the second quadrant which enters and leaves through
the positive y-axis at # = and ¢ = v, respectively.

III) A path in the first quadrant which satisfies y (#) >0, ' () <o,
x(f) =0, x'(¢) =0 for y <t < (0) and y () = 3" (n; (1)) = 0.

Our upper bounds for v, () will depend on establishing bounds for § — «,
vy — B, and n, (&) — ¥ in terms of the coefficients of (3). It is assumed that the
conditions (i)—~(v) assuring the existence of x, («) are satisfied throughout.

Path I. Upper bounds for 8 — « will be established in two steps. We
consider first the case where v, is large and seek a pair (7,, B;) such that

(i) o<x()<1 for a<#< P, leads to a contradiction;

and

(ii) for every § satisfying a <8< B , o<x (<1
for a<t<§ implies x' (<o for a<z<3.

The first condition assures that the trajectory cannot remain in the strip
o<x <1 beyond #= B, while the second assures that it cannot leave the
strip across the lin # = 1. Thus B, — o will be an upper bound for Path I
when v, is sufficiently large. X

To establish (i) we integrate the first equation of (3) to note that if
x (£) < 1. then

t t
”

y’(Z')=J(ay—|—bx)dsgf(ay—l—b)ds.

Defining

t t

A@= fa ()ds , B@ = j‘b (s)ds,  etc,

o

we integrate by parts to get

o<y OSBO+AGY O~ [Ayds
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along I, so that
< B + Ay.

In order to get and upper bound for y (¥) we let Y (#) denote the solution of
Y =B + AY
Y (e)=o0
and use standard comparison theorems to conclude that v (#) <Y (¥) for
o< ¢ < B;. Turning now to the second equation in (3) we write

¢
x () =—uvy+ J (ey -+ dx) ds
t

< — o+ ”cherD({)

so that ' (¢) < o for a << # < {3, whenever

Bl .
(42) v [cOVOU+DE).

We also have

x()<1—uvy(t—a) +

chdrd: —|—fD ds.

J
o
This last inequality contradictis the assumption x(#) >o0 for a<z<f;

B,
I—I—[

(4 b) ‘ Up = =

in case
t

Be
@Yuma+[Dwm
o

B1—oa

We therefore fix a pair (7, B,) satisfying (4 a) and (4 b) above, accept
B; as a poss1b1e upper bound for § in case o > 7,, and go on to consider the
case vy < 7,. Trajectories satisfying v, < ¥y will remain in the first quadrant

for a <t <« —1—%. Fixing & satisfying « < & < a -+ .0 we clearly have
. 0
'z (@) >0,y @ >o0,x (& >—uv, and

() >1—9(t—a) >0

for « < ¢ < & so that

y’(&)ZJ brde> | b[1— 5 (¢t — )] d? > 0.

o
o o
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Denoting the last integral above by 4, we have y(¥) =>4 (z—&) for
& <t < B. Going back to (3) again we have for # > &
. 2

¥ ()= @) - J v ds

a
t
”

2——&-%éJ@——@ch

Since a trajectory which realizes v, («) has a zero in x (¢) before a zero in

x' (£), the inequality
B,

(s) Uy < £ r(t—a) c(®)de

o

determines an upper bound for B in case vy < 7. Combining the two possible
cases we have max [B,, B,] as an upper bound for B, where B, is determined
by (4 a) and (4 b), while 8, is determined by (5)

Path 17. We now consider the problem of estimating the time, y — 8,
that the trajectory remains in the second quadrant. Let II denote the open
second quadrant, 1T = {(x,);x <o, ¥ >0}, and we recall the following
definitions and recults from [1]. Define

[z (A @) _ (=1,
_Y@_bm)’ A0=(50 wp) > H=(7)
Then for Y € II, we have
© H,Y)=y—x>o0
—(H,AY)=0(¢—ad)(—x) + (c—a)y=>m (y —x) >0,
where 7 () =min {6 () —d (@) , c(©)—a(¥)}. Clearly —M>m
) |,
By (iii) the equation
(7) "' +m@v=0

is oscillatory, and we let # <ty <--- be the zeros of a solution, where # 1 oco.
Let # be the least # such that B < #. A direct calculation yields

d (H,Y) (H,AY) , H,Y) 12
mp“”ﬁnm]‘wwfﬁme+V“”mmﬂ
and by mtegratlon we obtain
. lpt1
- H, Y) b (H,AY)
o= [uu — u? e Y) -—j m + |, ) ]

with equality if and only if % (#) = (H,Y (¢)) in (#, #41). If Y(#) remains
in II for all # in (%, #44), then (H,Y (#)) >0 in (#%, #+1), and the above
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inequality must be strict. This contradicts (6) which means Y (#) cannot
remain in Il in (%4, %#4,). Setting B = #,, an upper bound for y — B is then
given by ‘

® Y —B <t —h.
For example, if # (£) > #* > o, then by the Sturm comparison theorem
B <

Path III. To estabish upper bounds for u,(«) —vy we begin by re-
normalizing the problem with the assumption y (y) = 1. It is clear that any
conjugate point trajectory re-enters the first quadrant with initial velocity
components x'(y) =v, >0 and y'(y) = —u, <o. Letting 6 = cot™ (y,/,)
we consider separately the cases 6§ large and 6 small.

The third component of a conjugate point trajectory satisfies 0 < x (¢)
and o<y (#) for all #>+vy. Hence from the positivity of the coefficients
a(®),b(),c(), and 4 (¢) in (3) we have o <x" () and o <y (¢), and it
follows that v, (/-—v) < x (¢) for all #>+v. Integrating the first equation

of (3) yields
¢

YO =t [ay+ e

) Y
> —uy, —i—fb(s)vx (s —v)ds.
Y

Along the third component of a conjugate point trajectory 3’ (£) > o implies
that ¥ > v, (2). Therefore if

(19) wo [—0eEd

then # >, («). In other words the inequality
. 3
(11) cot 0y < f(t—— Y) 6 (2) dz

Y

 determines an upper bound 8§, for u, («) in case 6, < 6 < ; We note that §;

is independent of the initial velocity v = Vvi—!—v?, with which the trajectory
re-enters the first quadrant.

If 3, (0,) denotes the upper bound for v («) obtained from (11), then
3, (8) > oo as 6| 0. We therefore fix an appropriate pair (6, 3,), restrict
our attention to the case 6 < 6,, and consider the two case v, large and o,
small. :
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In case u, is sufficiently large, the trajectory will enter the fourth
quadrant for sufficiently large values of z. To see this we use (3), the con-
dition o <y (#) < 1 and an integration by parts to write

(@) <v, +C@©) +D(z>x—fD (s) ' (s) ds

< yytan 0, +C(#) + D () x (¥)

for y <#<wm («). If X (¢) is the solution of the linear initial value problem
X'=ug,tan 0, +C () +D (») X
X(y)=o

then x (f) < X (#) for y <z <, (). Integrating (3) again yields

(12 a) y’(t)g—vy—i—A(z‘j —I—fb(s)X(s) ds
and |

(12b) YO <1 —v, (t—7) - [A(s)ds + {f&(s)X(s)dsdT

for y <z <<y (). : ~
We now seek to rule out large values of 7, corresponding to 6 <0, by
showing that y (#) becomes negative while 3’ (£) remains negatve, contra-
dicting the assumption that x (¢), y (¢) is a conjugate point trajectory. This
follows from (12a) and (12b) in case
3,
(13a) v, > A (3) + f b6 (H) X (¢) dt

y
and
5, ¢

(13 b) e [14- fA(r)dz+ff&<s)x<s)dsdz]

We therefore choose a pair (77y, J,) satisfying (13a) and (13b) and conclude
that M (¢) < 8, whenever v, >2,. We remark that since X () depends on
0, , 7, has the same dependence. We now assume that a pair (8, , 7, (0,)) have
been fixed as above and seek to find an upper bound for v, (o) — ¥ in the
case of conjugate point trajectories satisfying v, < o, (6,).

This final estimate proceeds as the estimate for Path I when v, is small.

Speaﬁcally we choose ¥ satisfying vy < ¥ < + 5= so that ¥ < %,(«). Then
we clearly have

y('?)>0 ’ x(‘?)>o ) yl<?>>_ﬂu

47. — RENDICONTI 1975, Vol. LVIII, fasc. 5.
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and
YO=1—5,(t—yp >0

for y <#<¥. Therefore
¥ ¥
x'(“?)zjcydz‘ = fc[lmﬁy(t—y)] dt>o.
Y Y

Denoting the last integral above by K we have x(#) =K (—7) for
Y<#<wn (). Since y'(¢)> o implies that #>>v,(«) and (3) yields

t
y@zyﬁﬂjc@xwm
b

2
>—0,+ Kf(s—?)c@)ds.
b
The inequality

3
v, < Kf(t—?)c(z‘)dt
;

determines a 3, which is an upper bound for v, («) in case v, < #,. In any
case max {8;(0,), 3;, 83} provides an upper bound for 7, («).

This discussion can be summarized by the following set of instructions
for computing an upper bound for 7, («):

Path 1. Let Y (¢) denoe the solution of

Y'=B+AY ; Y(a)=o.
Choose a pair (7, , B,) satisfying
Ba
(42) , vy > f ¢Y dz + D (8)

o

Byt B8,
I+{/CYdet+/Ddt
(4[)) vy > o o o

fr—a

Choose & satisfying o < & < o + —1;— , define
i 0

/ész[l——zjo(t——oc)]dt>o
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and find B, satisfying
B;

50_<_/éf(z——a>c(¢)dz.

Choose B = max [B,, Bs].

Path II. Define m () =min{b(#)—d @) ,c®)—a@)}. Let u(x)
be a nontrivial solution of

w' +m@)u=o0
u(@) =o.

Choose vy to be any upper bound for the first zero of #(x) to the right of x =p.
Path [11. Choose a pair (8,, 8,) satisfying

3,
(11) cot 6 gf(z‘—y)é(t) de.
Y

Let X (¢) denote the solution of

X' =v,tan 0, +C ) +DBHX ; X(y)=o0

and choose a pair (7,,8,) satisfying

3,
(13 a) vyzA(Sz)—}—beds
Y .
§: 8 ¢t
(13b) yyzszj_Y [1+JAdt+Jf6dedt].
Y Y v

Then choose ¥ satisfying vy < ¥ <¥y +27L’ define
¥

o
K=fc[1——z7,,(t——y)]dt>o
Y

and determine §; satisfying

5
v, < Kftc (@ d.
5

Then v; () —y < max [3,, 3§, , §;]
The above discussion does not determine the size of the error of a parti-
cular estimate for #,(«) nor whether there is an optimal way in which to apply
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this procedure. We can however consider an example of an equation for
which »; (&) is known and thereby obtain some feeling for these questions.
For the equation 3" =y one can readily calculate that ; (o) —a &
4.72 for all . Choosing « = — 2.36 we have v, (1) ~ 2.36 attained by
Yy ~ — 7.5 cos 2.36 x - cosh 2.36 x. By calculating 3"’ we see that for this
equation, Path I and Path III are of approximate duration 1.1 while Path II
has duration of about 2.6, Our procedure applied to this equation is as follows:

Paz‘}z 1 Choosing « = o we get Y (£) = 4. Choose B; = 1.65 and de-

termine 7/0 by
1.65
Vg == J 12
0

1.65

vy > — 1+ t—adz‘ R

0="165 6 ~ 79
0

so that we way choose 7, = .79. We next choose & = 1.20 satisfying
o< &g——;g and compute
1.20

,é:f(l — .792) d¢ = .63.

Ba
Then 8, is determined by .79 < .63ftdz‘ or B, >1.99. Thus B < 1.90.

1.20

Path I1. m (¢) =1 so that an upper bound for Path II is n. Therefore
Y < 1.99 + 3.14 = 5.13.

Path I11. Since we have constant coefficients we can translate the problem
to y =o. We determine §; and 6, by setting cot 6 = 2 so that by (11)

8,

g[;dz

0
which yields 8, = 2. Then we get
X@)=4%ov,t+1e

and choose (7, , 8,) so that

7)72‘[(—;-01,1‘ —]—%ﬂ) d;z%v,, B+ %
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and
5, ¢
I (1
v,,>8—2|:1—}—fJ (—z—vys+—s2)ds]
0 0
1 % %
=g irn et gl

Choosing 8, = 1 implies that we may use v, = 1.14.
Choosing ¥ = .75 satisfying 6 < ¥ < %, we deflne
: ¥y

.75

~

K=J (1 —1.14¢)dt ~ 43

0

and determine 3§, to satisfy
3,

I.14 < .43ftdz‘

.75

by choosing 8; = 2.42. This yields v, (@) —y ~ 2.4 and 7 (a) —a ~ 7.55,
compared with the values 4.72 obtained from precise knowledge of the solution
which attains the conjugate point. As is to be expected, the worst error occurs

in Paths I and III.
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