Atti Accademia Nazionale dei Lincei

Classe Scienze Fisiche Matematiche Naturali RENDICONTI

Allan Edelson, Kurt Kreith

Upper Bounds for Conjugate Points of Nonselfadjoint Fourth Order Differential Equations

Atti della Accademia Nazionale dei Lincei. Classe di Scienze Fisiche, Matematiche e Naturali. Rendiconti, Serie 8, Vol. 58 (1975), n.5, p. 686-695.
Accademia Nazionale dei Lincei

http://www.bdim.eu/item?id=RLINA_1975_8_58_5_686_0

L'utilizzo e la stampa di questo documento digitale è consentito liberamente per motivi di ricerca e studio. Non è consentito l'utilizzo dello stesso per motivi commerciali. Tutte le copie di questo documento devono riportare questo avvertimento.

> Articolo digitalizzato nel quadro del programma
> bdim (Biblioteca Digitale Italiana di Matematica)
> SIMAI \& UMI
> http://www.bdim.eu/

Equazioni differenziali ordinarie. - Upper Bounds for Conjugate Points of Nonselfadjoint Fourth Order Differential Equations. Nota di Allan Edelson e Kurt Kreith, presentata (*) dal Socio M. Picone.

Riassunto. - Nella Nota presente sono dati limiti superiori per la mutua distanza di due punti coniugati consecutivi competenti ad un'equazione differenziale ordinaria del quarto ordine non autoaggiunta.

In [I] criteria are established which assure the existence of conjugate points of the real nonselfadjoint fourth order equation

$$
\begin{array}{r}
l u \equiv\left(p_{2}(t) u^{\prime \prime}-q_{2}(t) u^{\prime}\right)^{\prime \prime}-\left(p_{1}(t) u^{\prime}-q_{1}(t) u\right)^{\prime}+p_{0}(t) u=0 \tag{I}\\
\left(p_{2}(t)>0\right),
\end{array}
$$

where by the conjugate point $\gamma_{11}(\alpha)$ we mean the smallest $\beta>\alpha$ such that the conditions

$$
\begin{equation*}
u(\alpha)=u^{\prime}(\alpha)=0=u(\beta)=u^{\prime}(\beta) \tag{2}
\end{equation*}
$$

are realized by some nontrivial solution $u(t)$ of (I). These criteria, however, only assure the existence of $\eta_{1}(\alpha)$ without providing specific upper bounds. It is the determination of upper bounds for $r_{1}(\alpha)$ which concerns us below.

The coefficients $p_{k}(x)$ and $q_{k}(x)$ are assumed real and of class C^{k} in an interval $[\alpha, \infty)$ with $p_{2}(x)>0$. Then, as shown in [2], it is possible to represent (i) in the form

$$
\begin{align*}
& y^{\prime \prime}=a(t) y+b(t) x \tag{3}\\
& x^{\prime \prime}=c(t) y+d(t) x
\end{align*}
$$

where the $b(t)>0$ and the coefficients of (3) are continuous in $[\alpha, \infty)$. The criteria of [I] for the existence of $\eta_{1}(\alpha)$ are as follows:
(i) $c(t) \geq a(t)>0$;
(ii) $b(t) \geq d(t)>0$;
(iii) $v^{\prime \prime}+[\min \{b(t)-d(t), c(t)-a(t)\}] v=0$ is oscillatory at $t=\infty$;
(iv) $\int^{\infty} t b(t) \mathrm{d} t=\infty$:
(v) $\int^{\infty} t c(t) \mathrm{d} t=\infty$.

[^0]Specifically, if (i)-(v) are satisfied, then there is a solution $(x(t), y(t))$ of (I) which satisfies

$$
\begin{aligned}
& y(\alpha)=y^{\prime}(\alpha)=0 ; x(\alpha)=1 \quad ; \quad x^{\prime}(\alpha)=-v_{0}<0 ; \\
& y(\beta)=y^{\prime}(\beta)=0 ; x(\beta)>0 ; \\
& y(t)>0 \quad \text { for } \quad \alpha<t<\beta .
\end{aligned}
$$

Such a trajectory can be decomposed into three components:
I) A path in the first quadrant which satisfies $y(t) \geq 0, y^{\prime}(t) \geq 0$, $0 \leq x(t) \leq \mathrm{I}$ and $-v_{0} \leq x^{\prime}(t) \leq \mathrm{o}$ for $\alpha \leq t \leq \beta$ and $y(\alpha)=y^{\prime}(\alpha)=0$.
II) A path in the second quadrant which enters and leaves through the positive y-axis at $t=\beta$ and $t=\gamma$, respectively.
III) A path in the first quadrant which satisfies $y(t) \geq 0, y^{\prime}(t) \leq 0$, $x(t) \geq 0, x^{\prime}(t) \geq 0$ for $\gamma \leq t \leq \eta_{1}(\alpha)$ and $y\left(\eta_{1}(\alpha)\right)=y^{\prime}\left(\eta_{1}(\alpha)\right)=0$.

Our upper bounds for $\eta_{1}(\alpha)$ will depend on establishing bounds for $\beta-\alpha$, $\gamma-\beta$, and $\eta_{1}(\alpha)-\gamma$ in terms of the coefficients of (3). It is assumed that the conditions (i)-(v) assuring the existence of $\eta_{1}(\alpha)$ are satisfied throughout.

Path 1. Upper bounds for $\beta-\alpha$ will be established in two steps. We consider first the case where v_{0} is large and seek a pair (v_{0}, β_{1}) such that
(i) $0<x(t) \leq \mathrm{I}$ for $\alpha \leq t \leq \beta_{1}$ leads to a contradiction;
and
(ii) for every δ satisfying $\alpha \leq \delta \leq \beta_{1}, \quad 0 \leq x(t) \leq \mathrm{I}$

$$
\text { for } \alpha \leq t \leq \delta \quad \text { implies } \quad x^{\prime}(t) \leq 0 \quad \text { for } \quad \alpha \leq t \leq \delta
$$

The first condition assures that the trajectory cannot remain in the strip $0 \leq x \leq \mathrm{I}$ beyond $t=\beta_{1}$ while the second assures that it cannot leave the strip across the $\operatorname{lin} x=\mathrm{I}$. Thus $\beta_{1}-\alpha$ will be an upper bound for Path I when v_{0} is sufficiently large.

To establish (i) we integrate the first equation of (3) to note that if $x(t) \leq \mathrm{I}$, then

$$
y^{\prime}(t)=\int_{\alpha}^{t}(a y+b x) \mathrm{d} s \leq \int_{\alpha}^{t}(a y+b) \mathrm{d} s .
$$

Defining

$$
\mathrm{A}(t)=\int_{\alpha}^{t} a(s) \mathrm{d} s \quad, \quad \mathrm{~B}(t)=\int_{\alpha}^{t} b(s) \mathrm{d} s, \quad \text { etc. },
$$

we integrate by parts to get

$$
\mathrm{o} \leq y^{\prime}(t) \leq \mathrm{B}(t)+\mathrm{A}(t) y(t)-\int_{\alpha}^{t} \mathrm{~A} y^{\prime} \mathrm{d} s
$$

along I, so that

$$
y^{\prime} \leq \mathrm{B}+\mathrm{A} y .
$$

In order to get and upper bound for $y(t)$ we let $\mathrm{Y}(t)$ denote the solution of

$$
\begin{aligned}
\mathrm{Y}^{\prime} & =\mathrm{B}+\mathrm{AY} \\
\mathrm{Y}(\alpha) & =\mathrm{o}
\end{aligned}
$$

and use standard comparison theorems to conclude that $y(t) \leq \mathrm{Y}(t)$ for $\alpha \leq t \leq \beta_{1}$. Turning now to the second equation in (3) we write

$$
\begin{aligned}
x^{\prime}(t) & =-v_{0}+\int_{\alpha}^{t}(c y+\mathrm{d} x) \mathrm{d} s \\
& \leq-v_{0}+\int_{\alpha}^{t} c \mathrm{Yd} s+\mathrm{D}(t)
\end{aligned}
$$

so that $x^{\prime}(t) \leq 0$ for $\alpha \leq t \leq \beta_{1}$ whenever

$$
\begin{equation*}
v_{0} \geq \int_{\alpha}^{\beta_{1}} c(t) \mathrm{Y}(t) \mathrm{d} t+\mathrm{D}\left(\beta_{1}\right) \tag{4a}
\end{equation*}
$$

We also have

$$
x(t) \leq \mathrm{I}-v_{0}(t-\alpha)+\int_{\alpha}^{t} \int_{\alpha}^{s} c \mathrm{Y} \mathrm{~d} r \mathrm{~d} s+\int_{\alpha}^{t} \mathrm{D} \mathrm{~d} s .
$$

This last inequality contradictis the assumption $x(t)>0$ for $\alpha \leq t \leq \beta_{1}$ in case

$$
\begin{equation*}
v_{0} \geq \frac{\mathrm{I}+\int_{\alpha}^{\beta_{1}} \int_{\alpha}^{t} c(s) \mathrm{Y}(s) \mathrm{d} s \mathrm{~d} t+\int_{\alpha}^{\beta_{1}} \mathrm{D}(t) \mathrm{d} t}{\beta_{1}-\alpha} \tag{4b}
\end{equation*}
$$

We therefore fix a pair $\left(\stackrel{\rightharpoonup}{v}_{0}, \beta_{1}\right)$ satisfying (4 a) and (4 b) above, accept β_{1} as a possible upper bound for β in case $v_{0} \geq \vec{v}_{0}$, and go on to consider the case $v_{0}<\dot{v}_{0}$. Trajectories satisfying $v_{0}<\dot{v}_{0}$ will remain in the first quadrant for $\alpha \leq t \leq \alpha+\frac{1}{\tilde{v}_{0}}$. Fixing $\tilde{\alpha}$ satisfying $\alpha<\tilde{\alpha} \leq \alpha+\frac{1}{\tilde{v}_{0}}$, we clearly have $x(\tilde{\alpha})>0, y(\tilde{\alpha})>0, x^{\prime}(\tilde{\alpha})>-v_{0}$ and

$$
x(t) \geq \mathrm{I}-\stackrel{\rightharpoonup}{v}_{0}(t-\alpha)>0
$$

for $\alpha \leq t \leq \tilde{\alpha}$ so that

$$
y^{\prime}(\tilde{\alpha}) \geq \int_{\alpha}^{\tilde{\alpha}} b x \mathrm{~d} t \geq \int_{\alpha}^{\tilde{\alpha}} b\left[\mathrm{I}-\stackrel{\rightharpoonup}{v}_{0}(t-\alpha)\right] \mathrm{d} t>0
$$

Denoting the last integral above by k, we have $y(t) \geq k(t-\tilde{\alpha})$ for $\tilde{\alpha} \leq t \leq \beta$. Going back to (3) again we have for $t \geq \tilde{\alpha}$

$$
\begin{aligned}
x^{\prime}(t) & \geq x^{\prime}(\tilde{\alpha})+\int_{\tilde{\alpha}}^{t} c y \mathrm{~d} s \\
& \geq-\stackrel{\rightharpoonup}{v}_{0}+k \int_{\tilde{\alpha}}^{t}(s-\widetilde{\alpha}) c \mathrm{~d} s .
\end{aligned}
$$

Since a trajectory which realizes $\eta_{1}(\alpha)$ has a zero in $x(t)$ before a zero in $x^{\prime}(t)$, the inequality

$$
\begin{equation*}
\stackrel{\rightharpoonup}{v}_{0} \leq k \int_{\stackrel{\tilde{\alpha}}{ }}^{\beta_{2}}(t-\alpha) c(t) \mathrm{d} t \tag{5}
\end{equation*}
$$

determines an upper bound for β in case $v_{0} \leq \tilde{v}_{0}$. Combining the two possible cases we have max $\left[\beta_{1}, \beta_{2}\right]$ as an upper bound for β, where β_{1} is determined by (4 a) and (4 b), while β_{2} is determined by (5)

Path 11 . We now consider the problem of estimating the time, $\gamma-\beta$, that the trajectory remains in the second quadrant. Let II denote the open second quadrant, $\mathrm{II}=\{(x, y) ; x<0, y>0\}$, and we recall the following definitions and recults from [1]. Define

$$
\mathrm{Y}(t)=\binom{x(t)}{y(t)} \quad, \quad \mathrm{A}(t)=\left(\begin{array}{cc}
d(t) & c(t) \\
b(t) & a(t)
\end{array}\right) \quad, \quad \mathrm{H}=\binom{-\mathrm{I}}{\mathrm{I}} .
$$

Then for $\mathrm{Y} \in \mathrm{II}$, we have

$$
\begin{align*}
& \langle\mathrm{H}, \mathrm{Y}\rangle=y-x>0 \\
& -\langle\mathrm{H}, \mathrm{AY}\rangle=(b-d)(-x)+(c-a) y \geq m(y-x) \geq 0, \tag{6}
\end{align*}
$$

where $m(t)=\min \{b(t)-d(t), c(t)-a(t)\} . \quad$ Clearly $-\frac{\langle\mathrm{H}, \mathrm{AY}\rangle}{\langle\mathrm{H}, \mathrm{Y}\rangle}, \geq m$. By (iii) the equation

$$
\begin{equation*}
v^{\prime \prime}+m(t) v=0 \tag{7}
\end{equation*}
$$

is oscillatory, and we let $t_{1}<t_{2}<\cdots$ be the zeros of a solution, where $t_{i} \uparrow \infty$. Let t_{k} be the least t_{i} such that $\beta \leq t_{k}$. A direct calculation yields

$$
\frac{\mathrm{d}}{\mathrm{~d} t}\left[u u^{\prime}-u^{2} \frac{\left\langle\mathrm{H}, \mathrm{Y}^{\prime}\right\rangle}{\langle\mathrm{H}, \mathrm{Y}\rangle}\right]=-m u^{2}-u^{2} \frac{\langle\mathrm{H}, \mathrm{AY}\rangle}{\langle\mathrm{H}, \mathrm{Y}\rangle}+\left[u^{\prime}-u \frac{\left\langle\mathrm{H}, \mathrm{Y}^{\prime}\right\rangle}{\langle\mathrm{H}, \mathrm{Y}\rangle}\right]^{2},
$$

and by integration we obtain

$$
\mathrm{o}=\left[u u^{\prime}-u^{2} \frac{\left\langle\mathrm{H}, \mathrm{Y}^{\prime}\right\rangle}{\langle\mathrm{H}, \mathrm{Y}\rangle}\right]_{t_{k}}^{t_{k+1}} \geq-\int_{t_{k}}^{t_{k+1}}\left[m+\frac{\langle\mathrm{H}, \mathrm{AY}\rangle}{\langle\mathrm{H}, \mathrm{Y}\rangle}\right] u^{2} \mathrm{~d} t
$$

with equality if and only if $u(t) \equiv\langle\mathrm{H}, \mathrm{Y}(t)\rangle$ in $\left(t_{k}, t_{k+1}\right)$. If $\mathrm{Y}(t)$ remains in II for all t in $\left(t_{k}, t_{k+1}\right)$, then $\langle\mathrm{H}, \mathrm{Y}(t)\rangle>0$ in $\left(t_{k}, t_{k+1}\right)$, and the above
inequality must be strict. This contradicts (6) which means $\mathrm{Y}(t)$ cannot remain in II in $\left(t_{k}, t_{k+1}\right)$. Setting $\beta=t_{k}$, an upper bound for $\gamma-\beta$ is then given by

$$
\begin{equation*}
\gamma-\beta<t_{k+1}-t_{k} . \tag{8}
\end{equation*}
$$

For example, if $m(t) \geq k^{2}>0$, then by the Sturm comparison theorem

$$
\gamma-\beta<\frac{\pi}{k} .
$$

Path III. To estabish upper bounds for $\eta_{1}(\alpha)-\gamma$ we begin by renormalizing the problem with the assumption $y(\gamma)=\mathrm{I}$. It is clear that any conjugate point trajectory re-enters the first quadrant with initial velocity components $x^{\prime}(\gamma)=v_{x}>0$ and $y^{\prime}(\gamma)=-v_{y}<0$. Letting $\theta=\cot ^{-1}\left(v_{y} / v_{x}\right)$ we consider separately the cases θ large and θ small.

The third component of a conjugate point trajectory satisfies $0<x(t)$ and $0 \leq y(t)$ for all $t>\gamma$. Hence from the positivity of the coefficients $a(t), b(t), c(t)$, and $d(t)$ in (3) we have $\circ<x^{\prime \prime}(t)$ and $\circ<y^{\prime \prime}(t)$, and it follows that $v_{x}(t-\gamma) \leq x(t)$ for all $t \geq \gamma$. Integrating the first equation of (3) yields
(9)

$$
\begin{aligned}
y^{\prime}(t) & =-v_{y}+\int_{\gamma}^{t} a y+b x \\
& \geq-v_{y}+\int_{\gamma}^{t} b(s) v_{x}(s-\gamma) \mathrm{d} s .
\end{aligned}
$$

Along the third component of a conjugate point trajectory $y^{\prime}(t) \geq 0$ implies that $y \geq \gamma_{11}(\alpha)$. Therefore if

$$
\begin{equation*}
v_{y} \leq v_{x} \int_{\gamma}^{t}(s-\gamma) b(s) \mathrm{d} s \tag{IO}
\end{equation*}
$$

then $t \geq \eta_{1}(\alpha)$. In other words the inequality

$$
\begin{equation*}
\cot \theta_{0} \leq \int_{\gamma}^{\delta_{1}}(t-\gamma) b(t) \mathrm{d} t \tag{II}
\end{equation*}
$$

determines an upper bound δ_{1} for $\eta_{1}(\alpha)$ in case $\theta_{0} \leq \theta \leq \frac{\pi}{2}$. We note that δ_{1} is independent of the initial velocity $v=\sqrt{v_{x}^{2}+v_{y}^{2}}$ with which the trajectory re-enters the first quadrant.

If $\delta_{1}\left(\theta_{0}\right)$ denotes the upper bound for $\eta_{1}(\alpha)$ obtained from (II), then $\delta_{1}^{\prime}(\theta) \rightarrow \infty$ as $\theta_{0} \downarrow$ o. We therefore fix an appropriate pair $\left(\theta_{0}, \delta_{1}\right)$, restrict our attention to the case $\theta<\theta_{0}$, and consider the two case v_{y} large and v_{y} small.

In case v_{y} is sufficiently large, the trajectory will enter the fourth quadrant for sufficiently large values of t. To see this we use (3), the condition $0 \leq y(t) \leq \mathrm{I}$ and an integration by parts to write

$$
\begin{aligned}
x^{\prime}(t) & \leq v_{x}+\dot{\mathrm{C}}(t)+\mathrm{D}(t) x-\int_{\gamma}^{t} \mathrm{D}(s) x^{\prime}(s) \mathrm{d} s \\
& \leq y_{y} \tan \theta_{0}+\mathrm{C}(t)+\mathrm{D}(t) x(t)
\end{aligned}
$$

for $\gamma \leq t \leq \eta_{1}(\alpha)$. If $\mathrm{X}(t)$ is the solution of the linear initial value problem

$$
\begin{aligned}
& \mathrm{X}^{\prime}=v_{y} \tan \theta_{0}+\mathrm{C}(t)+\mathrm{D}(t) \mathrm{X} \\
& \mathrm{X}(\gamma)=0
\end{aligned}
$$

then $x(t) \leq \mathrm{X}(t)$ for $\gamma \leq t \leq \eta_{1}(\alpha)$. Integrating (3) again yields

$$
\begin{equation*}
y^{\prime}(t) \leq-v_{y}+\mathrm{A}(t)+\int_{\gamma}^{t} b(s) \mathrm{X}(s) \mathrm{d} s \tag{I2a}
\end{equation*}
$$

and

$$
\begin{equation*}
y(t) \leq \mathrm{I}-v_{y}(t-\gamma)+\int_{\gamma}^{t} \mathrm{~A}(s) \mathrm{d} s+\int_{\gamma}^{t} \int_{\gamma}^{\tau} b(s) \mathrm{X}(s) \mathrm{d} s \mathrm{~d} \tau \tag{12b}
\end{equation*}
$$

for $\gamma \leq t \leq \eta_{1}(x)$.
We now seek to rule out large values of v_{y} corresponding to $\theta<\theta_{0}$ by showing that $y(t)$ becomes negative while $y^{\prime}(t)$ remains negatve, contradicting the assumption that $x(t), y(t)$ is a conjugate point trajectory. This follows from (I2a) and (12b) in case

$$
\begin{equation*}
v_{y} \geq \mathrm{A}\left(\delta_{2}\right)+\int_{\gamma}^{\delta_{2}} b(t) \mathrm{X}(t) \mathrm{d} t \tag{i3a}
\end{equation*}
$$

and

$$
\begin{equation*}
v_{y} \geq \frac{\mathrm{I}}{\delta_{2}-\gamma}\left[\mathrm{I}+\int_{\gamma}^{\delta_{2}} \mathrm{~A}(t) \mathrm{d} t+\int_{\gamma}^{\delta_{2}} \int_{\gamma}^{t} b(s) \mathrm{X}(s) \mathrm{d} s \mathrm{~d} t\right] \tag{13b}
\end{equation*}
$$

We therefore choose a pair ($\tilde{v}_{y}, \delta_{2}$) satisfying (13a) and (I3b) and conclude that $\eta_{1}(\alpha) \leq \delta_{2}$ whenever $v_{y} \geq \tilde{v}_{y}$. We remark that since $\mathrm{X}(t)$ depends on $\theta_{0}, \tilde{v}_{y}$ has the same dependence. We now assume that a pair $\left(\theta_{0}, \tilde{v}_{y}\left(\theta_{0}\right)\right)$ have been fixed as above and seek to find an upper bound for $\eta_{1}(\alpha)-\gamma$ in the case of conjugate point trajectories satisfying $v_{y} \leq \tilde{v}_{y}\left(\theta_{0}\right)$.

This final estimate proceeds as the estimate for Path I when v_{0} is small. Specifically we choose $\tilde{\gamma}$ satisfying $\gamma<\tilde{\gamma} \leq \gamma+\frac{1}{\tilde{v}_{y}}$ so that $\tilde{\gamma}<\eta_{1}(\alpha)$. Then we clearly have

$$
y(\tilde{\gamma})>0 \quad, \quad x(\tilde{\gamma})>0 \quad, \quad y^{\prime}(\tilde{\gamma})>-\tilde{v}_{y}
$$

and

$$
y(t) \geq \mathrm{I}-\tilde{v}_{y}(t-\gamma)>0
$$

for $\gamma \leq t \leq \bar{\gamma}$. Therefore

$$
x^{\prime}(\tilde{\gamma}) \geq \int_{\gamma}^{\tilde{\gamma}} c y \mathrm{~d} t \geq \int_{\gamma}^{\tilde{\gamma}} c\left[\mathrm{I}-\tilde{v}_{y}(t-\gamma)\right] \mathrm{d} t>0
$$

Denoting the last integral above by K we have $x(t) \geq \mathrm{K}(t-\tilde{\gamma})$ for $\tilde{\gamma} \leq t \leq \eta_{1}(\alpha)$. Since $y^{\prime}(t) \geq 0$ implies that $t \geq \eta_{1}(\alpha)$ and (3) yields

$$
\begin{aligned}
y^{\prime}(t) & \geq y^{\prime}(\tilde{\gamma})+\int_{\tilde{\gamma}}^{t} c(s) x(s) \mathrm{d} s \\
& >-\tilde{v}_{y}+\mathrm{K} \int_{\tilde{\gamma}}^{t}(s-\tilde{\gamma}) c(s) \mathrm{d} s .
\end{aligned}
$$

The inequality

$$
\tilde{v}_{y} \leq \mathrm{K} \int_{\tilde{\gamma}}^{\delta_{3}}(t-\tilde{\gamma}) c(t) \mathrm{d} t
$$

determines a δ_{3} which is an upper bound for $\eta_{1}(\alpha)$ in case $v_{y} \leq \tilde{v}_{y}$. In any case $\max \left\{\delta_{1}\left(\theta_{0}\right), \delta_{2}, \delta_{3}\right\}$ provides an upper bound for $\eta_{1}(\alpha)$.

This discussion can be summarized by the following set of instructions for computing an upper bound for $\eta_{1}(\alpha)$:

Path I. Let $\mathrm{Y}(t)$ denoe the solution of

$$
\mathrm{Y}^{\prime}=\mathrm{B}+\mathrm{AY} \quad ; \quad \mathrm{Y}(\alpha)=0
$$

Choose a pair (\tilde{v}_{0}, β_{1}) satisfying

$$
\begin{equation*}
v_{0} \geq \int_{\alpha}^{\beta_{1}} c \mathrm{Yd} t+\mathrm{D}\left(\beta_{1}\right) \tag{4a}
\end{equation*}
$$

$$
v_{0} \geq \frac{\mathrm{I}+\int_{\alpha}^{\beta_{1}} \int_{\alpha}^{t} c \mathrm{Y} \mathrm{~d} s \mathrm{~d} t+\int_{\alpha}^{\beta_{1}} \mathrm{D} \mathrm{~d} t}{\beta_{1}-\alpha}
$$

Choose $\tilde{\alpha}$ satisfying $\alpha<\tilde{\alpha} \leq \alpha+\frac{1}{\tilde{v}_{0}}$, define

$$
k=\int_{\alpha}^{\tilde{\alpha}} b\left[\mathrm{I}-\tilde{v}_{0}(t-\alpha)\right] \mathrm{d} t>0
$$

and find β_{2} satisfying

$$
\tilde{v}_{0} \leq k \int_{\tilde{\alpha}}^{\beta_{2}}(t-\alpha) c(t) \mathrm{d} t .
$$

Choose $\beta=\max \left[\beta_{1}, \beta_{2}\right]$.
Path II. Define $m(t)=\min \{b(t)-\mathrm{d}(t), c(t)-a(t)\}$. Let $u(x)$ be a nontrivial solution of

$$
\begin{aligned}
u^{\prime \prime}+m(t) u & =0 \\
u(\beta) & =0 .
\end{aligned}
$$

Choose γ to be any upper bound for the first zero of $u(x)$ to the right of $x=\beta$.
Path III. Choose a pair $\left(\theta_{0}, \delta_{1}\right)$ satisfying

$$
\begin{equation*}
\cot \theta \leq \int_{\gamma}^{\delta_{1}}(t-\gamma) b(t) \mathrm{d} t \tag{II}
\end{equation*}
$$

Let $\mathrm{X}(t)$ denote the solution of

$$
\mathrm{X}^{\prime}=v_{y} \tan \theta_{0}+\mathrm{C}(t)+\mathrm{D}(t) \mathrm{X} \quad ; \quad \mathrm{X}(\gamma)=\mathrm{o}
$$

and choose a pair $\left(\tilde{v}_{y}, \delta_{2}\right)$ satisfying

$$
\begin{equation*}
v_{y} \geq \mathrm{A}\left(\delta_{2}\right)+\int_{\gamma}^{\delta_{2}} b \mathrm{X} \mathrm{~d} s \tag{I3a}
\end{equation*}
$$

$$
\begin{equation*}
v_{y} \geq \frac{\mathbf{I}}{\delta_{2}-\gamma}\left[\mathrm{I}+\int_{\gamma}^{\delta_{2}} \mathrm{~A} \mathrm{~d} t+\int_{\gamma}^{\delta_{2}} \int_{\gamma}^{t} b \mathrm{X} \mathrm{~d} s \mathrm{~d} t\right] . \tag{13b}
\end{equation*}
$$

Then choose $\tilde{\gamma}$ satisfying $\gamma<\tilde{\gamma}<\gamma+\frac{1}{\tilde{v}_{y}}$, define

$$
\mathrm{K}=\int_{\gamma}^{\tilde{v}} c\left[\mathrm{I}-\tilde{v}_{y}(t-\gamma)\right] \mathrm{d} t>0
$$

and determine $\boldsymbol{\delta}_{\mathbf{3}}$ satisfying

$$
\tilde{v}_{y} \leq \mathrm{K} \int_{\tilde{\gamma}}^{\delta_{3}} t c(t) \mathrm{d} t
$$

Then $\eta_{1}(\alpha)-\gamma \leq \max \left[\delta_{1}, \delta_{2}, \delta_{3}\right]$
The above discussion does not determine the size of the error of a particular estimate for $\eta_{1}(\alpha)$ nor whether there is an optimal way in which to apply
this procedure. We can however consider an example of an equation for which $\eta_{1}(\alpha)$ is known and thereby obtain some feeling for these questions.

For the equation $y^{\text {iv }}=y$ one can readily calculate that $\eta_{1}(\alpha)-\alpha \approx$ ≈ 4.72 for all α. Choosing $\alpha=-2.36$ we have $\eta_{1}(\alpha) \approx 2.36$ attained by $y \approx-7.5 \cos 2.36 x+\cosh 2.36 x$. By calculating $y^{\prime \prime}$ we see that for this equation, Path I and Path III are of approximate duration I.I while Path II has duration of about 2.6 , Our procedure applied to this equation is as follows:

Path I. Choosing $\alpha=0$ we get $\mathrm{Y}(t)=\frac{1}{2} t^{2}$. Choose $\beta_{1}=1.65$ and determine \tilde{v}_{0} by

$$
\begin{aligned}
& v_{0} \geq \int_{0}^{1.65} \frac{1}{2} t^{2} \mathrm{~d} t \approx .68 \\
& v_{0} \geq \frac{\mathrm{I}}{\mathrm{I} .65}\left(\mathrm{I}+\int_{0}^{1.65} \frac{t^{3}}{6} \mathrm{~d} t\right) \approx .79
\end{aligned}
$$

so that we way choose $\tilde{v}_{0}=.79$. We next choose $\tilde{\alpha}=1.20$ satisfying $\mathrm{o}<\tilde{\alpha} \leq \frac{\mathrm{I}}{.79}$ and compute

$$
k=\int_{0}^{1.20}(\mathrm{I}-.79 t) \mathrm{d} t=.63 .
$$

Then β_{2} is determined by $.79 \leq .63 \int_{1.20}^{\beta_{2}} t \mathrm{~d} t$ or $\beta_{2} \geq \mathrm{I} .99$. Thus $\beta \leq \mathrm{I} .99$.
Path II. $m(t) \equiv$ I so that an upper bound for Path II is π. Therefore $\gamma \leq \mathrm{I} .99+3.14=5.13$.

Path III. Since we have constant coefficients we can translate the problem to $\gamma=0$. We determine δ_{1} and θ_{0} by setting $\cot \theta=2$ so that by (II)

$$
2 \leq \int_{0}^{\delta_{1}} t \mathrm{~d} t
$$

which yields $\delta_{1}=2$. Then we get

$$
\mathrm{X}(t)=\frac{1}{2} v_{y} t+\frac{1}{2} t^{2}
$$

and choose ($\tilde{v}_{y}, \delta_{2}$) so that

$$
v_{y} \geq \int_{0}^{\delta_{2}}\left(\frac{1}{2} v_{y} t+\frac{1}{2} t^{2}\right) \mathrm{d} t \geq \frac{1}{4} v_{y} \delta_{2}^{2}+\frac{1}{6} \delta_{2}^{3}
$$

and

$$
\begin{aligned}
v_{y} & \geq \frac{\mathrm{I}}{\delta_{2}}\left[\mathrm{I}+\int_{0}^{\delta_{1}} \int_{0}^{t}\left(\frac{\mathrm{I}}{2} v_{y} s+\frac{\mathrm{I}}{2} s^{2}\right) \mathrm{d} s\right] \\
& \geq \frac{\mathrm{I}}{\delta_{2}}\left[\mathrm{I}+\frac{\delta_{2}^{3}}{\mathrm{I} 2} v_{y}+\frac{\delta_{2}^{4}}{24}\right]
\end{aligned}
$$

Choosing $\delta_{2}=\mathrm{I}$ implies that we may use $\tilde{v}_{y}=$ I.I4.
Choosing $\tilde{\gamma}=.75$ satisfying $\theta \leq \tilde{\gamma} \leq \frac{1}{\tilde{v}_{y}}$, we deflne

$$
\mathrm{K}=\int_{0}^{.75}(\mathrm{I}-\mathrm{I} . \mathrm{I} 4 t) \mathrm{d} t \approx .43
$$

and determine δ_{3} to satisfy

$$
\mathrm{I} . \mathrm{I} 4 \leq .43 \int_{.75}^{\delta_{3}} t \mathrm{~d} t
$$

by choosing $\delta_{3}=2.42$. This yields $\eta_{1}(\alpha)-\gamma \approx 2.4$ and $\eta_{1}(\alpha)-\alpha \approx 7.55$, compared with the values 4.72 obtained from precise knowledge of the solution which attains the conjugate point. As is to be expected, the worst error occurs in Paths I and III.

References

[1] K. Kreith - A dynamical criterion for conjugate points, "Pacific J. Math », to appear.
[2] K. Kreith (1974) - A nonselfadjoint dynamical system, «Proc. of the Edinburgh Math. Soc.», 19, 77-87.

[^0]: (*) Nella seduta 10 maggio 1975

