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Ricerca operativa. —  Constrained Kullback-Leibler Estimation; 
Generalized Cobb-Douglas Balance, and Unconstrained Convex Pro
gramming. Nota di A b rah am  C h a rn es  e W ill ia m  W. C oop er, 
presentata (*} dal Socio B. S e g r e .

RIASSUNTO. — Si dà una caratterizzazione completa delle relazioni tra: (1) un caso più 
generale della stima Kullback-Leibler con una distribuzione discreta e finita a vincoli lineari 
di disuguaglianza; (2) una minimizzazione non vincolata di un potenziale convesso, oppure 
la negativa della funzione utilità; (3) le equazioni generalizzate Cobb-Douglas di «equilibrio» 
o di « bilancia contabile ». Inoltre, si ottiene una caratterizzazione in termini di una coppia 
esattamente duale per una classe di problemi di programmazione geometrica estesa, in luogo 
delle più deboli condizioni necessarie o sufficienti di Duffin, Peterson e Zener. Si presenta 
infine una nuova classe di soluzioni «entropiche» per funzioni caratteristiche di giuochi 
con n-persone, che ammette una caratterizzazione equivalente al duale di una programma
zione convessa non vincolata.

o. Introduction

In  [1] it was shown th a t a nonlinear system of equations used for esti
m ation of interzonal transfers in traffic engineering and m arketing were in 
fact derivable from an extrem al principle of the K ullback-Leibler type [2] 
of inform ation-theoretic, or entropie, statistical estim ation. In  [3] it was 
shown th a t the accounting balance equations for a cartel or “ resource-value 
transfer ” economy could be derived on the one hand from unconstrained 
m inim ization of an “ economic ” potential function, or dually, from Kullback- 
Leibler statistical estimates constrained by a linear inequality system of pure 
“ network ” or “ distribution ” type.

T he work of A kaike [4] and others [5] has shown tha t both the principle 
of m axim um  likelihood and the F isher-inform ation approach are asym ptoti
cally equivalent to Kullback-Leibler estim ation, thus yielding on the one 
hand a statistical decision theoretic interpretation of m axim um  likelihood 
and on the other hand a single rational decision theoretic m ethod for statistical 
estim ation, statistica] hypothesis testing, and spectral analysis of tim e series 
with an objective designation of the num ber of terms to be carried [4].

In this paper we establish the new mathematical “ troika ” or f‘ triality ” (rather than 
“ duality ”) now apparent. Thus we characterize completely the relationships of (1) a more 
general case tan Kullback-Leibler estimation with finite discrete distributions and linear 
inequality constraints, (2) unconstrained minimization of a convex potential, or neg-utility 
functiion and (3) generalized Cobb-Douglas “ equilibrium” or “ accounting balance” equa
tions. In so doing, we present an exact and sharp “ MECE” (mutually exclusive and collec
tively exhaustive) characterization of duality for the relevant class of extended geometric 
programming problems [5] similar to the Charnes-Cooper linear programming duality cha
racterization [6] of four MECE dual pairs from nine possibilities, and the Ben-Israel, Charnes,

(*) Nella seduta del 12 aprile 1975.
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Kortanek [7] general convex programming characterization of eleven MECE pairs from a
possible 49. Here there are precisely three MECE pairs.

As is developed elsewhere by Charnes, Haynes, Phillips, the extended geometric pro
gramming formulation yields an unconstrained utility theory of interzonal transfers in tran
sportation and the classic traffic engineers’ estimate. This approach differs from and is more 
general than the ordinary geometric programming approach of utility theorists Beckmann 
and Golob.

We also present a new solution concept for n-person cooperative games which relates 
the Charnes-Kortanek convex nucleus notion [8] to one of Kullback-Leibler estimation type, 
and dually to an unconstrained convex extremal principle. Further developments are being 
pursued elsewnere.

Statistical interpretation of the new unconstrained dual problem to Kullback-Leibler 
estimation herein presented and its extension to general distributions (and continuous program
ming problems) is under way by Charnes, Cooper and Ben-Tal.

I. E x is t e n c e  of I n fim a  a n d  M in im a

Consider the unconstrained convex program m ing problem  

(i • 0  m in fé7 (z) == cT eAz —  bT z  , where cT >  o ,

and e — (••• ,  e^Az) , • • • )T , where iA  =  ith row of A.

This substantially  generalizes the problem  treated by Charnes and Cooper
in [31-

T h e o re m  I . (z) is bounded below i f f  there exists §T >  o such that
8T A  b \

Proof. (z) is not bounded below iff there exists a sequence { z n } such
th a t (zn) —> ■—■ oo. But (zn) —,---- oo iff (a) A zn is bounded above while
(b) bT zn —̂ oo.

Thus, considering the dual linear program m ing problems:

I II
/T <VTm ax b z  m m  o a

C1-2)
A z  <  a St A  =  b* , ST >  o

where the vector “ a ” represents an upper bounding vector, we are in the 
situation in I th a t m ax bT z  — oo. By the extended dual theorem  of linear 
program m ing [9] this occurs iff II is inconsistent, i.e. there is no solution to 

>  o, ST A  =  bT. Hence ^  (z) is bounded below iff there exists ST >  o 
such th a t §t A  =  bT.

T urning now to m inim um  infimum differentiation, since the solutions
'j' 'p »P» p

0 of o > 0 ,  S A ~  b form a convex set, there is a unique m axim al set 
of rows of A, say  A D, and some ST =  (Sj , o) so th a t S j >  o and ST A  =  
=  Sd Ad +  o • A r  =  b , where A r  designates the rem aining rows of A.
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Then

(1.3) fé7 (z) — Cv — Sd A d £ +  cr eK*z, where rT == (<q> , ^r) •

We note tha t the rows of A r  are linearly independent of the rows of A D. For 
if some rows A l — L A d, for some m atrix  L, then we can write

(1.4) òT — Sd A d +  §l (A l — LAd) =  (Sd — Sj L) Ad +  Sj A l .

W e can pick Sl >  o sufficiently small that Sd — Sl L >  o. Thus A l is part 
of A d-

Suppose fé7 (zn) -> inf fé7 (z).' If $Ad zn is unbounded for any row i of Ad,
z

we can pick a subsequence, denoted zn b.a.o.n. (by abuse of notation), so 
th a t ^Ad zn —> one of 00, ■— 00.

B ut then

(1.5) «’<(*") ^  ^  ^ 'Ad*B) —  V  (<Ad *») -> +  o o ,

in either case, and since ^  (zn) <  (zn) +  const., (z11) —>■ T  00, a contra
diction. T hus for some aD,

(1.6) I A d zn I <  aB , \fn  .

W e can pick a subsequence z11 (b.a.o.n.) so that

(1.61) Ad ^  -> wd , for some wn •

Clearly iA R z n is bounded above for all rows i of A r, i.e. for some aRi 
A r  zn <  aR. If  also ^AR zn is bounded below for all rows i of A r, then we 
can pick a subsequence zn (b.a.o.n.) so that both

(1.62) A d zn —> w b  , and A r  zn w r  for some w r  .

By the F arkas-Minkowski closure corollary [10], there exists z such that 

Ad z =  wd , A r  z  — w r  . But *€ (z) =  L  fé7 (zn) =  inf (z) .
n - >  00 z

Hence fé7 (z) has a m inim um  at z  =  z  if A r ^  is bounded below.
If  fé7 (z) has only an infimum, it is thus necessary tha t A r  zn be un 

bounded below, i.e., for a ll p T >  o, p 1 A r  zn — 00 as n -> 00. Consider 
therefore the dual l.p. problems:

T II"

m ax — p T A r z  min Sd aD +  Sr cir

(1.7) Ad z  <  <̂ d Sd A d A  Sr A r  =  —  p T A r  , SD , SR >  o .

A r  z  <  aR .

T he prim al problem  F has m ax — p1' A r z  =  00 for every p T >  o. 
This, by the extended dual theorem  [9], holds iff the system

( 1.7 1 ) Sd A d  +  S r  A r  =  —  p1 A r Sd , Sr >  O
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is inconsistent for every p T > 0 .  T he latter condition m ay be rendered more
T TT Tf T Tsim ply by noting (1) that q — SR +  p  , some SR >  o and all p  >  o 

represents all q" >  o and (ii) th a t Ad is the unique m axim al set of rows of 
A for which there exists Sd >  o such that Sd Ad =  <£T.

Theorem 2. CC i f f  has an infim um  and no m in im um  if f

(1.72)
(i) §T A  =  C , 8 >  o

(ii) §d Ad +  Sr A r =  o

has a solution , while 

, S S > 0  , Sr >  O has no solution.
Therefore,

THEOREM 3. ^  iff) has a m in im um  i f f  there exists a solution to

(j.8)
(a) ST A  =  b \  S >  o

(b) So Ad -}- Sr A r =  o

and a solution to

Sd >  o 8r > o ,

where Ad is the m axim al set o f rows o f A  fo r  which a p o s i t i v e  solution 
to (a) exists.

From  Theorem  3, we also have an im m ediate corollary which encompasses 
the Charnes-Cooper characterization [3] of a m inim um  of ^  iff) for a special 
class of m atrices A:

COROLLARY 3. I f  the entries o f A are unisignant {non-negative or non
positive), then iff) has a m in im um  if f  fo r  some submatrix  Ad of rows o f A  
of equal rank to A  there exists Sd >  o such that Sd Ad =  bT.

Proof. Unisignance implies no solution to (b) unless A r ~  o.

THEOREM 3.1. ^  iff) has a m in im um  if f  AD =  A, i.e., there exists S >  o
such that ST A =  bT.

Proof. Suppose Sd A d =  bT, SD >  o and Sd Ad +  Sr A r  =  o , SD >  o, 
SR >  o. Then ST ^  i f f  [(Sd , o) T  (Sd , Sr )] >  o and ST A — bT. C ontrari
wise, if thpre exists S >  o such tha t ST A =  bT, then (a) and (b) are satisfied 
with A r =  o.

T here follows as an im m ediate corollary:

C o r o lla r y  3.1. ^  iff) has only an infim um  iff

(a) St A  -  £t , S > o has a solution,

(b)' n  8 i =  o in  every solution.

It is to be noted tha t in general the rows of Ad are not linearly inde
pendent. In fact, in the interesting case of exponential sums, i.e. bT — o, 
they are always linearly dependent when a m inim um  exists. For exponential 
sums our theorem  becomes:

Theorem 3.2. ff) =  cT eKz, cT >  o, has a m in im um  i f f  fo r  some sub
m atrix  Ad of rows o f A  o f equal rank to A, there exists Sd >  0 such that 
Sd Ad =  o.
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Proof. Condition (a) of Theorem  3 is autom atically satisfied. Condition (b) 
is now a further statem ent about solutions to ST A  =  bT, ST >  o, since 
bT — o. By definition of A D , A R would have to be part of A D if A R=f= ó. 
Thus A r  =  o.

Geometrically, the theorem  can be interpreted as follows: A  m inim um  
exists iff the origin is a proper interior point of the convex hull of a subset 
of rows of A which span the row-space of A.

2. “ M ECE ” DUALITY

Theorem 4. There are three m utually exclusive and collectively exhaustive 
duality states o f nine a priori possibilities'.

1. (z) has no lower bound and  8 >  o, 8T A  =  bT has no solution ;

2. & (z) has only an infim um  and  8 >  o, ST A =  b is consistent such
that T ls *  =  o fo r  every solution (e.g. =  o, f e R = j = 0  in  every solution o f

%
8 >  o, ST A  — bT). Further , in f  <€ (z) =  m ax v (8) w ith  8 >  o, ST A =  bT
and in f  (z) =  m in (z), where (z) =  cZ eAx>z — bT z;

3. fé7 (z) has a m in im um  and there exists 8 >  o, ST A == bT. Further

(i) m in (z) =  m ax v (8) , 8 >  o, ST A =  bT;

(ii) i f  *€ {z") — m in fé7 (z),

then v (8*) — m ax v (8), 8 >  o, STA =  bT, where 8* =  ci é ikx*) fo r  a ll i;

(iii) i f  v (8*) =  m ax v (8), 8 >  o, 8T A  =  bT,

then (z*) — m in <£ (z)> where iAz* =  In (8*/c^ fo r  a ll i.

Proof. C learly the three conditions for (z) and separately for the 8- 
system are “ M EC E D uality  states (1), (2), (3) are established respectively 
by , Theorem  1, Theorem  3.1 and Corollary 3.1.

To establish the further properties of states (2) and (3), we note easily 
from [6] th a t

(2.1) të7 (z) =  cT eAz —  bT z > v  (8) - S T ^ - 8 T ln ^

for all 8t  >  o, 8T A  =  bT and all z.
In  state (3), since fé7 (z) is convex and analytic in z, at a m inim um  z*,

(2.2) f t  =  ai} —  b, =  o , V,-.
vZj i

Setting &T =  S* >  o and S*T A  =  b \
Further,

(2.3) v (8*) =  cT eAz* ■— 2  (eiA**) =  eT eAz* ■— S*T As-* =  (s*) .
■i

Hence v (8*) =  m ax v (8) for 8 >  o, ST A  =  bT.
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Thus in state (3) v (8) has a m axim um . Further, since v (8) is strictly 
concave in 8, it has a unique m axim um  at 8̂  =  8* =  Zj 2 * where is 
any m inim um  for (z). Thus, also, given the m axim izing 8*, there m ust

exist a solution to A z  =  In \ - -  \ , w ith z  m inimizing fé7 (z).

In  state (2), every ST =  (8d , Sr) >  o satisfying 8T A =  bT, m ust have 
8r  =  o. So for every solution 8,

(2.4) V (S) =  VD (SD) +  »R (Sr) =  VD (So)

T T /  \where (SD) =  SD e —  SD In - j  , since x  In x  =  o for x  =  o, and continuity.

But now, letting ^d(F) =  eAj)Z —  b1 z, we are in state (3) for &-d(z), 
Sd >  o and 8d Ad =  bT. Thus v (8) has a m axim um  in state (2), unique by 
strict concavity. Now

(2.5) <€ (z) =  &D (z) +  £  A '  =

Let Zj) m ake ^d(F) m inim um .

I

zJm ax b z

(2.6) Ad z <  Ad zd

A r z <  A r  zd

T An 0 a I T A „ sCd e — od Ad z -f- cr e .

Consider the dual l.p. problems 

II

m in 8d Ad ^d +  §r A r  zd 

8 d A d +  Sr A r  = - - b T  

S d , S r > o

The optim um  value of I is finite for otherwise (z) is not bounded below.
Since 8r =  o in every (hence optimal) solution of II, by the Extended 

Theorem  of the A lternative (cf. [9], p. 441), some optim um  solution of I,A a  ̂ A 'p a rp ^
say z i has A r  z <  A r^ d - F urther AD ^ =  Ad zd and b z  =  b zD, otherwise 
^d ( z d )  is not m inim um . Let zp =  p (z  ■— zjy), p >  o.

Then

bT zp =  o , V p

(2.7) AD #p =  o , Vp

A r zp =  pA r ( z —  -> — 0 0  (vector) as p - > o o .

Now

(2.8) (z) >  ^D (2 ) T“ ^R e R >  (z ) , \/Z.

Hence

(2.9) L  ^  (i* +  -Sp) =  ^D (**) =  inf ^  (-S') .
Q—>00

Thus in state (2), in f (z) =  m ax v (8) and inf (z) =  m in (F).
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T he duality  state is characterized by solution of the linear program : 

(2.10) m ax pi , (jieT ■— ST <  o , ST A =  bT , § >  o .

Infeasibility is state (1), p* — o is state (2), p.* >  o is state (3).

3. Generalized Cobb-Douglas Balance

In [3] Charnes and Cooper were able to show tha t the equations of 
accounting-balance for a resource-value transfer economy do in fact arise 
from (dual) extrem al principles of extended geometric program m ing type. 
The equations involved, however, contain only non-negative coefficients and 
contain the (positive) variables only to the second degree. W e observe they 
can be generated alternately as tight constraints in an ordinary geometric 
program m ing problem. W. Drews has posed the question of obtaining similar 
balances in which the coefficients are not restricted to be non-negative. 
Such systems do not conform to our observation re ordinary geometric pro
gram m ing constraints.

T he preceding and the exponential m apping of the real line onto the 
positive num bers im ply

THEOREM 5. A  necessary and sufficient condition that the generalized 
Cobb-Douglas equations

X  d ij tar  , • • •, =  d j , tj >  o , V,

arise from  discrete Kullback-Leibler estimation w ith linear inequalities is that 
they be equivalent to a system

E  ci a ii t ? 1 - • • • > C* =  bi ti > ci - t j > 0  , \ f i  J  .

4 . Entropio S o lu tion s to  N-person C ooperative Games 

W e note first th a t the “ w eigh ted” Kullback-Leibler estim ation problem 

(4.1) m ax — Wi Si In with 8 i > o ,  ST A =  bT, where zeq >  o, VG

m ay be reduced to the unweighted form by the transform ation 

(4*^) ^  ^ i y G ^ i G j i) •

Let g  be the characteristic function and normalized so tha t o <  g  (S), its
value for the coalition S, any subset of N =  {1 , 2 , • • •, n).  Let x  (S) =  2  xy

je S
fot the im putation (x1 , • • •, xf).  Let x L =  (• • •, x  (S) ,***)• The system 
defining the x  (S)’s and the im putation m ay be written

(4-3) *t G =  o , a  (N) =  g  (N) , x  >  o .
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Then we can define a class of weighted entropie solutions by 

(44) m ax | ® ( S ) r  (S) In

subject to

x T G -= o , *  (N) (N) , x I >  o .

Problem  (4.4) has an unconstrained convex dual problem

(4.5) m in 2  w  (S) g  (S) exp [SGz jw  (S)] — g  (N)
s

This new class of solutions, which can be further modified by additional 
inequalities of (4.3) form (e.g. to include the core), is a variant of the Charnes- 
K ortanek convex nucleus class of solutions. Here the ratios ^ (S )k ( S )  are 
employed instead of the coalitional excesses g  (S )— x  (S). But now the 
gam e solution is given by an unconstrained convex program m ing problem 
of simple analytic form!

5. K u l l b a c k -L e ib l e r  E stim a tio n

In Kullback’s classic book Information Theory and Statistics, important consequences
are taken from solution of the extremal system which for finite discrete distributions would be
(4.1) whith.only two columns for A (one asserting that =  1). Not only have we here

i
greatly increased the type and extent of the information which can be used in the estimation 
(general linear inequalities), we also give a new simple unconstrained dual convex characte
rization of the unique optimal solution. And, recall, S* =  c{ e*Az* ! These results should be 
particularly advantageous and important in treating estimation of the solution of (4.1). The 
latter forms the basis for most of the quantitative aspects of Kullback-Leibler or information- 
theoretic statistical theory.

This paper is dedicated in continuing gratitude to Dr. G. K. von Noorden 
whose thought and hand restored the sight of A. Charnes.
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