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Ricerca operativa. — Constrained Kullback-Leibler Estimation,
Generalized Cobb—Douglas Balance, and Unconstrained Convex Pro-
gramming. Nota di ABraHAM CHARNES e WirrLiam W. CooOPER,
presentata @ dal Socio B. SEGRE.

RIASSUNTO. — Si da una caratterizzazione completa delle relazioni tra: (I) un caso pit
generale della stima Kullback—Leibler con una distribuzione discreta e finita a vincoli lineari
di disuguaglianza; (2) una minimizzazione non vincolata di un potenziale convesso, oppure
la negativa della funzione utilitd; (3) le equazioni generalizzate Cobb-Douglas di «equilibrio»
o di «bilancia contabile ». Inoltre, si ottiene una caratterizzazione in termini di una coppia
esattamente duale per una classe di problemi di programmazione geometrica estesa, in luogo
delle pit deboli condizioni necessarie o sufficienti di Duffin, Peterson e Zener. Si presenta
infine una nuova classe di soluzioni «entropiche» per funzioni caratteristiche di giuochi
con n-persone, che ammette una caratterizzazione equivalente al duale di una programma-
zione convessa non vincolata.

o. INTRODUCTION

In [1] it was shown that a nonlinear system of equations used for esti-
mation of interzonal transfers in traffic engineering and marketing were in
fact derivable from an extremal principle of the Kullback-Leibler type [2]
of information-theoretic, or entropic, statistical estimation. In [3] it was
shown that the accounting balance equations for a cartel or ‘ resource-value
transfer ”’ economy could be derived on the one hand from unconstrained
minimization of an ““ economic ’’ potential function, or dually, from Kullback-
Leibler statistical estimates constrained by a linear inequality system of pure
“network ”’ or ‘“distribution” type.

The work of Akaike [4] and others [5] has shown that both the principle
of maximum likelihood and the Fisher-information approach are asymptoti-
cally equivalent to Kullback-Leibler estimation, thus yielding on the one
hand a statistical decision theoretic interpretation of maximum likelihood
and on the other hand a single rational decision theoretic method for statistical
estimation, statistical hypothesis testing, and spectral analysis of time series
with an objective designation of the number of terms to be carried [4].

In this paper we establish the new mathematical * troika ” or ‘ triality ” (rather than
¢ duality ) now apparent. Thus we characterize completely the relationships of (1) a more
general case tan Kullback-Leibler estimation with finite discrete distributions and linear
inequality constraints, (2) unconstrained minimization of a convex potential, or neg-utility
functiion and (3) generalized Cobb-Douglas ‘ equilibrium” or ‘accounting balance” equa-
tions. In so doing, we present an exact and sharp “MECE” (mutually exclusive and collec-
tively exhaustive) characterization of duality for the relevant class of exfended geometric
programming problems [5] similar to the Charnes-Cooper linear programming duality cha-
racterization [6] of four MECE dual pairs from nine possibilities, and the Ben-Israel, Charnes,

(*) Nella seduta del 12 aprile 1975.
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Kortanek [7] general convex programming characterization of eleven MECE pairs from a
possible 49. Here there are precisely three MECE pairs.-

As is developed elsewhere by Charnes, Haynes, Phillips, the extended geometric pro-
gramming formulation yields an unconstrained utility theory of interzonal transfers in tran-
sportation and the classic traffic engineers’ estimate. This approach differs from and is more
general than the ordinary geometric programming approach of utility theorists Beckmann
and Golob.

We also present a new solution concept for n-person cooperative games which relates
the Charnes-Kortanek convex nucleus notion [8] to one of Kullback-Leibler estimation type,
and dually to an unconstrained convex extremal principle. Further developments are being
pursued elsewnere.

Statistical interpretation of the new unconstrained dual problem to Kullback-Leibler
estimation herein presented and its extension to general distributions (and continuous program-
ming problems) is under way by Charnes, Cooper and Ben-Tal.

1. EXISTENCE OF INFIMA AND MINIMA

Consider the unconstrained convex programming problem
(1.1) min € (2) = " — 8" 2, where ¢ >o,

and M= (... 0 LT where A == itk row of A.
This substantially generalizes the problem treated by Charnes and Cooper

in [3].

THEOREM 1. % (2) is bounded below iff there exists ' >0 such that
STA =4

Proof. € (2) is not bounded below iff there exists a sequence {z"} such
that %(z”) —-—o0. But % (") > —oo iff (@) Az" is bounded above whilc
(6) 6T 2 — oco.

Thus, considering the dual linear programming problems:

I 11
max 6% z min 8T &
1.2
(12) Az < a STA=8" |, ">o0

(13 »

where the vector ““ 2" represents an upper bounding vector, we are in the
situation in I that max 4"z = co. By the extended dual theorem of linear
programming [9] this occurs iff II is inconsistent, i.e. there is 7o solution to
>0, A= bT. Hence % (z) is bounded below iff there exists § > o
such that 8T A =

Turning now to minimum infimum d1fferentlat10n since the solutions
3" of 8T >0, 8TA = 8" form a convex set, there is a unzque maximal set
of rows of A, say AD, and some §' = (55, 0) so that 8p >0 and 8T A =
= SD Ap+o0-Ag = b where Ar designates the remaining rows of A.
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Then
(1.3) @ (2) = cp e —3hAp s+ ™, where ¢ = (ch, ).

We note that the rows of Ag are linearly independent of the rows of Ap. For
if some rows Ap = LAp, for some matrix L, then we can write

(1.4) 6" = 85 Ap -+ 8L (AL —LAp) = (5b — dL L) Ap -+ 8L A .

We can pick S >o sufficiently small that 35— SLL >o. Thus Ay is part
of AD.

Suppose € (z") — inf € (2). If ;Ap 2" is unbounded for any row 7 of Ap,

we can pick a subsequence, denoted £" b.a.o.n. (by abuse of notation), so
that ;Ap 2®— one of - co, — oco.
But then

(1.5) % (s") = cp, LADTY gDi (;Ap &%) - 4 oo,

in either case, and since %, (¢") < % (z*) + const., € (&) — - oo, a contra-
diction. Thus for some ap,

(1.6) [Apz" | < ap, V.
We can pick a subsequence z* (b.a.o.n.) so that
(1.61) Ap 2" — wp , for some - zp .

Clearly ;Agr 2" is bounded above for all rows 7z of Ag, i.e. for some ag,
Agr 2" < ag. If also ;Ag 2" is bounded below for all rows 7 of Ag, then we
can pick a subsequence z* (b.a.o.n.) so that both

(1.62) Ap 2" —wp , and Agr 2" —wr for some R .
By the Farkas-Minkowski closure corollary [10], there exists Z such that
ApZ=wp,ARZ = wr . But €3 = L € () =inf € (2).
‘ n—>00 z
Hence % (¢) has a minimum at 2 = Z if Agr#" is bounded below.
If € (¢) has only an infimum, it is thus necessary that Ag 2" be un-

hounded below, i.e., for a// __ﬁT > o, pT AR 2" —— o0 as n—oco. Consider
therefore the dual l.p. problems:

g g
max — p" Ag & min 35 ap 4 3% ar
(1.7) Ap z < ap SbAp + SrAr = —p Ar , O, 3 >o.
ARZ£ ar .

The primal problem 1' has max — p' Agz = oo for every p' > o.
This, by the extended dual theorem [9], holds iff the system

(1.71) S Ap+ SR Ar=—72"Ar , %,%>o0
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is inconsistent for every p" >o. The latter condition may be rendered more
simply by noting (i) that ¢' = 8 + ', some 3§ >o0 and all " >o
represents all ¢° > o and (ii) that Ap is the umigue maximal set of rows of
A for which there exists df, > 0 such that dp Ap = &'.

THEOREM 2. % (2) has an infimum and no minimum iff
i TA=45=0 has a solution, while
(ii) S5 Ap - Sk Ar=o0 ., 8p>o0 , 3t >0 has no solution.

(1.72)
Therefore,

THEOREM 3. % (2) has a minimum iff there exists a solution to
(a) STA =48>0 and a solution to

1.8
(%) (b) SpAp--dhAgr =o

y 8D>O y 8]'1{‘>O,

where Ap is the maximal set of rows of A for which a positive solution
to (a) exists.

From Theorem 3, we also have an immediate corollary which encompasses
the Charnes-Cooper characterization [3] of a minimum of % (2) for a special
class of matrices A:

COROLLARY 3. [f the entries of A are unisignant (nom-nzgative or non-
positive), then € (2) has a minimum Iff for some submatrix Ap of rows of A
of equal rank to A there exists SD > 0 such that 8 Ap = 4",

Proof. Unisignance implies no solution to (b) unless Ar = o.

THEOREM 3.1. % (2) has a minimum iff Ap = A, i.e., there exists § >0
such that 3 A = 5"

Proof. Suppose 3 Ap = 6%, 3p >0 and 3pAp - ox Ag =o0,3p > o,
Sg >0. Then 8" = 1/2 [(30.0)+ (®b,8%)] >0 and 5" A =4". Contrari-
wise, if there exists § > o such that STA 4", then (a) and ( b) are satisfied
with Ar = o.

There follows as an immediate corollary:

COROLLARY 3.1. b (2) has only an infimum iff
() STA=08"8>0 has a solution,
by TI8; =0 in every solution.
g ,
It is to be noted that in general the rows of Ap are ot hnearly inde-
pendent In fact, in the interesting case of exponential sums, i.e. &' = o,

they are always linearly dependent when a minimum exists. For exponential
sums our theorem becomes:

THEOREM 3.2. % (2) = ¢ ¢, " >o0, has a minimum iff for some sub-
matriz Ap of rows of A of equal rank to A, there exists 8p > 0 such that
8% AD = O.
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Progf. Condition (a) of Theorem 3 is automatically satisfied. Condition (b)
is now a further statement about solutions to 8" A = 47, 8T > 0, since
bt == o. By definition of Ap, Agx would have to be part of Ap if Ap=Fo.
Thus Ag = o.

Geometrically, the theorem can be interpreted as follows: A minimum
exists iff the origin is a proper interior point of the convex hull of a subset
of rows of A which span the row-space of A.

2. “MECE ” DUALITY

THEOREM 4. There are three mutually exclusive and collectively exhaustive
duality states of nine a priori possibilities:
1. (2 has no lower bound and §=o, 8'A = 6" has no solution;
2. € (2) has only an infimum and 8 >0, S A = b is consistent such
that 11 8;=o for every solution (e.g. 3;= o, {€R == in every solution of
i
S>o0, A =28". Further, inf % (&) =maxv(d) with §>o0, 3 A=24
and inf % () = min Gp (2), where €p(2) = cp ™ — 87 2;
3. € (2) has a minimum and there exists 8> o, ST A = 6. Further
(i) min% (5) = max v (d),d >0, 3T A = 4"
(i) #f € (s°) = min % (),
then v (8) = maxov (d), §=>0, STA =48, where 8 = ¢; 8™ for all i
(i) #f v (8") = max v (3), =0, 8T A =47,
then € (z°) = min % (2), where A" = In (8} le)) for all 4.
Proof. Clearly the three conditions for % (z) and separately for the 8§~
system are “MECE ”. Duality states (1), (2), (3) are established respectively

by Theorem 1, Theorem 3.1 and Corollary 3.I.

To establish the further properties of states (2) and (3), we note easily
from [6] that '

(2.1) C@=c M r=0®) =8"e— 3" (2

for all 8" >0, 8T A = 4" and all 2.
In state (3), since % (2) is convex and analytic in 2, at a minimum &°

(2.2) % Z P ay—1b;=o0, Vi
?

¥ ==
Szj

)

Setting S = c; & 85~ 0 and §TA = 4T
Further,

(2.3) o) =M — Z Sn (@™ =" —FTAS =@ (9.

~ Hence v (8") = max v () for § >0, 8TA = 4"



A. CHARNES ¢ W. W. COOPER, Constrained Kullback-Leibler, ecc. 573

Thus in state (3) v (8) has a maximum. Further, since v (3) is strictly
. . . . * (iAz*) * .
concave in 3, it has a unique maximum at §; = §; = ¢;¢ where 2" is

any minimum for % (). Thus, also, given the maximizing 8°, there must
. . A % . A
exist a solution to AZ = In (7)’ with Z minimizing % (2).

In state (2), every & = (8p, ) =0 satisfying ST A = 4", must have
Sk =o0. So for every solution 3,

(2.4) v (8) = vp (3p) + vr (8r) = vp (3p)

where vp (8p) = 3p e — 85 In (jl), since x lnx = o for x = 0, and continuity.
But now, letting p(2) = cp ¢*** — 4" 5, we are in state (3) for %p(2),
35 >0 and 85 Ap = 4". Thus v(3) has a maximum in state (2), unique by

strict concavity. Now
(2.5) € (2) = €p(2) + e &M% = (L e — 3§D Ap 2z + R 47"

Let zp make %p(2) minimum. Consider the dual Lp. problems

I 1I
max 4" z min 3p Ap 25 -+ O AR #p
(2.6) Apz< Apzp Sh Ap - O Ag = &7
Ag 2 < Ag 21 5p, 8k >0

The optimum value of I is finite for otherwise % (2) is not bounded below.

Since 8% = o in every (hence optimal) solution of II, by the Extended
Theorem of the Alternative (cf. [9], p- 441), some optimum solution of I,
say 2, has Ar 2 < Ar zn. Further Ap 2 = Ap2n and &' 5 = 4" 21, otherwise
©p (2p) is not minimum. Let g, = o (§ —2p), p > oO.

Then
s 2, =0 Vo
(2.7) Apz,=o0, Vo
Ag 2, = pAg (3 — 2zp) — — oo (vector) as p —> oo .
Now
(2.8) C(2)>bp(z)+ r ™ >Cp (s, Ve
Hence
(2.9) L ¢ +2)=%p()=inf% (s).

p—>00

Thus in state (2), inf % (¢) = max v (38) and inf % (2) = min %p (2).
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The duality state is characterized by solution of the linear program:
(2.10) maxp,ue —8 <o , STA=8 | $>o0.

Infeasibility is state (1), &* = o is state (2), u* > o0 is state (3).

3. GENERALIZED COBB-DOUGLAS BALANCE

In [3] Charnes and Cooper were able to show that the equations of
accounting-balance for a resource-value transfer economy do in fact arise
trom (dual) extremal principles of extended geometric programming type.
The equations involved, however, contain only non-negative coefficients and
contain the (positive) variables only to the second degree. We observe they
can be generated alternately as tight constraints in an ordinary geometric
programming problem. W. Drews has posed the question of obtaining similar
balances in which the coefficients are not restricted to be non-negative.
Such systems do not conform to our observation re ordinary geometric pro-
gramming constraints.

The preceding and the exponential mapping of the real line onto the
positive numbers imply

THEOREM 5. A wnecessary and sufficient condition that the gemeralized
Cobb-Douglas equations

a;1 a;,
Zdijtlz ,"',l‘nm:dj y l‘j>0, Vj
[

arise from discrete Kullback-Leibler estimation with linear inequalities is that
they be equivalent to a system

a;1 {127 . «
Zfiaiﬂl’ v =0bity, e, >0, Vi,7.
K4

4. ENTROPIC SOLUTIONS TO N-PERSON COOPERATIVE (GAMES

We note first that the ¢ weighted” Kullback-Leibler estimation problem

(4.1) max— Z w; 3; In (

9;
ec;

) with 8, >0, 8 A=4", where w;>o0, Vi,

may be reduced to the unweighted form by the transformation

(4.2) 8 = w; 8 , ci=uw; e, A= (wp) ™A

Let ¢ be the characteristic function and normalized so that o < g (S), its

value for the coalition S, any subset of N ={1,2,---,%}. Let x(S) = Z x5,
jes

for the imputation (x,,---,x,). Let z = (---,x(S),---). The system

defining the x (S)’s and the imputation may be written
(4.3) ¥ G=o0 , x(N)=g®N) , i'>o.
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Then we can define a class of weighted entropic solutions by

(4.4) max 3w (S) x(S) In ( ;(2))

subject to

,T '

¥G=0 , xz(N)=g(N) , x>o0.
Problem (4.4) has an unconstrained convex dual problem

4-5) min g w (S)g (S) exp [sGzlw (S)] —g (N) 2y

This new class of solutions, which can be further modified by additional
inequalities of (4.3) form (e.g. to include the core), is a variant of the Charnes-
Kortanek convex nucleus class of solutions. Here the ratios x (S)/g (S) are
employed instead of the coalitional excesses ¢ (S)—x (S). But now the
game solution is given by an unconstrained convex programming problem
of simple analytic form!

5. KULLBACK-L.EIBLER KESTIMATION

In Kullback’s classic book Znformation Theory and Statistics, important consequences
are taken from solution of the extremal system which for finite discrete distributions would be
(4.1) whith.only two columns for A (one asserting that 23; = 1). Not only have we here

v

greatly increased the type and extent of the information which can be used in the estimation
(general linear inequalities), we also give a new simple unconstrained dual convex characte-
rization of the unique optimal solution. And, recall, 8:6 = ¢; ™| These results should be
particularly advantageous and important in treating estimation of the solution of (4.1). The
latter forms the basis for most of the quantitative aspects of Kullback~Leibler or information-
theoretic statistical theory.

This paper is dedicated in continuing gratitude to Dr. G. K. von Noorden
whose thought and hand restored the sight of A. Charnes.
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