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Topologia. — 4 ﬁxed- point theorem for single-valued mappings
defined on a topological space . Nota di Ivar MassaBO, presen-
tata *? dal Socio G. SANSONE.

RIASSUNTO. — Scopo di questa Nota ¢ quello di mostrare come con la nozione di -
coerenza, introdotta da Furi e Vignoli [7], si possano ottenere molti dei teoremi sullesistenza
del punto fisso.

INTRODUCTION

In the last few years many results have been obtained on the existence
of “ fixed-point 7’ for single-valued mappings by generalizing classical theo-
rems of Banach [1], Kannan [8, 9], Edelstein [6] and Kirk [10].

The main purpose of this paper is to give a test to assure the existence
of fixed-points for mappings defined in topological spaces and to apply it
showing how all classical fixed-point theorems can be derived.

The proper generality of our results lies in the fact that we obtain results
concerning the existence of fixed-points by merely testing the * local”
behaviour of the mappings instead of studying the full behaviour of them
on the whole space. To do it, it is very helpful the notions of g-coherence
(see definition below) introduced by Furi and Vignoli [7]. Our goals are
stated in Theorem 1.1 of § 1.

In §2 we obtain as corollaries to this theorem results of Banach [1],
Kannan [8, 9], Reich [12], Ciri¢ [3], Sehgal [13], Edelstein [6] and Kirk [10].

1. DEFINITIONS AND NOTATIONS

Let X be a topological space and (x,),en,N=1{0,1,2,---}, be a
sequence of elements of X.

An element x € X is said to be a Zimit point of x, if any neighbourhood
of x contains all the x, from a certain value of # onwards.

If x is a limit point of (x,) we write x,—> .

An element x € X is said to be a strong cluster point of (xn) is x if limit
point of a subsequence (x,;) of (x,).

It is an immediate consequence of the definitions that a limit point is
a strong cluster point but in general the converse is not always true.

Let T: X — X be a mapping from a topological space X into itself
and let x€ X.

(*) Work performed under the auspices of the National Research Council of Italy (C.N.R.).
(*¥*) Nella seduta dell’8 marzo 1975.
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DEFINITION 1.1.  Zhe set O(x)={T"(x):T'(x) ==z , T""' (x) =
=T (T*(x)), n €N} is called the orbit at x. To any x € X we can associate
the sequence (T" (%))yen of itterates of T at x which is called the orbital sequ-
ence at x.

DEFINITION 1.2. A strong cluster point z € X of (T"(x))pen is said to
be ‘“ mice” if

CTV(x) 2" = TV () S TR h=1,2,-- .

Remark 1.1. Cirié [4] introduced the notion of orbital continuity for
mappings in metric spaces. A mapping T is said to be orbditally continuous
on 0 (x) if whenever

z is limit point of (T"(x));cn then T(2) is limit point of (T™*(x));n.

Note that if the set of strong cluster points of an orbital sequence
(T" (%))nen is nonempty then T is orbitally continuous on O (x) iff all strong
cluster points of (T" (x)),cn are nice.

We give an example of a mapping that is not orbitally continuous but
it has a strong cluster point which is nice.

Example 1.1. Let I' be the collection of all countable ordinals. Let X
be the subset of I' which contains the elements of I' less or equal to w,-2
(wy, the first transfinite ordinal) with the order topology.

Let T: X — X be defined as follows

x -1 if x <wy 2
T (%)= )
ZUO‘Z lf x:wo‘z

T is not orbitally continuous on @ (0) because w, is limit point of
(T"(O))pen = (7)pen but wg -+ 1 is #ot limit point of (T" " (0)en = (# + Dyen-
Take wgy-2,wy-2 is limit point of (T" (T (0)))yen = (wo + 7)nen and
(T"* (T (0)))nen = (wo + 7 + E)pen converges to T¥(w,-2) =wy-2 for
every £ €N, therefore wy-2 is nice.

Finally note also that each continuous mapping is orbitally continuous
on each orbit but the conserve is not always true. See the following example.

Example 1.2. Let X =[-—1,1] and let T:X - X be defined as
follows: ’

) x/2 if x>o
T(x) =
I if x<o.

Evidently, T is orbitally continuous at x =0 but T is not continuous
at x = o.

We want to introduce the notion of ‘‘orbitally ¢-coherent” mapping
and to prove a fixed-point theorem for this class of mappings. In a natural
way, we extend the concept of ¢-coherence and some of the results obtained
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by Furi and Vignoli [7]. In the next section, we will give applications of
our main result.

Let X be a topological space and T be a mapping of X into itself.
Further, let ¢ be a mapping from

O(x) = 0(x) U{z:2 is a strong cluster point of (T" (x)),en}
into a Hausdorff space Y.

DEFINITION 1.3. The mapping T is said to be orbitally ¢-coherent
on O (x), if for each nice cluster point z, of the orbital sequence at x, we have
20 =T (20) iff (¢ (T" (20)))neN 25 constant.

Remark 1.2. We recall that Furi and Vignoli ([7], p. 197) said that
a mapping T :X — X is q-cokerent, where ¢ : X —Y is continuous, if for
any x € X ,x==T (x), there exists £2€N such that ¢ (x)=F ¢ (T" () or
equivalently

x =T (x) iff (¢ (T"(x)))uen is constant.

DEFINITION 1.4. The mapping ¢ is said to be orbitally continuous at
a nice cluster point z of (T"(x)) 2f

0 Tn’(x) %—Z,,“—“){:(P(Tni-*hk(x)) **(P(Tk(2’>>/é= 0, 1,2, ”.

We want to remark that

T is orbitally continuous on 0 () in the sense of Ciri¢ (Remark 1.1)
if and only of any strong cluster point of (T"(x)) is nice. Moreover if z is
a nice cluster point of (T"(x)) then T is orbitally continuous at z (in the
sense of Definition 1.4).

We prove the following main theorem.
THEOREM 1.1. ZLet T:X — X be a mapping of a topological space X
into itself, and ¢ be a mapping of O (%) into a Hausdorff space Y. If,
(1) T s orbitally o-coherent on 0 (x),
(ii) the sequence (¢ (T" (x)))uen converges,
(iii) 'z &s a nice cluster point of (T" (x)), and
(iv) @ s orbitally continuous at z
then, z =T (2), i.e. T has a fixed point in X.
Proof. Because z is a nice cluster point of (T"(x)), z is limit point
of (T"*(x));cn for each £€N. Since (o (T"(x)))nen converges to a unique
point ¥ € Y, by the orbital continuity of ¢ at z, it follows that ¢ (T* (x)) = y

for all £ €N. Therefore, by the orbital @-coherence of T on 0 (x) we finally
get z =T (2), i.e,, T has a fixed-point in X.



562 Lincei — Rend. Sc. fis. mat. e nat. — Vol. LVIII — aprile 1975

Remarfe 1.3. If *“ condition (i) ” is replaced by “ T is ¢@-coherent on X ”
we get a stronger version of Theorem 1.1. Further, the theorem of Furi
and Vignoli follows as a consequence of Theorem 1.1 because they require
the continuity, the ¢-coherence of T and the continuity of ¢ on all X.

2. APPLICATIONS OF THE MAIN THEOREM

2.1. At first, we want to show how all results (we shall recall some
of them!), on the existence of fixed-points for mappings which have a
‘“ contractive type behaviour’ on the orbits, are consequences of Theo-
rem I.I.

Let (X ,d) be a metric space and let T be a mapping of into itself.

The space X is said to be T-orbditally complete if every Cauchy orbital
sequence converges in X.

The mapping T is said to be a generalized contraction (see Ciri¢ [5]) if

(2.1) for every x,y € X there exists non-negative numbers ¢ (x,y),7 (x, ),
s(x,y) and #(x,y) such that

Su)g{q(x,y)+r<x,y)+f(x,y>—r dt(x,y)p <1
and re

d(T(x), T) <9, 0dx,y) +r@,9dx,T@)+

+s@,)d@,TW) +ix,»[dE, TW) +dy,T®)]
holds,
or equivalently

(2.2) there exists a positive number ¢ < I such that
d(T (%), T(y) <gmax{d(x,y);dx,T);dy,T);
§ldx, T() +d(y, T )]}
holds for every x,y € X.

LemMa 2.1. If T: X = X is a genzralized contraction of a T-orbitally

complete metric space (X ,d) mto itself, then there exists a wice cluster point
of. (T" (x)) for every x €X.

Proof. Let x € X and 0 (x) be the orbit at x. Assume T"(x) = T"*"" (x)
for all #» EN because if T%(x) = T (T%(x)) for some 7 €N then z == T" (x)
is “nice V. Taken T"'(x) and T"(x), by (2.2) we get

d (T (T"* (), T (I (#))) < ¢ max {d (T (), 1" (2)) ;
d(T" (), T (T (@) 5  (T" (), T (@) 5
V(T @), T (T () +d(T*(x), T (T @)1}
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Hence, one of the following relations is satisfied
g (T" (2), T () < gd (T (), T" () < qd (T" (), T (),
since ¢ < 1 it is impossible,

< L"), T (@) < g2 [d (T (%), T" (2) + 4 (T" (), T ()] .

Therefore,
2.3 400 (), T () <0 (T (), T () o=n <1,

which shows that a generalized contraction is a contraction on the orbits.
By iterating n-times the above process we obtain

d(T" (x), T () <" d(x, T (),
and so
X

d(T" (x), TP (x)) < ~—5

d(x,T (x)

for any positive integer p.
But A < 1, therefore (T"(x)),en is a Cauchy orbital sequence and so,
by the T-orbital completeness of T there is a limit point 2 € X of (T"(x)),en-
It is easy to show now that z is nice (for complete details see the proof
of Theorem 2.3 of Ciri& [5]).

COROLLARY 2.1 (see Ciri¢ [5], pp. 21-23). Let T: X — X be a generalized
contraction of a T-complete metric space (X ,d) into itself.
Then T has a fixed-point in X.

Proof. Taken x € X, by Lemma 2.1 there exists a nice cluster point #
of T"(x)). Put ¢ (»)=d(v,T(y) for any y € X. It is not hard to see
that ¢ is orbitally continuous at z. Further, by (2.3) of Lemma 2.1, we get

9 (T (@) =d(T (), T () <M (2, T () =19 (2).
If 25=T (2) then ¢ (T (2)) < ¢ (2), hence T is orbitally ¢-coherent on 0 (x).

Moreover (2.3) of Lemma 2.1 shows also that (¢ (T"(x))),en is a nonincreas-
ing sequence of positive real numbers, i.e., it is a convergent sequence.

Remark 2.1. 1lf, in Corollary 2.1, the condition

“Tis a generalized contraction ”’
is replaced by
“ there exist @, 4, ¢ mappings from (0, oo) into [0, 1) with

limsup [a(") +6¢) +e <1 (or a@+EO+e@® <D
such that ,
AT (), Ty) =a@@,y)dx,y) +bdx,y)dx,T(x) +
+cl@d@,)dy, TH)”
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or by
AT (@), TN <6[dxT@)+d(y, TONo<b<}”

or by
AT @, T) <ed(x,y) o<a<1”

we obtain the theorem of Boyd and Wong ([3], p. 459), Reich’s theo-

rem ([12], p. 2), Kannan’s theorem ([8], p. 73 and [9], p. 406), Rakotch’s
theorem ([11], p. 463), and Banach’s theorem ([1], p. 106).

2.2. Now we want to investigate mappings satisfying ‘“ contractive ”’
conditions weaker than those considered by Sehgal [13] and by Edelstein [6],
and to obtain conclusions on the existence of fixed-points.

A mapping T of a metric space (X , ) into itself is said to be generalized
contractive if

d(T(®),T(y) <max{d(x,y);dx,T®*);d,TH);
YA, TO) +4d, TE)D
holds for every x ==y € X.

THEOREM 2.1. Let T:X —X be a generalized contractive mapping.

If z€X is a nice cluster point of (T"(x)) for some x €X, then T has a
fixed-point in X.

Proof. Because z is a nice cluster point of (T"(x)) and the metric & is
a continuous mapping, it follows that the mapping ¢ (¥) =d (v, T (x)) is
orbitally continuous at z.

Assume T"(x)==T""'(x) for all #€N. Because T is a generalized
contractive mapping, one of the following relations is satisfied

o (T" (@) = d (T"" (), T (T (x))) = & (T (T" (x)) , T (T"*" () =
<d(T"(x), T" (%)) = ¢ (T" (x))
<d(T" (), T (T" (#)) = ¢ (T" (%))
<d (T (x), T (T"" () = @ (T"™ (x)) impossible
<$[(T"(x), T(T""" (2))) + 4 (T" (), T (T" (x)))] <

<3[4 (T" (), T () + & (T"*' (), T (T ()] .
" Therefore,

(2.4) o (T"™ () <o (T"(x) for all x€N.

This implies that T is ¢-coherent on X. Moreover (¢ (T"(x))yen is a
decreasing sequence of positive real numbers, it is convergent.

By Theorem 1.1 we get that T has a fixed-point (because T is generalized
contractive, this point is unique).



IVAR MASSABO, A fixed-point theorem for single-valued mappings, ecc. 565

Remartk 2.2. 1f, in Theorem 2.1, the conditions.
“T is generalized contractive and there exists a nice cluster point
of (T"(x)), for some x € X are replaced by

“T is continuous, there is a subsequence (T™ (x));en of (T"(%))pen
which converges and

d(T(®),T) <max{d(x,y);dx,T®);d(y, TN
whenever
x=EyeX?”
or by

“T is continuous, there exists a subsequence (T"(x));en of (T"(%))pen
which converges and

d(T(#x),T(y) <dx,y)

whenever
xyeX”

we obtain Sehgal’s theorem ([13], p. 573) and Edelstein’s theorem ([6],
Pp- 74-75).

2.3. Now we show that the notion of orbital g-coherence can be involved
by studying existence fixed-point problems for mappings with *“ diminishing
orbital diameters .

DEFINITION 2.1 (see Kirk [10], p. 107). For x€X, let o (T"(x)) be
the diameter of the orbit O (T" (x)). The mapping T is said to have diminish-
ing orbital diameters zf

p(x) <+ oo and lim o (T" (x)) =7 (x) < ¢ (¥), for all x€X
n—-+00

such that o (x) > o (i.e., x==T (x)).

From the definition it follows that (p (T"(x))),en is @ non-increasing
bounded from below sequence.  Therefore (p (T"(x)))sen converges for
all x € X.

THEOI{EM 2.2. Let (X,d) be a complete metric space and T :X — X
have diminishing orbital diameters. If z is a nice cluster point of (T"(x)) for
some x € X and o (x) is orbitally continuous at z, then z =T (2).

Proof. Put p (x)=p (x). By the above remark, (¢ (T"(x))),en converges.
Evidently T is ¢-coherent because if x == T (x) then lim p (T" (x)) < p (),
n—> 400

ie., there exists £ €N such that p (T (x)) < (%), ie., o (T* () < o (x).
Therefore by Theorem 1.1, 2z is fixed-point of T.
Remark 2.3. 1f, in Theorem 2.3, the conditions.

“z is a nice cluster point of (T”(x)),x €X, and p (x) is orbitally
continuous at z "’
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are replaced by

(i) “T is continuous, there exists a strong cluster point of (T"(x)),cn
and p (x) is continuous ”’

or by

(i)  “ T is continuous, there exists a strong cluster point of (T"(x)),.n and

for each x € X, the sequence (T" (x)),en is stable, i.e.,

for any e > o, there exists 8 > o such that

yeX ,dx,y) <d=d(T"(x),T"(») <=« for all »eN"”
or by

(i) “d(T (), T () <d@x,9)e,yeX”
or by

(iv) “ there exists a number C > o, such that 4 (T" (x),T"(»)) <Cd (x,¥)
holds for all positive numbers 2 ",

we obtain Sehgal’s theorem ([13], p. 572), the theorem of Furi and
Vignoli ([7], p. 199), the theorem of Belluce and Kirk ([2], p. 142), and
Kirk’s theorem ([10], p. 110), respectively.

We give an example of a mapping satisfying the hypothesis of Theo-
rem 2.2 for which conditions (i-iv) of Remark 2.3 do not hold.

Example. Let X be the set of the plane defined by
X={x,y:x =0,y =0}
with the FEuclidean metric. Let T: X — X be defined as
g(l,l) if r=9=o0
T,y =" ,
| (.2 if (x,3) €X{0,o0)

T is not continuous. Each point (x,2?) € X ,x==o0 is a fixed-point of T,
therefore T is sequentially continuous. Clearly

p((0,0) =12 and p(T(0,0) =0

e((x,») =ly—2*] and p(T(x,y)=0 for x50
p((0,9) =sup{y, 1+ —yk |z},

o(T(0,) =p(0,0)=Y2, and p(T*(0,»)=o0.

That is, T 4as diminishing orbital diameters.
Further,

1) p(x) is not continuous on X.

In fact, if (x,,5,) €X,x,==0, and ((x,,¥,)nen converges to (0, 0)
then x,— o and y,—>o. Therefore

o (&, ym) = |yn——xf,!—>o:I:p((o,o)) =2
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2) the sequence (T (0, 0)),cn of iterates at (0, 0) is ot stable.
In fact, taken ¢ = y2 for every § > o there exists a point (0, ) == (0, o)
such that

d((0,0),(0,») <3 and (T (0,0),T(0,5)={z.

3) T does not satisfy (iii) and (iv).
PUt Pn=<n’0) a'nd Qn:(”+ I ,O),ﬂ >O: we get

(T (), T (qn) > @n+ 1)d (pn, qn) -
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