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Geometria differenziale. — Swbmanifolds of real codimension
of a complex projective space. Nota di Masarumr OKUMURA, pre-
sentata  dal Socio B. SEGRE.

RIASSUNTO. — Allo scopo di studiare una sottovarietd reale M di uno spazio proiettivo
complesso, si costruisce il sistema di cerchi su M compatibile colla fibrazione di Hopf e che pud
venire considerato come una sottovarietd di una sfera di dimensione dispari. Cosi, valendosi
della teoria della sommersione, condizioni imposte alla M vengono a tradursi in altre relative
ad una sottovarieta di una sfera; e vari esempi al riguardo vengono approfonditi.

INTRODUCTION
It is well known that a (274 1)-dimensional sphere S***! is a principal circle bundle
over a complex projective space CP" and that the Riemannian structure on CP™ is given by
the submersion & :S**' - CP" [5, 7]. Thus the theory of submersion is one of the most
powerful tools for studying a complex projective space and its submanifolds. From this point
of view, H. B. Lawson [2] studied real hypersurfaces of a complex projective space and then
Y.Maeda [3] and the present author [4] developed this method extensively.

The purpose of the present paper is to establish some relations between a submanifold

of CP" and that of S**! which is a principal circle bundle of CP". We are mainly concerned
with gathering information on the second fundamental tensors of these submanifolds and
on the connections of their normal bundles.
k In § 1, we state some fundamental formulas for submanifolds of Riemannian manifold
and in §2, we recall fundamental equations of a submersion which are established by
B. O'Neill [5], K. Yano and S. Ishihara [7]. Then, in § 3, we consider a submanifold M of
S#"1 which is a circle bundle over a submanifold M of CP". Here we relate fundamental
tensors of the submersion % : S . CP"” and of =: M — Mas well as the second funda-
mental tensors of the hypersurfaces M and M.

Mean curvature vector fields of M and M are discussed in § 4 and a certain pinching
theorem is proved in §5. In §6 we establish new definition of anti-holomorphic subma-
nifold of a complex manifold and prove some similarities between submanifold of S¥**!
and anti-holomorphic submanifold of CP".

§ 1. SUBMANIFOLDS OF A RIEMANNIAN MANIFOLD

Let 7:M — M be an isometric immersion of an z-dimensional Rieman-
nian manifold M into (7 4 ¢)-dimensional Riemannian manifold M. The
Riemannian metrics ¢ of M and G of M are related by

(1.1) §(X,Y) =G (E(X), (),

where X, Y are vector fields on M and we denote also by ¢ the differential
of the immersion. The tangent space T, (M) is identified with a subspace

(*) Nella seduta del 12 aprile 1975.
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of T@@)(M) The normal space N,(M) is the subspace of T,@)(M) consisting
of all X €Ty, (M) which are orthogonal to T, (M) with respect to the Rieman-
nian metrlc G. We denote by V, and D the Riemannian connection of M
and M respectively and by DN the connection of the normal bundle of M.
Let Ny,--+, N, be an orthonormal basis of N,(M) and extend them to normal
vector fields in a neighborhood of . Then, V, D and DY are related in the
following manner:

q
(1.2) Dixy 7 (Y)=7(VxY) + X G(HAX,Y)N,,
A=1
(1.3) Dixy Ny = — 7 (Ha X) - DY Ny,

where Hy is the second fundamental tensor associated with Ny .

We call (1.2) and (1.3) Gauss equation and Weingarten equation respectively. Since
Dy N, is normal to M, it is a linear combination of N,’s and so we put

(1,4) D: El LAB (X) Ng,

and call L,, the third fundamental tensor of M in M. The mean curvature vector N of M
is defined by

(1.5) N =
and it is well known that N is independent of the choice of N,’s.

Let R, R and RY be the curvature tensors for V ,D and DY respectively.
Then we have the following Gauss, and Ricci-Khiine equations:

(16 GRG0,V IZ), (W) =g (RE,V)Z, W)
— 2 e (Y 2 (Hy X, W) + X ¢ (Hy X, 2) g (Hy ¥, W),

(7)) GREX),7(Y)Na, Np) =g (Hp Hy — H, Hp) X, V) -
-G (RN (X, Y)N,, Np).

If the ambient manifold M is a manifold of constant curvature C, it follows that
(1.8) GRY(X,Y)N,,N,) =¢g((H,H,—H,H,) X, V)

& -
because the curvature tensor R of M has the form

S S S e S e

RX, VWZ=C{GY,)X—G(X,2)V},

where X ,Y and Z are any vector fields on M. Thus for a submanifold M of a manifold
of constant curvature the connection of the normal bundle is flat if and only if any H,
and H, commute.
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§ 2. RIEMANNIAN SUBMERSION

Let M and M be differentiable manifolds of dimension » + 1 and
respectively and assume that there exists a submersion ©: M —M, that is,
assume that 7 is onto and of maximum rank s everywhere on M. We further
assume that there are given in M a vector field V which is everywhere tangent
to the fibre and a Riemannian metric § which satisfies for any X, Y € T; (M),

(2.1) g(V,V) =1,

(2.2) COHX, V=7V, V)4+:VeV, 1) =0,

where L (V) denotes the operator for Lie derivative with respect to V. Let
X be a tangent vector at $ € M. Then X decomposes as X' + X", where

XV is tangent to the fibre through 5 and X" is perpendicular to it. If X=X,
it is called a vertical vector and if X = X%, it is called korizontal.

If a tensor field T defined on M satisfies L(V) T = o, then it is called an invariant tensor
field or a projectable tensor field. Such a tensor field can be regarded as a tensor field
defined on M by .

For any differentiable function f on M define a function fY on M by
(2:3) fF@=F@@) =°m@

We callfL the lift of . For a vector field X defined on M there exists a
unique horizontal vector field X" on M such that for all 5€M we have

(2.4) WX; = Xr@)»

and X" is called the lift of X. We further define the lift %" of a 1-form u
on M by #" = =" %, where =" denotes the dual map of the differential map
of the submersion ©. Thus we can define the lift of any type of tensor fields
T and S in such a way that

(2.5) (TS =T'®S",
where ® denotes the operator of the tensor product.

By definition we have easily

(2.6) (X" =X,
(2.7) x(X)* = X", for invariant X.
Since the Riemannian metric § satisfies (2.2), we can define a Riemannian metric g
on M by
(2.8) g(X,Y)(p) =7 (X", Y (P)

where p is an arbitrary point of M such that = (p) = 2. Hence we have

(2.9) g(X,Y) =g (X", Y
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The fundamental tensor F of the submersion is a skew-symmetric tensor
of type (1.1) on M and is related to covariant differentiation V and V in M
and M, respectively, by the following formulas:

(2.10) Vo X'=(V, X" +g(F"Y" X"V = (v, X)" + ¢ (FY, X)*
(2.11) Ve X' =Va V= —F" X"
This, together with (2.2), implies that

(2.12) VoV=—FV=o0

§ 3. SUBMERSION AND IMMERSION

Let M and M’ be differentiable manifolds of dimension 7 +p+1 and -+ p re-
spectively and % be a submersion %: M — M’ which satifies the COl’ldltl()IlS of § 2. Suppose
that M is a submanifold of dimension # -+ 1 which is immersed in M and respects the
submersion . That is, suppose that there is a submersion 7 : M — M, where M is a subma-
nifold of M’ such that the diagram

M - M
i b
¥ ¥
M -~ M’

commutes and the immersion 7 is a diffeomorphism on the fibres.

Let V be the unit tangent vector to the fibre of M which satisfies (2.2).
Then by the commutativity of the diagram we easily see that 7(V) is vertical
with respect to &. So we may put

5y

(3.1) V=1i\).
Let % be the 1-form on M satisfying
5 (V) =
and
7(X)=o0
for any horizontal vector field X on M. The Riemannian metric G of M
is given by
G2) CX, 9 =G"X,V)+8X 5T,

from which we know that G (X', Y') = o implies G (X" Y =o.
We denote by ¢ the induced Riemannian metric of M. Then for a vector field X on M,
we have

GaXY),V)=GaX"H,i(V) =1X"V)=o,

[7X]
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which shows that 7 (X") is horizontal. On the other hand from the commutativity of the

diagram we know that if X is an invariant vector field on M, 7(X) is also an invariant
<~

vector field on M. Hence we have

®(2/(XY) =i (n(X") =i(X),
which, together with (2.7) implies that

(33) 1(X) =71 (XM =7 E (X)) =X

Let NA(A=1,2, -+, p) be normal vector fields to M which are mu-
tually orthonormal at a point x € M and put Ny = N%. Then Ni’s are also
normal vector fields to M which are mutually orthonormal at any point
y €M satisfying m(y) = x. In fact, by (3.2), it follows that

G (Na, #(X") =GNy, 7 (X" =G" N5, (X)) +
IR FE X)) =GNy, i (XD =o,

G (Na, Ng) = G (Nx, Ng) = G* (N}, N§) 4 & (N}) & (N5) =
=G (Na, Np)" = 8,5

Let D, V, D and V be respectively the Riemannian connections of Iﬁ,
M, M’ and M. By means of the Gauss equation for submanifold, we have

Dreay 7 (YY) =7 (Vi YY) + Zhy 2 (Fa X5, YY) NE =
— 7 ((Vx V)" -+ g(F- XY, Y9 V) + 2R, g (A, X5, Y9 N,
from which
iy 7 (YD + G (F i (X 1 (V) V = 7(Vx V) +
+ g (FY XY YR 7 (V) + 2o g (Ha X5 YO NX.
Comparing the vertical parts and horizontal parts, we have
(3-4) G (F i (XN ¢ (V) = g (F" X5, vh),
iy 2 (Y = 7(Vx V)" + 3Ry (s X5, Y NE.
Using the Gauss equafion again, we get
(35) g(EA XN YY) =g (HA X, V).
From (2.9) and (3.4), we have also
36 G (Fi(X),7(Y) =g (FX, V).

Next we consider the transforms 'Fi (X) and 'FN, of 7(X) and Ny
by the fundamental tensor 'F of the submersion ®. By means of (3.6) they
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can be written as

(37) Fi (X) = ¢ (FX) + Mg wa (X) Na,
(3.8) 'FNj = — 7 (Uy) + Z8_; hap Ny,
and we easily see that

(3.9) & Ua, X) =uy (X).

We denote by DN and DY the connections of the normal bundle of M
in M' and M in M respectively. By definition of DN, we have

DiL Ni = Diay NX + 7 (Ha X5),
from which
DY NK = Dy No)¥ + G (FY i (X)°, ND) ¥ + 7 (Ha XY
= —i (Ha X)" + DX ND" + G (Fi (X), NO'V + 7 (Hs XP).
Comparing the horizontal parts and vertical parts and using (3.1), we get
(3.10) DY Nj = (DX N,
(3.11) £(Ua, X)" =G (Fi (X), N = — g (Ha X", V),

because of (3.7) and (3.9). The normal connection being expressed by the
third fundamental tensor Lap as (1.4), (3.10) is nothing but

(3.12) Lap (X" = Lag (X

Consider the covariant differentiation of N in the direction of V. By
(1.2) and (3.1), it follows that

Doy Ni = — 7 (Ha V) + DINs = —7(Hs V) + Z8_, Tan (V) N5
Substituting (2.11) into the above equation, we have
— FYNE = —7(HAs V) + B, Tap (V) N3,

from which

(3.13) Mp =G (F'Ny ,Np) = — L5 (V),

because of (3.8).

§ 4. MEAN CURVATURE VECTOR FIELDS

In this section we want to relate the conditions imposed on the mean
curvature vectors of M and M. First of all we prove the

LEMMA 4.1. For any point p € M, we have

(4.1) (trace Ha) (5) = (trace Hy) (n($)) = (trace Hy)" ().
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Proof. Let {E,, -+, E,} be an orthonormal basis at Trg (M) and choose
an orthonormal basis {F,,---, E,,;} at T5 (M) in such a way that E; = Ej
for i=1,---,7 and E,,; = V. Then we get

trace Hy = 2301 ¢ (HaEa, Bo) = X1 § (AL EP L ED) + 2 (HAV, V)
=X g (HaEy, E)Y + g (AL V,V) = (trace HY)" + g (HL V,V),
because of (3.5). On the other hand, from (1.2), we have
D¢ V= Ds ¢ <‘V) =17 (Vg V) + 2k §(Hs V, V)N, = o,
which, together with (2.12), implies that
(4.2) FHAV,V) =0, A=1,2, -, p.
Thus we have (4.1). This completes the proof.

Let N and N be the mean curvature vector field of M and M respectively. Then, by
Lemma 4.1, it follows that

1
7 -+ 1

” L

(4.3) N = P

EP_, (trace H,)N, = 2P (trace H,)" NL =

1
741
LEMMA 4.2 If the mean curvature vector field N of M is parallel with

respect to the induced connection of the normal bundle so is the mean curvature
vector field N of M.

Proof. Letting DX act on N, we get
(4-4)  (n+ 1) DX N = 3Z_, {X" (trace H,) N, + (trace H,) DY Na}
= X%, {X" (trace Hy)" N§ + (trace Hy)" (DY N}
= ¥B_, {X (trace Hy) N + (trace Hy) DY N, "
— 7 (DX N)",

because of (3.10). Thus D N = o implies that DX N = o. This completes
the proof.

Next we relate the length of the second fundamental tensors of M and M. From (3.5)

and
gHAX , V) ' =g(HaX,Y)or =g (Ha X)5, YY),

we obtain
(4.5) Ha X' = (Ha X)F + g (Ha X5, ) V.

We choose an orthonormal basis E, such as the one we have chosen in the proof of Lem-
ma 4.1, and we have

trace H} = Z0*} - (H2 Eo, Eo) = 2%_, g (H E},E) + 3 (H2V,V)

=1 &

=

= THA(HaE)"+ g(HAE;, V) V), ED + g(HAV,Ha V)

1=1

Il

It
\E

n
§(Ha (HaE)SED + X g (HaE5, V) g (HaV,EY + g (Ha V, Ha V).
1=1

i.
-
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Substituting (3.11) into the last equation and making use of the fact that

n+1 o o n o _
FHAV, HaV) = X §(HaV,E) g (HaV,Ee) = X Z(HaV,E}) g (Ha V, EY,
a=1 =1

we obtain
. n
trace Hi = E {g(Hi E;, Ez‘>L +24(E;, U ) g (E;, UA) } = (tracce H; ) +24(U,, UA)L:
i=1
because of (4.2). Hence we have

4 _ P, \L D
(4.6) Y trace Hi = ( > trace Hi) +2 g(U,,Un"
A=1 \A=1 A=1

» » L
THEOREM 4.1. Z trace B3 = (E trace Hi) is always valid. The
A=1 A=1

equality holds if, and only if, the submanifold M is invariant under 'F

If 7 is a totally geodesic immersion, from (4.6) we have

THEOREM 4.2 Let i be a totally geodesic tmmersion of a Riemannian
manifold M in M which respects the submersion %: M — M'; then 7 is also
totally geodesic and the tangent space of M is invariant under 'F

§5. REAL SUBMANIFOLDS OF COMPLEX PROJECTIVE SPACES

Let S"*#*! be an odd-dlmensmnal unit sphere in an (7 + p + 2)-dimensional Euclidean
space Em'b+2 C™H24D12 and T the natural almost complex structure on Cr+P+22 The
image V= ]N of the outward unit normal vector N to S™+#+1 by the almost complex
structure defines a unit tangent vector field on S"?+! and the 1ntegral curves of V are
great circles S' in S"*#*! which are fibres of the standard fibration % T,

7

(5.1) St . grtetl " cp@tp)2

onto complex projective space. The usual Riemannian structurc on CP®*+P/2 is characterized
by the fact that & is a submersion.

Let M" be a submanifold of real codimension 2 of a complex projective space CP™+2)/2,
Then the principal circle bundle M™*?! over M" is a submanifold of codimension p of SPHAHL
and the natural immersion M"*! into S"“’ *1 respects the submersion %. Thus S™"#*! and
CP™FPI2 4re in the same situation as M and M’ respectively, so we continue to use the
same notations as in the preceding sections.

In S™7*1 we have the family of products

M,,, = S*xS’

where ¢ 4+ 7 = # + 1. By choosing the spheres to lie in complex subspaces,
we get fibrations S'-— Mayi1, 21 = M%,, which are compatible with (5.1)
where g + 7 = (n—1)/2. The almost complex structure | of CP"+»”2 g
nothing but the fundamental tensor of the submersion %, that is,

(5.2) J"X=—D3gV , XeT @,

38. — RENDICONTI 1975, Vol. LVIII, fasc. 4.
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and the curvature tensor of the complex projective space is given by
(5.3) R X, YNYZ' =G Y, Z) X' —GXL,Z)Y' + G(JY', Z) JX' —
—G(JX,ZH JY' —2GJY', YY) JZ'.
which, together with (3.8), implies that
(5-4) GR(Z(X),2(Y))Na, Np) =g (Ua, V) g(Us, X) —
—&Ua, X)g(Up, V) —2£(FX, V) hsp .
Combining this equation with (1.7), we have
(5:5) GRY(X,Y)Na,Np) = g([Ha, He] X, V) +¢(Ua, V) g(Un, X) —
—g(Us, X)g(Up,Y)—2g(FX,Y) M5 .

On the otﬁer hand, from (3.5) and (4.5), it follows that
g(Hy Hp X, V) = g(Ha (Hg X)Y, YY) = g (H, Be X5, YY) —
— g XN V) gEAV, YY),
from which, together with (3.11), we get
(5:6) g ([Ha, Hp] X, V)" = g ((Ha, Hs] X" V) —
—&Us, X)" g (Ua, V)" + g(Up, V" g Uy, X)
If the normal bundle of M of S*7+ is flat, then by (1.8),
g([Hs, Hp] X5 Y =0,

and so
(5.7)  &([Ha, Hp] X, V) = —¢g(Us, X)g(Ua, V) +2Us, V) g(Us, X).
Substituting (5.7) into (5.5), we have
(5.8) G (RN (X, Y)Na, Np) = —2¢ (FX, Y) dpp .
Thus we have proved

LEMMA 5.1 If in a submanifold M of an odd-dimensional sphere S*TP*1
the connection of the normal bundle is flat, we have (5.3).

For totally geodesic submanifolds of a complex projective space, we
have ’

THEOREM 5.1. A compact, totally geodesic submanifold of real codi-
mension p < (n -+ 3)|4 of a complex projective space CPOP? 45 pecessarily
a complex submanifold and consequently a complex projective space CP™?,
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Proof. Since G is the Hermitian metric of CP®*®2 it follows that

I1=G(JNa, JNy) =G (¢ (Uy),2(Un)+G (BZ:)\AB N, sz:,l?\Ac NC) =

=g (U, ,Up) + ZB‘, AaB AaB

and then
D
(5.9) Eg(UA,UA>=P—Z AsB M = p.
AT AB

Thus, combining this with (4.6), we get

»
Z raceHA—ZZg(UA,UA)~2p< ”+I/I
A=l p

n+3

because of p <=2 . Applying Simons’ result [6], we obtain that M is

totally geodesic. By virtue of Theorem 4.2, M is a complex submanifold
and consequently a complex projective space CP™?,

COROLLARY.  There is no odd-dimensional, compact totally geodesic
submanifold of codimension p <%§~ of a complex projective space.

THEOREM 5.2. If a compact minimal submanifold M of real codimension
? of a complex projective space CPnpl2 satisfies

P
(5.10 Z H2 <M’
510 3 traee 11y < 243

M s a totally geodesic complex projective space CP™?.

Proof. We note that (5.9) is still valid for any submanifold M. Com-
bining (4.6) and (5.9), we have

14 ¥4
o A2y 7t3—4p —rtr
(5.11) é trace 03 §A§=_‘,1 (trace Ha)" +2p < /NI e

On the other hand Lemma 4.1 shows that if M is minimal, M is also
minimal. Thus applying Simons’ result to (5.11), we obtain that M is
totally geodesic. Thus Theorem 4.2 shows that M is totally geodesic CP™2

§ 6. ANTI-HOLOMORPHIC SUBMANIFOLDS

As is well known, a complex submanifold (holomorphic submanifold) of ‘a complex
manifold is characterized by the fact that at any point of the submanifold M the
tangent space is invariant under the action of the almost complex structure ] of the
ambient manifold, that is, for any peM , T, (M) = J (T(M)). Since J? = — identically, this
condition is equivalent to the fact that, at any point of M, the normal space is invariant
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under J; that is, Ny(M) = J (N, (M)). Now we consider such a subamnifold of a complex
manifold that at any point of the submanifold we have

(6.1) JNp (M)n Ny (M) = {o} .

The author calls this submanifold an anti-holomorphic submanifold. 1t should be remarked
that some authors call anti-holomorphic a submanifold that satisfies JT,(M)NTs(M)={o}.
But it seems to the author that our new definition is preferable being less exacting than the
old definition; for example, any real hypersurface of a complex manifold is anti-holomorphic
in our sense.

In this section we show that some conditions in M of S*?+!

inherited by anti-holomorphic submanifolds of M of CP®+#,

are naturally

PROPOSITION 6.1 Lot M b2 an n-dimensional anti-holomorphic subma-
nifold of a complex projective space CP™ P2 of yeal codimension pandn: M—-M
the submersion which is compatible with the submersion % :S"PT -~ CPTP=,
Then the mean curvature vector field N of M is parallel with respect to the
induced comnection of the normal bundle if, and only, so is N of M.

Proof. By definition of mean curvature vector field, it follows that
g — p =z — — — —
Dg N = E (V (trace Ha) Na + (trace Hy) Dg Na).
A=

Since Lemma 4.1 shows that trace Hy is an invariant function with respect
to V the first term of the right hand side of the last equation vanishes.
Moreover, by (1.4), (3.8) and (3.13), we get

. Do _ ¥4
(6.2) DY N, = BE Lar (V) Nj = — BE s N = 0.
=1 =1

Combining (4.4) and (6.2), we know that N is parallel with respect to
the connection of the normal bundle. Conversely if N is parallel, Lemma
4.2 shows that so is N. This completes the proof.

From (3.10), we easily prove

PROPOSITION 6.2. Let M be a submanifold of S****' whose comnection
induced to the mormal bundle is flat and M agrees with the submersion
7 UYL CPYPR Then the induced comnection of the normal bundle of
the base submanifold M of CP™ P2 is faz if, and only if, M is anti-holomor phic.

We prove next the

THEOREM 6.1. Let M be an n-dimensional, compact, minimal, anti—holo-
morphic submanifold of a complex projective space CP™ PP If. cverywhere
on M, we have

D
L g2 < 73 —42
<6.3) Agl trace HA éZ———I/_ﬁ— y

then M is MC . in CP®HD2,

ar
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Proof. Since M is anti-holomorphic, we have
P
(6.4) AE_lg (Ua,Un) =2,

because of (3.8) and (5.9). Thus from (4.6), we get

Y4

(6.5) AZ_:‘I trace H} = 2 (trace HY)" -+ 2 p < ”—"I/IP :

If the equality is not satisfied in (6.5), we see that M is a great sphere of
S*"P*! and consequently M is a complex projective space. But, M being
anti-holomorphic, this is impossible. Thus the equality must be satisfied.

Making use of the Chern-do Carmo-Kobayashi’s result [1], we know that
M is isometric with S" (Ym/(n + 1)) X """ (Yu—m + 1)|(n + 1)) in
S"*1. Since M is compatible with the submersion % ,7 must be an odd number,
say m = 2¢ + 1. Hence M ==Mj ,. This completes the proof.

As a special occurrence, we consider the case p = 1. Then we have

COROLLARY [2]. Let M be a compact, real minimal hypersurface of
CPDR on which the inequality
(6.6) trace H> <# —1

)

holds.  Then trace H® = n—1 and M is isometric with M,
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