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SEZIONE 1

(Matematica, meccanica, astronomia, geodesia e geofisica)

Matematica. — Llementary proofs of some results of engulfing
theory. Nota di SANDRO BUONCRISTIANO, presentata ® dal Corrisp.
E. MARTINELLI.

RIASSUNTO. — Il presente lavoro & una continuazione di [2]. Li si era stabilito un
teorema di « Engulfing » (= inghiottimento) usando la teoria dei manici. Qui faremo vedere
come i ben noti teoremi di Engulfing di Zeeman, Stallings e Bing si possono dedurre dal
metodo descritto in [2]. Dimostreremo anche un teorema riguardante I'inghiottimento di un
poliedro contenuto nel bordo di una varieta.

§ 0. INTRODUCTION

We place ourselves in the PL category (polyhedra and PL maps).
Let X be a compact polyhedron in a manifold V. There are two basic defi-
nitions of Engulfing.

(S) given an open subset U of V we say that X can be engulfed into U
if there exists an ambient isotopy (= continuous family of homeomorphisms)
of V which carries X into Uj

(Z) given a closed subpolyhedron C of V we say that X can be engulfed
Srom C if X is contained in a regular neighbourhood of C in V (i.e. a compact
neighbourhood of C which is a manifold and collapses to C).

(S) and (Z) are known as Stalling’s and Zeeman’s Engulfings respectively.

The Engulfing problem consists in finding sufficient conditions under
which it is possible to engulf X (into U or from C accordingly). Engulfing

(*) Nella seduta del 12 aprile 1975.
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is one of the most useful tools in PL topology and has been used successfully
by Zeeman and Stallings in their proof of the generalised Poincaré Conjecture.
The main classical results are the following.

(ST) THEOREM (Stallings). Let V° be a manifold without boundary, U CV
an open subset, X*CN a compact polyhedron and suppose that (V,U) is at
least x-commected and x <v— 3. Then X can be engulfed into U.

(ZT) THEOREM (Zeeman). Let X*, C° be subpolyvhedra of the compact
manifold NV ,C closed and X compact, XCV — 3V, and suppose the following
hypotheses are satisfied:

(V,C) is k-connected, & >0 and there cxists a homotopy of X into C
which is modulo C;

xr<v—3 ; ¢<v—3 ; ct+tx<v+t+ib—2 ; 2x<v-+rb—2.

Then X is contained in a regular neighbourhood of C in V.
There is also a third type of Engulfing, called Radial Engulfing, which
says roughly the following:

(B) Given U (or C) as in (S),(Z) when can X be engulfed into U
(or from C) in such a way that the engulfing isotopy moves each point of V
along ‘“ a prescribed direction ”’? (see theorem below for a precise statement).

This Engulfing has been considered by Bing in [1]. His result is the
following

(BT) THEOREM (Bing). Let {A,} be a collection of sets in a manifold
M" without boundary, X*CM a compact subpolvhedron x < n-—3,U an open
subset of M.

Suppose that for each compact y-dimensional polyhedron Y, y < x,
there exists a homotopy H: Y X[o, 1] =M such that

(1) Hy=1id ; H;(Y)CU;
(2) for each point y € Y,H (yXx[o, 1]) lies in one element of {A,}.

Then, for each ¢ > o, there is an engulfing isotopy H: M X [0, 1]+ M
such that H,=id , H;(X)CU and, for each point p € M, there are » + 1
elements of {A,} such that the track H (px [0, 1]) lies in the e-neighbourhood
of, the sum of these x 4 1 elements.

The proofs of ST,ZT and BT are long and technical.

In [2] we considered Engulfing from a slightly different point of view,
namely:

(RS) given X® in a cobordism (W,2_W, s, W) we say that X can
be engulfed from @ — W if X is contained in a collar of 39— W in W.

The above definition is labelled RS because it can be found in Rourke
and Sanderson [3].
Our main result of [2] was the following.
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(A) Engulfing Theorem. Let W* be a compact cobordism, X*CW a
compact subpolyhedron, X N3, W = and suppose that the following
hypotheses are satisfied:

X is  o_W-inessential
(W, 32— W) is A-connected

2x<w +kb—2 ; x<w—3.

Then X can be engulfed from 2 W.

The proof is very short and elementary and uses only general position,
handle-theory and induction.

We also stated, without proof, three corollaries of Theorem A, correspond-
ing to the well-known versions of Engulfing described above.

The purpose of the present paper is to give a short proof of these corolla-
ries, which form Theorems 2, 4, 7 below.

There are two remarks to be made at this point. The first is that
Theorem 2 improves on ZT because it does not assume the homotopy of X
to be modulo any subset of C. The second is that we do not derive Theorems
2, 4, 7 as direct corollaries of (A); but each of the theorems is proved inde-
pendently of (A) although the proof is based on the same handle-theory
arguments used to establish (A).

We also look at the engulfing of a polyhedron X contained in the
boundary of a manifold W and show that, under reasonable hypotheses,
this engulfing is possible even if X is in codimension two in W (Theorem 8).

As this paper is a continuation of [2] we refer the reader to that
paper for all the notation and terminology. We only recall a definition:
a cobordism with boundary is a compact manifold W* together with two
disjoint (w — 1)-dimensional submanifolds a_W, 2, W of 3W. We set
M = cl (W — 5. W — 5, W).

§ 1. ENGULFING THEOREMS

We shall need the following addendum to Theorem [2], T

I. RELATIVE ENGULFING THEOREM. 7Zhe conclusion of Theorem 1
in [2] remains true iof: (W, W ,9, W) is a cobordism with boundary,
M=~a Wx[o,1] and XA (W —ao W) = g.

Proof. Let W, be a collar on 3_W extending a given collar-structure
on M and consider a nice handle- -decomposition of W on W,. All the
arguments used in the proof of the theorem remain valid in this relative
situation and all the isotopies may be taken to be modulo 3W. Hence the
addendum follows.
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2. THEOREM (Engulfing & la Zeeman). Let C°, X® be closed subpolyhedra
of the compact manifold NV, with X compact and satisfying the following
hypotheses: .

XNnaoaV =g ;o v <w—3 , <w—3

ct+x<w -+ E—2
2x<w -+ hb—2

the pair (NV,C) is k-connected and there is a homotopy of X into C. Then X
7s contained in a regular neighbourkood of C in W.

Proof. First we deal with the case CN 3oV = . Let N be a regular
neighbourhood of C in V, with NNV = @, and consider the cobordism
W,ooW,5, W)= (V—IntN,aN,aV).

Step 1. (W, 3_W) is /k-connected.

Proof of Step 1. Consider the excision map (W, o_ W) s (V, N), and
the induced map j:m (W, W)—=x (V,N) of the corresponding fun-
damental groups. We claim that ;; is an isomorphism. This follows imme-
diately from observing that the track of a homotopy of a relative loop in
V, N has dimension < 2, so that, by general position, it can be isotoped off
C and hence off N, because N is a mapping cylinder on C. Therefore Step 1
follows from Hurewicz's theorem.

Step 2. We shall prove the following: suppose V=W UH,6 NCW’,
index H>#% -+ 1. Then there exists a regular neighbourhood, N’, of C
in V and a homotopy, f': XX[—1,1]—=V, of X into W', such that /' is
modulo N’ and N’'CN.

Proof of Step 2. The important part of this step is to obtain that the
homotopy be modulo N’ for some N’. Note that, if f: X X[o,1]—=V is
the given homotopy of X into C, then f obviously throws X into W'; however
we cannot take f = /' and N == N’ because f may not be modulo N.

In order to construct f' we assume, first of all, f in general position and
let PCXXJ[o,1] be the subpolyhedron given by F™(f(Xx[o,1]NnC)).
By general position

dim f(XX[o,1]1NnC<x +1 +c—w,

hence dim P <x + 1 4+ ¢—w because f is non-degenerate (as usual,
w.l.o.g. we assume f (X X[o,1])NoW = ). Then the shadow, Qp, of P
in X X[o, 1] has dimension <x +2 4+ c¢—w. We now look at the
dimension of f(Qp)N D, where D = fibre of H. General position gives:

dim(f(Qp)ND)<(w—Fk—1)+(x+2 Fc—w)—w < —1

because, by hypothesis, ¢ +x <w + £— 2.
Therefore we can assume that f(Qp) does not meet D. Now let
JY N, M, /%, g be defined as in the Proof of [2] Theorem 1 (Step 1) after
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replacing Q, W by Qp,V respectively. It is immediately seen that
g: XX[—1,1]—V provides a homotopy which throws X off D and is
modulo C U J where J is a convenient neighbourhood of X 0 C in X. Thus,
because C is closed, there exists a regular neighbourhood N of C such that
g:XX[—1,1]->V is modulo N,.

By construction the homotopy g pushes X off the fibre D. Then there
is a handle-move which engulfs X into W'

The composition of g with this handle-move provides a homotopy
XX[—1,1]—V which carries X into W’ and is modulo N,. Hence we
can take /' to be this homotopy and N’ to be Nj.

This concludes the proof of Step 2.

Step 3. There exists a regular neighbourhood N’ of C in V and a homo-
topy f': XX[—1,1]—V which throws X into a collar of 3_W in W and
is modulo N’.

Proof of Step 3. Choose a nice handle-decomposition of W on o_ W and
consider W, = o_ W U {handles of index < £}. Combining Step 2 above
with the inductive procedure indicated in the Proof of [2], Theorem 1 (Step 4),
one easily deduces the existence of a homotopy f"': XX [— 1, 1] =V which
carries X into W, and is modulo a convenient regular neighbourhood N’
of Cin V, N'CIntN. We know that W, is a regular neighbourhood of
a_W U £ where £ is a A-dimensional polyhedron. Then, because (W, o_W)
is A-connected, there is a homotopy f'"': Wy X[o, 1] —V which carries
W into-a collar of 2. W and is modulo N'CInt N. The composition of f'
and f"' provides the required homotopy f'.

Step 4. Completion of the proof of the theorem in the case CN a3V = .
Consider the cobordism (W, 3. W, 3, W) = (cl (V—N"), 3N’, 3V). In step 3
we have proved that X is 3_ W inessential in W (X = X — Int N"). Therefore
Theorem 1 of [2] applies to give an ambient isotopy of W which carries X
into a collar W, of W and is modulo 3 WU 3, W.

Then we can extend this isotopy to an isotopy of the whole V by means
of the identity on N'. As N'U W, is obviously a regular neighbourhood of
C in W, the theorem is proved in the case Cn3V = @. If, on the contrary,
CNaV =g, then the proof is quite similar, the only difference being that
the cobordism (W, 2. W, 3, W), defined by excising a regular neighbourhood
of C in V) is now a cobordism with boundary, so that this case is a conse-
quence of the relative engulfing theorem.

We omit the proof of the following addendum, which is easy.

3. Addendum. The conclusion of the above theorem continues to hold
if X intersects the boundary oV and the glven homotopy of X into C is
modulo 3V.

4. THEOREM (Engulfing a la Stallings). Ler (W*, 0. W, 2, W) &e a
cobordism, UDo_W an open subset, X*C W a compact subpolyhedron,
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XNy W=g. Suppose: (W,U) is y-connected, y = 2x + 2 —w, and
there is a homotopy f: XX [0, 11— W of X into U, which is modulo 3 W.
Then there exists an isotopy of W carrying X into U.

Proof. The proof goes by induction on the dimension of the poly-
hedron X, the induction starting trivially with dim X = —1 or o.

Suppose, then, we have proved the theorem for dim X < x and let us
prove it for dim X = . Choose a regular neighbourhood N, of f Xy
in U, with N;N 3, W = @, and consider the cobordism (W', oW, 0, W) =
= (I(W-—Nyp,acl (W—N,)— 23, W, a2, W). Because X is in codimension
at least three, one proves, as in Theorem 2 (Step 1), that (W', U") is y-con-
nected where U’ =U N W'. Consider, then, a handle decomposition of W’
on (a collar of) 2 W'. We know that W, (handles of index < y) is a regu-
lar neighbourhood of &. W'UY, where Y is a y-dimensional polyhedron.
Now it is immediately seen that W', o_ W/, 9, W/, U Y satisfy the same
hypotheses as W ,a_ W, 5, W, U, X respectively in the statement of this
theorem. Therefore, since y < x, we may assume, by induction, that there
exists an ambient isotopy which engulfs Y into U’ and is modulo 3. W’. Thus
we can extend this isotopy to the whole of W by means of the identity on
N; and so assume that Y,CUCW, where Y; =3 WUN,UY.

Now, from general-position arguments it follows at once that the pair
(W, Y,) is y-connected. Let C, be the x-skelecton of Y, in a triangulation
of W having Y, and /(X;) as subcomplexes. The quadruple (W, oW , X, C,)
satisfies the same hypotheses as (W, eW, X , C) in Theorem 2 and Addendum
3 above.

Therefore, given a regular neighbourhood N of C in W there exists an
isotopy of W, which engulfs X into NCU and the theorem is proved.

Remarks.

5. The conclusion of the above theorem remains true if X W= g
and the homotopy f is modulo sW =2 Wy, W.

6. The above theorem (and its proof) makes sense even for 3 W = &,
in which case the statement reduces to that of [2], Corollary 3.

We now hint at that type of engulfing named °radial engulfing ' by
Bing ([1]).

Let (W,3.W, 5, W) be a cobordism, {S;} a collection of subpolyhedra
of W,e>o0 a real number, N, the e-neighbourhood of S, in some fixed
triangulation of W. If A is a positive integer, a homotopy in W is defined
to be A-radial if the track of each point is contained in the union of at most A
elements of {N;}; if a homotopy is A-radial but not (% — 1)-radial, then we
say that X is the degree of radiality of the homotopy.

We also say ‘radial’ instead of 1-radial. Then the notion of radial
k-connectedness is the obvious one.
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7. THEOREM (Engulfing a la Bing). Let (W”, o_ W , 2, W) ée a cobordism,
X*CW a subpolyhedron, <, {S;},{N;} as above and suppose that: (W, a_W)
is radially k-connected,

there is a radial homotopy of X into a collar of 9. W, the homoiopy
being modulo 3_"W,

22<w+A—2 |, x<w—3
Then, given a collar Wy on oW in W, there exists an ambient isotopy, which
is kw-radial and engulfs X into W,.

ldea of proof. First we choose a ‘radial’ handle-decomposition, i.e.
one where each handle is contained in the interior of one element of {N;}.
Then the proof follows the same pattern as the non-radial case [2], Theorem 1
and it is very easy to check that each of the isotopies there constructed can
now be assumed to have such a degree of radiality that the final isotopy of
W is kw-radial. We leave the details to the reader.

The following theorem deals with the engulfing of a polyhedron X which
is contained in the boundary of a high-dimensional manifold W¥ (z > 6).
The result is obtained by combining the Proof of [2], Theorem 1 with the
method of [3], Theorem 7.10 (1).

8. THEOREM. Let (W”, 0. W ,3, W) be a cobordism, X*C oW, and sup-
pose that:
‘ X is o_ W-inessential

2x<w+£—3 ; x<w—3 , w=>=6.

Then X can be engulfed from 3_W.

Proof. We distinguish the two cases: * <w —4;x=w — 3. x <w — 4.
To prove the theorem in this case it suffices to establish that X is 3_W-
inessential by a homotopy which takes place in §W. Then one can proceed
exactly in the same way as in the Proof of [2], Theorem 1, taking care to
perform all constructions in dW: this is made possible by the assumption
2x<w -+ £—3.
We assume, w.l.o.g.,, X*Co, W and write W = W' UH where W' is a
‘ cobordism on 9. W. Let f:XX[o,1] - W be the given homotopy. We
shall replace f/ by a homotopy /"' which makes X 3. W inessential and
takes place in cd (W UH-—W'nH); the result will then follow from
induction. ‘
By general position f (X X [o,1]) pD. Let ¢ be a point of
D —f(XX[o,1]). There is an obvious retraction (radial projection) of
H—g onto g (QI') " YU Iixal" ™, g: I'xI* > H being the characteristic
map of H. The composition of 7 with this retraction gives a new homotopy
S XX [o,1] =W making X3 W inessential. In general /' (X X [0, 1])
will intersect the attaching tube W' AH = g (S 'x1"%. Therefore we
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need a further modification. Choose a point v € "' and consider the
circle C, = g (S""*xv). Because x <w — 4 general position in 3W’ gives
S (XX[o,1DNC, = o.

Let » be the obvious deformation retraction of W’ aH — C, onto
(W UsH —W'nH). Then one sees immediately that /" = »f' is the
required homotopy.

fxr=w—3 From2x<w -+ 4—3 it follows &4 >w — 3. Because
w > 06 we can proceed as in [3], Theorem 7.10 (1), i.e. first we eliminate all
handles of index < w -— 3 by an ambient isotopy, then we shift X off the
fibres of the remaining handles using general position and finally engulf by
handle-moves.

The above theorem deals only with the case w > 6. If w < g, it is not
known whether it is possible to engulf a polyhedron X CaW which has
~codimension two in 9W. This problem is related to the well-known conjecture
of Zeeman: there exists a compact 4-dimensional contractible manifold V*
and an S'C3V such that S' is essential in 3V and S! does not bound a disk
in V (see [5]). Certainly, if we assume X to have codimension three in 3W,
leew=35,xr=1,A>2o0rw=4,x=o0,k>o0, then engulfing is possible
by the proof of the above theorem.
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