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Topologia. — Alexander-Spanier cohomology of higher order.
Nota di NicoLae TELEMAN O, presentata “? dal Corrisp. E. Mar-
TINELLI.

RIASSUNTO. — Per ogni numero naturale # > 1 definiamo un funtore coomologico
'Hz;) (—, G) sulla categoria degli spazi topologici. Quando %= 1 si ottiene la coomologia
di Alexander-Spanier.

Costruiamo una successione spettrale che converge verso la coomologia introdotta,
successione spettrale che generalizza la <uccessione spettrale di Leray. Si deducono alcune
proprieta: per esempio i gruppi Hz;,) (X, Z) sono di tipo finito per ogni poliedro compatto X.

1. INTRODUCTION

The Alexander-Spanier cohomology [1] of the space X is defined consi-
dering the complex of the Alexander-Spanier cochains modulo the sub-
complex of ““locally zero” cochains. A cochain w of order # is ““locally
zero 7 iff it vanishes on a neighbourhood of the diagonal V*(X)={(x,---,x) |
x€X}CX"

In this paper we define and study a new cohomology functor con-

sidering as ““locally zero” a cochain which vanishes on a neighbour-
hood of

Vi (X) = {(x'---, 2" |x eX, card {«%,--, 2"} < p} C X"

We prove that the resulting functor is homotopic for compact spaces, and
we construct a spectral sequence which generalizes the Leray spectral se-
quence; we deduce a finitess theorem for the cohomology groups of compact
polyhedra.

I thank prof. Albrecht Dold for useful conversations.

2. REcCALL AND CONSTRUCTIONS

We begin with a short presentation of the Alexander-Spanier cohomology
(the absolute case).

We adopt the notations from the tract by E. Spanier: ‘‘ Algebraic
Topology .

Let G be an R-module and X a topological space; we denote
X?= XX+ XX (p times).

(*) Lavoro eseguito presso I’Istituto Matematico «G. Castelnuovo» dell’Universitd
di Roma come professore visitatore del CNR nell’ambito del Gruppo sulle Strutture Alge-
briche ¢ Geometriche.

(**) Nella seduta dell’8 febbraio 1975.
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Let
C'"(X,G) ={9]¢: X" G}

and let
(1) 3:C"(X,G)—~C (X, G)

be defined by the formula:
7+1 . .

(2) 3¢ (%o, 21 ,- <ty ) ==20 (— 1) @ (Fo,  Xi,-- ) Xgtr) -
C’(X,G) is a G-module in a natural manner and C*(X,G) = {C’ (X,6),33,
is a cochain complex.

Let Cy (X, G)CC* (X, G) be the subcomplex of locally zero’’ coch-
ains; by definition, the cochain ¢ € C* (X, G) is locally zero iff there is an
open covering % of X such that

(3> CP/OZ/H_I =0 , %q+l =UuU Ug‘+1 C X9+1 .
Uge

The cohomology complex C* (X | G) is acyclic, but the complex
4) C'(X,6)=C"(X,6) /CI(X,G),

generally, is not acyclic.

By definition, the homology of the complex C* (X, G) is the *‘ Alexan-
der-Spanier cohomology of the space X with coefficients in G .

There is an alternative definition of the complex C* (X, G).

If % is an open covering of X, let X (%) denote the abstract simplicial
complex whose g-simplexes are the points of the space #"*. Let C* (% ,G)
be the cochain complex of the simplicial complex X (%) with coefficients
in G.

If % <" (the covering 7" is a refinement of the covering %) then the
restriction map

) Yz :C" (%, G)~C" (', G)
defines a direct system {C* (% ,G), ¢y} .

We have
(6) lim {C* (% ,G), 2} ~C* (X, G).

We define now a new cohomology.
Let p € N be a fixed number.
Let % = (Uy)aca be an open covering of X and let be

@) Us' = U UpXUpgy X+ XU,
(a()yal""»aq)

such that the set (a0, o1, -, ®,) contains < p distinct elements.
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We define:

X(rp)(OZZ,G)z{dld=ZPi&i:PiEG,EiE%(r;)-I}

finite

Cly(%,G)={o|o: %' >G}.
It is clear that:
Chy(u,G)=C"(%,G).

We define in a similar manner

® Cin (%, G) = {Cly (X, G), S}yo1,...
and
(8 Cip (X, G) = limC(, (%, G).
p
We define
(9) Hgy (X, G) =H, (Ciy (X, G)).

We have evidently:
Hy (X,G) =H" (X,G).

Iff € Top (X ,Y) and % is an open covering of Y then f ' #={ f (Ua)}tas
U, € %, is an open covering of X and f defines a simplicial map:

for XU )Y ()

and also a morphism
Y Co (%, G~ Cly (2, G)

which commutes with the restriction morphisms: {7, ijii;’;; hence f defines
a homomorphism:
*

I

ProrosITION 2.1. Let X ,Y € Top, X compact.

Hip (Y, G) > Hi, (X, G).

Let A: X X1 =Y be a homotopy, let
Zo: X —>XXx{o} &= XxI

1 X—=>Xx{1} &> XxI
be the natural injections.

Then we have
(Aedo)" = (A°a)" : H, (Y,G) > H{y (X, G).

(In other words if fr ~ fo: X =Y, X compact, then f, = £2).
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Proof. 1t is sufficient to prove
(10) dy =1,

because (Aszo) = 7o °A* and (Ass)* = 77 <A™,

By the fact that lim commutes with the homology functor defined on

—
the category of cochain-complexes, it follows that it is sufficient to prove that
for any open covering % of X X1 there is an open covering ¥ of X finer
than (7, %) N (57" #) and an homotopy:

b XP (4,6~ Y (%, G), Fr=0,1,--

which connects (40), and (71), .

If# is an open covering of X and £, is the covering of I by the sets
(% , 1%7;—1_—2) ,o<m<n—2, then ¥XZ%, is a covering of X XI; X being
compact the set of the coverings & X, is cofinal in the set of open cover-
ings of X X1I.

Then it is sufficient to consider the case % =.% X %,; we consider on X
the covering ¥ = <.

Now we define the homotopy 4, by the formula:
ér [xo"")xr] =

=i§0 (—I)’.[(xo,o),...,(x,-,o),(x,v,%),(x,-ﬂ,?) e (xr, _;_)J +
2 0 () () e B ) )]

for [xo0, -+, x,] € VA"

Remark 2.2. Probably the Proposition remains valid for any X, not
necessary compact.

Example 2.3. Let X be a discrete space. Then, if we work with skew-
symmetric cochains, which form a cochain-homotopy equivalent complex
with defined complex Cj (X, G), we deduce:

Hiy (X,G)=H"(Z,G)

where & is the polyeder in which any vertex is a point of X and any » 4+ 1
distinct points of X ,» < p, form a r-simplex.
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For example if » = 2 and X contains three points

Hy (X,G) =~ H* (S, G).

3. SOME PROPERTIES OF THE FUNCTOR HZ;, (— &

3.1. PROPOSITION 3.1. For any r»,1 <y <p—2, and any X,
H(rzﬁ) X, G) =o.

Proof. Let {€X be a fixed point in X and 7:G — Ciy (X, G) the

augmentation

(12) @) =g , g€eG , xeX.

Let
£ :Cly(X,G) -Ch'(X,6), 1<r<p—1,

be defined by the formula
(I3> (’ér @) [xo yt Ty xr—l] =@ ([C y X0, X1, ’;xr—l])

for ¢ € C( (X, G).
Then the relation holds:

5‘9 for IngP"—Z,CPE(_:(:&)(Xf(D

(14) (87’—-1 'ér + kr+1 87) @ = ) —o
¢—n(e (@), 9eCi,y(X,G).

and hence the desired result.

The upper homotopy is used in the literature for proving: the acyclicity
of the cochain complex C* (X, G) (c.f. E. Spanier, Algebraic Topology,
p- 307).

3-2.  We indicate now a method which permits the evaluation of the
groups H(, (X, G) for any »,0<7» <N, N being a fixed natural number,
arbitrarily choosed.

Hence, let N be an arbitrarily fixed natural number.

DEFINITION 3.2. We say that the coverlng U = {Uy}ues of the space X
“ N-covering ” if and only if #" = {Uly is a covering of XM,

If % is a N-covering of X and N'< N, then % is a N'-covering of X.

We introduce on A an arbitrary total order.

We define the z-nerve of the covering %, and we write 4, (%), as the
set:

(15) - /Vrl(%)={(oco,a1,~~,an)|oco <u< - <a,, 0, €ANU,=Foz;-
. 1=0
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If
6= (&0, 01, -+, a,) €N (U
let
Us= N U, .
=0

Let X7 = UUZYCX” and Xy = V XZ.

zeA m=1
Clearly,
U" = {U7 }aen
is a covering of X%, and
VACO A

We suppose now % is a N-covering of X.
Let "= {Vy}aea be an open covering of X.

Let:
Vi (U) =V N X CX7.
We denote
Corr (1,G) ={o | 9: 7" (%) ~G}
and k
(16) Cipr (X, G) = fim Cinx (7. G) .

p
For » < N we have

.C(rﬁ)% . G) = (_:(rp) & G) and E‘(rzs)% X,G6) = E&) X,G).
Let
iv: Clpa (7, G) = TI Cln(UsnV,G)
oeN (%)

be defined as follows:

for ‘
€ CZP)"?/ 7G), (@ ¢) = {CPa}oeemo(%)
where
e = ¢ | U Nyt (@) .
Let

dyv: Tl Clpa 0 Us,G)— TI Cipa (N U,,G)
oe Xy (@) oedgir@)

be defined as follows: for any ¢ == {@o}aemg(%) )

dy v (@) = Yo}e ey (%)

g+1
+ . ~
"1’(“0:“1 2ty Oy Olgy1) = 2_40(— IY‘P(“O T Oyt Ogy)

B
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Let:

i" =liméy: Clpa (X,G)—~ TI Ciya(Us,G)
7 o€ N (%)

4 =tim s I Coy(Ue, G TI Tiy(Us,G).

-— ge ceA
e q 7+1 (%

LEMMA 3.3. If the space X is paracompact, then the sequence:

O — C—z;)% (X ) G) Z_*_> H (_:z;)% <Uc ) G) -
qut
e C(ﬁ)% Us, G) L H C(p)% Us, G) —-
GE./V‘q(% (X5 q+1(
is exact.

Proof. We prove that for any covering ¥ = {V.}aua of the space X,
the sequence S¢ (¥7)

A*
O —=>Cia (,G) L5 TI c(p) (U N¥;G)—> - -
Sy (V) et

o TI Cly(Ua N ,G) 2% T €y (Uan ¥, G) —>-
oe N, (%) seN 11 (W)

is exact.
If the sequence Sz (¥") is exact for any ¥, then also the sequence
Sa = lim S¢ (V) is exact.
F2
We will interpret the elements of the groups C(p)qy 7, G), resp.
H C(p) (Us N ¥, G) as sections in a certain system of sheaves:

ceq

Cinz (7, G), resp. [] Cipa (Usn ¥, G) on X"
— o Wy (@)

If; ¢ € Copa (7, G), resp. 11 CZ;,) (Usn?,G), we shall prolungate the func-
oel‘q (%)

tion P by O on X" — X%, resp. X*— — ¥ (%), and we obtain a function @

on X*. The germs of the functions § form a sheaf on X*, which we denote

by Cipw (75 G), resp. TI Cip (Usn¥;G); all these sheaves are fine.
I — oeN 4 (%)

As the restrictions of the upper sheaves are also fine, the sequence
S (V") is exact.
The Lemma is proved.

COROLLARY 3.4. If X is paracompact and U is a N-covering of X, then
the sequence: :

(1;7) c"E"Vo(q;/)
e H C(p)(Uo»G)——’ H Cly (Us, G > -
( ) oef, g+1(
is exact for r << N.
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Remarks 3.5. 1f p =1 and A contains two elements, then the sequence
u is the short exact sequence which defines the Mayer-Vietoris sequence
associated to the covering.

THEOREM 3.6. If X is paracompact and U is a N-covering of X then
there exists a spectral sequence in the first quadrant in which:

Bf7 =TI Hip(Us,G)
ce q

which converges to H{, (X, G), for » <N.

Proof. Let:
C™ = Clya (X, G), 7=0,1,

Cq’r:_ 'C"V UG:G ’ y V¥ = ) )yttt
GEE(%) @ ( ) g,7=0,1

Then the exact sequence % can be written:

o L Ol o Clr
3, 3 )
o o e e .l _
o o
(C-p) 81 b) )
o G R B Ao clr-1
3,9 3 o 3
o N C——1,1’—2___§ C0,7—2 Cl,r—2
3 3 3

The diagram (C_;) is commutative; all columns are complexes, and all lines

are exact. The homology of the first column is the homology which we wish

to evaluate, The homologies of the last columns are ] Hp, (Us, G).
€N, q (%)

We can modify the signs of the homomorphisms 3,, in such a way
that (C_;) becomes a bicomplex.

25. — RENDICONTTI 1975, Vol. LVIII, fasc. 3.
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If we consider the spectral sequence associated to the first filtration of
the bicomplex in the first quadrant (Co):

o o o cLr+t
(CO) o o CO,r Cl,r
) o CO,r—l Cl,r—-l
we obtain:
B SC_]" for g=o0
( o for ¢ >o0
and

) H, {C"* 8D for g=o0
Ey" =
o for ¢ >o0;

hence the diagonal complex associated to the bicomplex (Co) has the homology
H, ({C™"% )}, the spectral sequence being degenerate.

‘ If we consider the spectral sequence associated to the second filtration

in the same bicomplex (Co), we have:

/IEq,r= Hr UG,G ,
1 UEE% o ( )

and this last spectral sequence converges to the cohomology of the diagonal
complex, hence the desired cohomology.

THEOREM 3.7. If U is a finite N-covering of the space X and if
Hey (Us , G) are finite generated groups, for p fixed, then Hyy (X, G), 7 <N,
are finite generated groups. ‘

THEOREM 3.8. If X is a compact polyedron, and G is a finite generated
Remodule (R being a Notherian ring), then His (X ,G) are finite generated
Rrmodules for any v and p.

Proof. By the Theorem 3;7, it is sufficient to prove that for any N
there exists a finite N-covering % = (Uy)aea of X such that U, , (c €A, (%)),
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has the homotopy type of a finite discrete space. Now we shall construct
a such covering.

We embed linearly X in an Euclidean space and we consider on X
the induced metric 4. Then there exists a positive number o < 6, such
that any sphere in X of radius < 0 is contractible and any finite intersec-
tion of such spheres has the homotopy type of a finite space. Now the
Theorem will follow from the

LEMMA 3.9. Let (X ,d) be a metric space, and S;,1 < i <N, spheres
in X, (radius S;) <r. Then there exist the spheres %y, -+, %,,n <N,
(radius %;) < 2Ny such that

n N
D OUZOU S
i=1 =1

2

i) 2, N23=9, 1 <7 <j<m

Progf. We prove the Lemma by increased induction of N. If N =1,
the Lemma is clearly true. We suppose now the Lemma has been proved
for N <N and we prove it for N=N+41. If S;NS;= @ for any
1 <7, <N-+1, we take Z; =S;,1 <i <N -+ 1.

If there exist two distinct indices 1 <7,7 <N 41 (we suppose
¢=1,j=2), such that SN S == @, we can cover S;US: by a sphere

S of radius <27, and hence U_S; can be covered by N spheres
1<i<N+1

S,Ss,54, -+, Sxy41 of radius < 27, and by the inductive hypothesis the
Lemma is proved. ‘

Let be » >0 such that 27 < 0. There exists a finite covering
¥ = (Vo)gea of X by spheres of radius <7. Then # with

W= (Wa acA 3 Wa = U Vai ) OC,EA y a = (0(1,"',0’,1\1)

1<i<N
is a N-covering of X.

By the Lemma 3.9 any W, can be covered by a finite set of one to
one disjoint spheres of radius < 0, and so the Theorem is proved.
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