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Equazioni a derivate parziali. — Comparison and Nonoscillation
Theorems for Fourth Order Elliptic Systems. Nota di Takast Kusano
e Nor1o YosHIDA, presentata @ dal Socio M. Piconk.

RIASSUNTO. — Scopo di questo lavoro & di stabilire alcuni criteri di non—oscillazione
nel senso di Kuks [2] e.teoremi di confronto del tipo di Sturm per una classe di sistemi
ellittici di equazioni a derivate parziali del quarto ordine.

1. INTRODUCTION

The purpose of this paper is twofold. First, we develop nonoscillation
criteria in the sense of Kuks [2] for fourth order Znear elliptic systems of
the form

(1) L[U]= Dy (AyyAuDyU) +2B D Ay DL U +CU =o

n

i,7,k, =1 k=1

where A;;, B and C are m X matrix functions and U is an # X1 vector
or 7 X matrix function. The criteria generalize recent results of Yoshida [3]
for fourth order single elliptic equations. Secondly, we establish a Picone
identity for guasilinear elliptic systems of the form (1) and then use it to
prove Sturmian comparison theorems for such systems. The Picone identity
and comparison theorems are extensions of those given by Chan and
Young [1] for the fourth order system A (AAU) + 2 BAU + CU =o0. We
remark that our derivation of Picone’s identity is based on a procedure
adapted from our earlier paper [3] and is somewhat different from that of
Chan and Young.

2. NONOSCILLATION THEOREMS

Consider the linear system (1) in an unbounded domain R in Euclidean

n-space E". Points in E" are denoted by x = (x;,---, x,), differentiation
with respect to x; by D; and differentiation with respect to x; and x; by
Dy,2,7=1,-,n It is assumed that A;;(=A;) are symmetric m Xm

matrix functions of class C*(R), that B and C are » X matrix functions
of class C (R) and that the #e7 Xmn matrix (A;; (x)) is positive definite in R.
The domain ® (Q) of L relative to a subdomain Q of R is defined as the
set of all 72X 1 vector functions U €C* () 1 C* (Q).

Following Kuks [2] we say that the system (1) is nonoscillatory in R if
there exists » > o such that (1) has no nontrivial (»X 1 vector) solution U

(*) Nella seduta dell’8 marzo del 1975.
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satisfying U =D;U =o0,7=1,---,%, on the boundary of any smooth
bounded domain contained in R, = Rm{x x| >7}.
We also consider the linear vector or matrix differential operator

n n
(2) M [V] = i j%:l ]Dij (G GrDu V) + 2 HkXIsz DuV + KV
defined in ‘R, where G;; (= Gj;) are symmetric 7 X matrix functions of
class C*(R), H and K are mxm matrix functions of class C(R) and
HGy,42,/=1, -+, n, are symmetric, k

In analogy to the case of single equations [5], the operator M is said
to belong to the class M [L; R,] if, for every bounded subdomain Q of

R,, the functional

r

. -
/ [(; Akl DklU) (lcz; Akl DklU) — (; le DklU) (I;;Zl le DklU) +

+2U" 3 (BA,; —HG) D, U + U (C — K — HHY) U] dx
el .

is nonnegative for all 7 X 1 vector functions U € C*(Q) such that U =D, U =o
on 9Q,7=1,---,7%, where “T” denotes the transposed. For example,
letting L. and M take the special forms L,[U]= A (AAU) +CU and
M, [V] = A (GAV) 4 KV, respectively, we see that M, belongs to the
class M [Ly; Q] if A—G and C— K are both positive semidefinite in Q.

We shall need the following lemma which ensures the positivity of the
quadratic form defined by

Q [E] = ;liz Pz] E.,; + 2 n+12 o, E,-z + E.~n+1 ‘an{—lr
where &; are X1 vectors and P;;, ®; and ¥ are » X matrix functions
of class C(Q), QCR, and P;; and ®; are symmetric. The mz Xmn matrix
P = (P;;) is assumed symmetric and positive definite in Q. We denote
by & the m(n + 1)X1 vector whose transposed is &' = (¢, -, Eri), by &’
the mn X1 vector whose transposed is &= = (Zf,---,i;f), and by @ the
mnXm matrix whose transposed is @' = (@ ,---, ®,).

LEMMA. [f the matrix ¥ — ®" P~ @ 45 positive semidefinite in S, then,
Sor any nontrivial vector function ¥ — € (x) of class C (Q) such that

4P, =0 in Q,

Q [E] is nomnzgative in Q and is positive at some point of Q.
The conclusion follows immediately if we observe that Q [£] can be
transformed into

(3)  QEl=(E+P " 04" P +P L0, +E5,, (F— 0T P ®)E,,,.

For the details see Kusano and Yoshida [3].
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THEOREM 1. The system (1) s nonoscillatory in R if for some r > o there
exists an operator M defined by (2) which belongs to the class WM [L; R,]
and mXm matrix functions © Y, ,-- -, Y, with the following properties:

) Gu®, b, /=1, ,n and Zl]Gk,<D‘Ifl,/é: 1, -, n, are sym-
metric, and the mnXmn matrix (G ®) is positive definite in R,
() 2Dy (Gu®) + 23D (G ® W, — 0" ® + 2HO —K s ne-
;clziz've semidefinite zknl R,
(i) X3 G @ Dp W) + D) Gy OV ¥, + O ® is negative semidefinite
;;Z R, %,
(iv) for any bounded smooth subdomain Q of R, the relation
Wy
4) VU—| - |[Uxo0o in Q
¥,

holds for any nontrivial m X 1 vector function U € D (Q) such that U =D,;U = o
on 3Q,i =1, -, n, where NU denotes the mn X1 vector whose transposed
is (D, U),---, (D, U,

Proof. Suppose, on the contrary, that there exists a smooth bounded
subdomain Q of R, and a nontrivial solution U of (1) such that U=D;U =o
on 2Q. Applying Green’s formula and using the hypothesis that M € 0t [L ; R,]
we have '

) [UrL U] dr =
Q

o

T
= / [(kz; AleklU) (; Agy Dsz) 4

+ zUTB;Alek,U +UTCU} dx =

o T
2/ [(Z GkZDIclU) (Z G Dsz) +
o k,l k,l
+2U"H ZG“D“U +UT (K + HHT)U] dx.
k,

On the other hand, it is easy to verify that the following identities hold:
©) 2 ; Dy (U" Gy @D, U) — ; Dy (U" Dy (G @) U) =

= ; [2U" Gy @Dy U — U" Dy (Giy @)U + 2 (D, UY) Gy, @D, U,
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@) 2 ; Dy, (UT Gy @Y, U) =

—2 ;“ [UTDy (G @) ¥, U+ U G,y @ (D, W) U+ 2UT Gy @, D, UJ.

Note that (6) follows from the symmetry of >, Dy (G ®),/=1,---,7,
%
and (7) from the symmetry of Z Gy OY;,%2=1, -+, % Since the integrals
7
over Q of the sums on the right hand sides of (6) and (7) vanish, adding

these integrals to the last integral of (5), we obtain

® o :/‘UTL [U]dx =

Q

v

I T
/ [(“ GuDiU - (H 4 <I>)U) (kzl GuDyU + (H™+ (D)U) +

o

+_

LT (K——%D“(lecb)»«zH(D—z;Dk(GH(D)‘PZ—{—(DT(D) U] dx +

+ 2[[ (D3 U") Gy @D, U —2U" Y] Gy, @V, D, U +
. k,l k,l

+uT (_~ Y, G ®D, ¥, — " q)) U] dx.
k,l

By condition (ii) the first integral on the last side of (8) is nonnegative.
To see that the second integral is positive it suffices to apply the above lemma
to its integrand, taking into account conditions (i) and (iii). In fact, in
view of (3), the integrand is equal to

©  07(Gu®)6—U" (;l Gia @ (D& W) + 3 G O Wy + o' @) U,

where 0§ stands for the left member of (4). Thus the relation (8) leads to a
contradiction and the proof is complete.

DEFINITION. Following Chan and Young [1] we say that an # X ma-
trix function W of class C* is M-prepared if the matrices

(10) W' Gy Gy (D W), B =1, n,
¥
(11) | 2 Dy W) Gy Gy Dy W), =1, n,
57,1

are all symmetric. This definition also applies to the case when M is quasi-
linear.
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THEOREM 2. The system (1) is nonoscillatory in R if for some r > o
there exists an operator M of the type (2) which belongs to the class Wt [L; R,]
and an mXm nonsingular matrix function W of class C* (R,) with the follow-
ing properties:

(1) W 2s an M-prepared matrix;

(ii) the mnXmn matrix (Z GGy Dy W) W"l) is megative defi-
nite in R,; b7

(iii) M [W] W™ 4s positive semidefinite in R,.
Proof. Define the m X matrices ® and ¥, by

O=—YN GOy W)W and ¥,=O,WW? =1, x
1,7 .

That G;; @ and Z Gy @Y, are symmetric follows readily from the sym-
7

metry of (10) and (11), respectively. Hypothesis (ii) implies that (G, ®) is
positive definite. It is a matter of simple calculation to show that

Y D (Gu®) +2 X DGy @) ¥, — "D 4 2HO — K = — M [W] W™,
k1 k,l
kzz Gr @ (D 1Y) +k21 G ¥, ¥, + 0T @ =o.

Finally, let Q be any smooth bounded subdomain of R, and let U be any
nontrivial vector of class ® (Q) such that U =D, U =o0o0n oQ,7 =1,---, 2.
An easy computation yields

v, WD, (W™ U)
VU — } U= :
¥, | WD, (W™1U)

which does not vanish identically in Q. Now the conclusion follows from
Theorem 1. This completes the proof.

Remark. From the above proof we see that the conclusion of Theorem 2
remains valid if the hypotheses (ii) and (iii) are replaced by the following:

(ii"y the mnXmn matrix (Gy;) is positive definite in R, and the
identity

— 2 G, OWW ' =6@)1, , o(®=o0 in R,
¥

holds, where I, is the » X identity matrix;

(iii’) M [W] W' is positive definite in R,.
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COROLLARY. T/e system
(12) LUl=AA®AU)+CxU =0

ts nonoscillatory in R if the matrices A (x) and C(x) are uniformly positive
definite in R,.

Proof. Let M, [V]= a,A*V + ¢, V, where a, and ¢, are positive
constants such that £'A (x)£= a0 |E* and £ C (#)E = ¢ |EF for all real
m X1 vectors & Then, clearly M; belongs to the class 3 [L;; R,]. Defining
W = |x|" I, it is easily seen that the number p can be chosen so that the
matrix W satisfies the conditions (i)-(iii) of Theorem 2 or the conditions (i),
(i) and (iii’). (See Yoshida [5]). It follows that the system (12) is
nonoscillatory.

3. A PICONE IDENTITY AND COMPARISON THEOREMS

Let Q be a smooth bounded domain in E" and let Y be a domain in E™
containing the origin. Assume that L is a quasilinear vector differential
operator of the type (1). The coefficients A (x,7) are m Xm symmetric
matrix functions of class C* (QXY), B(x,%) and C (x, ) are » X matrix
functions of class C (Q X Y), and the mn Xmn matrix (A (x,n)) is positive
definite in QXY. The domain @ of L is defined as the set of all 72X 1 vector
functions of class C*(Q)NC*(Q) with range in Y. Assume further M is a
quasilinear matrix differential operator of the type (2). It is assumed that
Gij(x,0) (=G (x,%) are mXm symmetric matrix functions of class
C*(QXY™), that H (x, %) and K (x, %) are mXm matrix functions of class
C(Qx Y™ and that HGy, are symmetric. The domain of M is the set ©™
of all #Xm matrix functions W whose column vectors W, ,7 =1
belong to ¥.

Now let W €T™ be a nonsingular M-prepared matrix and let
O®eC*(QXY™), ¥V, eC'(QXY™,/=1, -+, be mXm matrices such that
Gy, @ and Z Gy @Y, are symmetric and (Gy; @) is positive definite in

7

’...’m’

QXY™ Using the identities (6) and (7) which also hold for the quasilinear
case, we obtain

] T
(Z6upuv) (Foupuv) +
+2UTH Y, Gy DuU UK +1D)U =
k,1
T
= (%GMD“U + (H" + d))U) (kz:, GuDuU + H" + <D)U) +

+U" (T —HHHU 4 UT (K-%Dkl((}k,eb)-
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-2H(D—~22Dk(G,c,<D)‘Fl+<DT<I))U +
k,l

+ 2 [Z (D3 U") Gy @D, U — 2 U Y] Gy, @¥; D, U +
k,l k,l
+u” (— kzl) Gy OD, W) — @ cb) U] —
—2 kz; D; (U" G, @D, U) + ; D;(U'D; (G ®) U) +
+2 3 D (U Gy @F,U),
k,l

where I' is an arbitrary 7 X matrix function defined in QXY™ Sub-
stituting

(D:—Elef(Di]W)W_l ) lFZ:(DlW)W-I’ Z:I,""%’

into the right-hand side of the above and recalling the transformation which
led to (9), we have

.
(13) (%; szDsz) (% szDsz) +

{LzUTHZGk,DHU + UK +DU =
k,l
T
= (;; G (D U — (D W)W U) + HTU) .

: (kz; Gy D U — Dy W) W U) + HTU) +
+ U —HHHU + UM W] WU —

0,7k,

—2 ) l (WD, (WU Gy Gy (Dy; W) W (WD, (W™ U)) +

+2 ¥ Dy(U'Gy Gy Dy WWT D, U) —
t,7,k,1

T D; (U" Dy (G Gy Dy W) WHU) —

1,0,k, .

—2 X D (U Gy Gy Dy WWTH (D, W) W U).

©,7,k,1

On the other hand, the following identity holds:
(9)  UTL[U] =

T
= (kz;; AleklU) (kzl Alesz) +2UTBk§;Ak1DklU +UTCU +

+ Zk D; (U"D; (Aj; Ay D U)) — Z D; (D;UY) (Ay Ay Dy U))

i,9,k,1 i,7,k,1
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Combining (13) with (14) yields the desired Picone identity:
U'L[U]—U"M [W]W?U— ¥ D,U"D,(Aj;AuDyU)
g0k,

+ 2 D (DU (Ay A Dy U)) —

9,7k,

— > Dy (UT Gy Gy (Dy; W) WD, U) —

i,9,k,1

_ }_‘,‘c le (Ut G Gi; Dy W) D (WL U)) +
59,8,

+ 2 4 lDl (U" Dy (G Gy Dy W) WU) =
59,8,

04

Ay Dy ) (ZAk,Dkl )+2UTB2A”DMU+UTCU—
k,

>
-

(2
-2

—2

G Dy ) (EGMD“ )

"H Y GyDyU—U(K +THU —
k,l

K
-

)

—2 2, (WD, (W U)" Gy Giy Dy W) W' (WD, (W™ U))

©57,k,1

__l_

k,l

T
Y G (D U — Dy WY W U) + HTu) .

.(2 Gy DU — D W)W U) + HTU) +U" (T —HHDU.

k,l

An integration of the above identity with the use of the divergence theorem
would givei the Picone identity in integral form which extends the one
formulated in Theorem 1 of Chan and Young [1]. Here we present the

following two specialized versions of Picone’s integral identity in terms of
the functionals defined by

T
1= [ [(Zaupav) (3 AuDuU) +
5 , ,
+2U"B Y A, Dy U +UTCU] dx,
k,l
T
F[U, W] =/ [(; szchzU) (kZl szDsz) +

+ 2UTHfV_;,Gk,D,C,U +UT(K + I‘)U] dzx,

23. — RENDICONTI 1975, Vol. LVIII, fasc. 3.
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JIU,W]= —'2/ LZ;,”<WDk(W‘1U>)T-
& 375K,
-Gy Gy Dy W) W (WD, (W™ U))] dx,
Q[U, W] =f [(kzl) G DU — (D W)W U) + HTU) .
4 :

. (kzl] G (DU — DO W) W U) +HT U) +UT™(r—HHY U] dx.

THEOREM 3. Let 3Q be piecewise smooth and let U be an m X1 vector
Sfunction of class C* (Q) with range in Y and such that U = o on 3Q. Then,
every M-prepared matrix W € D™ such that WU €C* (Q) with range in
Y satisfies

F[U,W]=fUTM[W]W‘lde+][U,W]+Q[U,W].
Q

THEOREM 4. Let 9Q be piecewise smooth and let U be an m X1 vector
Sunction of class D and such that U =D;U =0 on 9Q,i=1, --,n
Then, every M-prepared matrix W € D™ such that WU €C? (Q) with
range in Y satisfies

J [UTL[U]—U™M [W] W™ U] dx =
Q

=/[U]—F[U,W]+]J[U,W] +Q[U, W].

Once the Picone identity has been established, it is not difficult to use it to
derive various types of Sturmian comparison theorems for the system (1)
as given in Chan and Young [1]. Here we only state results which correspond
to Theorems 2 and 4 of Chan and Young.

THEOREM 5. Let 9Q be piccewise smooth and suppose that

() the mxm matrix T =T (x, %) is such that T —HH" is positive
definite in QXY™

(i) W is an M-prepared matrix of class " such that W' M [W] and
the mnXmn matrix (— A GME Gy Dy W) are positive semidefinite in
¥
QxY™

(iii) there exists a nontrivial U € C* (Q) with range in Y such that U = o
on 3Q and F[U, W] < o.

Then, det W wvanishes at some point of Q.
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THEOREM 6. Let 9Q be of class C* and suppose that

(i) the mxm matrix I' =T (x,0) is such that I —HH" is positive
definite in QXY™

(ii) W is an M-prepared matrix of class D™ such that W' M [W] and
the mnXmn matrix (— W’ lez Gy; Dy W) are positive semidefinite in
QxY™ ‘ v

(iii) there exists a nontrivial U €D such that

U=DiU=O on QQ, i=1,--,n,

fUTL[U]dxgo,
Q

fIUl=zF[U, W].
Then, det W vanishes at some point of Q.

Theorem 5 follows immediately from Theorem 3. Theorem 6 can be
proved with the use of Theorem 4 and on the basis of an approximation
argument which goes back to Swanson [4]. We omit the proofs of these

theorems, as they are almost duplications of those presented by Chan and
Young.
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