Atti Accademia Nazionale dei Lincei
 Classe Scienze Fisiche Matematiche Naturali RENDICONTI

James O. C. Ezeilo, Haroon O. Tejumola
 Further remarks on the existence of periodic solutions of certain fifth order non-linear differential equations

Atti della Accademia Nazionale dei Lincei. Classe di Scienze Fisiche, Matematiche e Naturali. Rendiconti, Serie 8, Vol. 58 (1975), n.3, p. 323-327.
Accademia Nazionale dei Lincei
http://www.bdim.eu/item?id=RLINA_1975_8_58_3_323_0

L'utilizzo e la stampa di questo documento digitale è consentito liberamente per motivi di ricerca e studio. Non è consentito l'utilizzo dello stesso per motivi commerciali. Tutte le copie di questo documento devono riportare questo avvertimento.

> Articolo digitalizzato nel quadro del programma
> bdim (Biblioteca Digitale Italiana di Matematica)
> SIMAI \& UMI
> $\mathrm{http}: / / \mathrm{www}$. bdim.eu/

Equazioni differenziali ordinarie. - Further remarks on the existence of periodic solutions of certain fifth order non-linear differential equations. Nota di James O. C. Ezeilo e Haroon O. Tejumola, presentata ${ }^{(*)}$ dal Socio G. Sansone.

Riassunto. - Si danno condizioni più generali di quelle contenute in una ricerca precedente per l'esistenza di almeno una soluzione periodica delle due equazioni:

$$
\begin{gathered}
x^{(5)}+a_{1} x^{(4)}+a_{2} \dddot{x}+\Phi(\dot{x}) \ddot{x}+a_{+} \dot{x}+h\left(x, \dot{x}, \ddot{x}, \dddot{x}, x^{(4)}\right\rangle=p(t) \\
x^{(5)}+f(\dddot{x}) x^{(4)}+a_{2} \dddot{x}+a_{4} \dot{x}+h\left(x, \dot{x}, \ddot{x}, \dddot{x}, x^{(4)}\right)=p(t), \\
p(t+\omega)=p(t), \omega>0 .
\end{gathered}
$$

I. In a previous paper [I] we examined the two fifth order differential equations:

$$
\begin{array}{ll}
\text { (I.I) } & x^{(5)}+a_{1} x^{(4)}+a_{2} \ddot{x}+\varphi(\dot{x}) \ddot{x}+a_{4} \dot{x}+h\left(x, \dot{x}, \ddot{x}, \ddot{x}, x^{(4)}\right)=p(t) \tag{I.I}\\
\text { (I.2) } & x^{(5)}+f(\ddot{x}) x^{(4)}+a_{2} \ddot{x}+a_{3} \ddot{x}+a_{4} \dot{x}+h\left(x, \dot{x}, \ddot{x}, \ddot{x}, x^{(4)}\right)=p(t)
\end{array}
$$

in which $a_{1}, a_{2}, a_{3}, a_{4}$ are positive constants and f, φ, h, p are continuous functions of the arguments shown, with h bounded and $p(t) \omega$-periodic in t (that is $p(t+\omega)=p(t))$ for some $\omega>0$. We showed there, subject to the further conditions:

$$
h(x, y, z, u, v) \operatorname{sgn} x>\mathrm{o}\left(|x| \geq x_{0}\right) \quad \text { and } \quad\left|\int_{0}^{t} p(s) \mathrm{d} s\right| \leq \mathrm{B}
$$

(B constant) on h and p, that
(I) if there exist positive constants $a_{3}, \beta_{0}, \gamma_{0}$ such that

$$
\begin{gather*}
\varphi(y) \geq a_{3} \quad \text { and }\left\{a_{1} a_{2} \varphi(y)\right\} a_{3}-a_{1}^{2} a_{4} \geq \beta_{0} \tag{I.3}\\
\text { for }|y| \geq \gamma_{0} \quad \text { then }
\end{gather*}
$$

has at least one ω-periodic solution, and that
(II) if there exist positive constants $a_{1}, \beta_{1}, \zeta_{0}$ such that

$$
\begin{gather*}
f(z) \geq a_{1} \quad \text { and } \quad\left(a_{1} a_{2}-a_{3}\right) a_{3}-a_{1} a_{4} f(z) \geq \beta_{1} \tag{I.4}\\
\text { for }|z| \geq \zeta_{0}
\end{gather*}
$$

then (I.2) also has at least one ω-periodic solution. Our object in the present note is to further improve these results (I) and (II) by relaxing the condit-

[^0]ions (I.3) and (I.4) to the following:
(I.5) $\varphi(y)>0$ and $\left\{a_{1} a_{2}-\varphi(y)\right\} \varphi(y)-a_{1}^{2} a_{4} \geq \beta_{0}$ for $|y| \geq \gamma_{0}$
(1.6) $f(z)>0$ and $\left(a_{2} f(z)-a_{3}\right) a_{3}-a_{4} f^{2}(z) \geq \beta_{1}$ for $|z| \geq \zeta_{0}$
respectively.
It is readily checked, by taking the difference between
$$
\left\{\left(a_{1} a_{2}-\varphi\right) a_{3}-a_{1}^{2} a_{4}\right\} \quad \text { and } \quad\left\{\left(a_{1} a_{2}-\varphi\right) \varphi-a_{1}^{2} a_{4}\right\}
$$
and between
$$
\left\{\left(a_{1} a_{2}-a_{3}\right) a_{3}-a_{1} a_{4} f\right\} \quad \text { and } \quad\left\{\left(a_{2} f-a_{1}\right) a_{3}-a_{4} f^{2}\right\}
$$
that (I.3) and (I.4) imply (I.5) and (I.6) respectively. That (I.5) does not, however, imply (I.3) is best illustrated by considering the equation
$$
x^{(5)}+x^{(4)}+4 \ddot{x}+\left(2-\sin (\dot{x})^{3}\right) \ddot{x}+2 \dot{x}+h=p .
$$

Here $a_{1}=\mathrm{I}, a_{2}=4, a_{4}=2$ and $\varphi(y)=2-\sin \left(y^{3}\right)$ so that $a_{3}=\inf _{|y| \geq \gamma_{0}} \varphi(y)=\mathrm{I}$ (any $\gamma_{0} \geq 0$). Thus $\left(a_{1} a_{2}-\varphi\right) a_{3}-a_{1}^{2} a_{4} \equiv \sin \left(y^{3}\right)$ so that the second condition cannot be satisfied for any $\beta_{0}>0$, whereas, at the same time

$$
\left(a_{1} a_{2}-\varphi\right) \varphi-a_{1}^{2} a_{4} \equiv 2-\sin ^{2}\left(y^{3}\right) \geq \mathrm{I}
$$

for all y, so that (I .5) holds. By considering the equation

$$
x^{(5)}+(2-\sin \ddot{x}) x^{(4)}+4 \ddot{x}+\ddot{x}+\dot{x}+h=p
$$

it can be verified also that (I.6) does not in general imply (I.4).
2. We first tackle equation (I.I), with φ now subject to (I.5).

The proof is by the Leray-Schauder fixed point technique as outlined in [1: § 2.I]. Indeed we found that the rest of our previous treatment of (I.I) in [1] (that is after a misprint which occurs in each of the results (23), (25), (28), (43) and (48) of [1] has been rectified by replacing $\varphi_{\mu}(y)$ by the capital $\left.\Phi_{\mu}(y) \equiv \int_{0}^{y} \varphi_{\mu}(s) \mathrm{d} s\right)$ still holds good under the new hypothesis (I.5) if the constant a_{3} which is used in defining the parameter dependent equation (7) of [I] is replaced by a constant $\mathrm{A}_{3}>0$ fixed such that

$$
\begin{equation*}
\left(a_{1} a_{2}-\mathrm{A}_{3}\right) \mathrm{A}_{3}-a_{1}^{2} a_{4}>\mathrm{o} \tag{2.1}
\end{equation*}
$$

That such an A_{3} can be fixed is easily seen from the two identities:

$$
\begin{gathered}
\left(a_{1} a_{2}-\mathrm{A}_{3}\right) \mathrm{A}_{3}-a_{1}^{2} a_{4} \equiv-\left(\mathrm{A}_{3}-\frac{1}{2} a_{1} a_{2}\right)^{2}+\frac{1}{4} a_{1}^{2}\left(a_{2}^{2}-4 a_{4}\right), \\
\left(a_{1} a_{2}-\varphi\right) \varphi-a_{1}^{2} a_{4} \equiv-\left(\varphi-\frac{1}{2} a_{1} a_{2}\right)^{2}+\frac{1}{4} a_{1}^{2}\left(a_{2}^{2}-4 a_{4}\right),
\end{gathered}
$$

the latter of which shows, by (I.5), that $a_{2}^{2}-4 a_{4}>0$ which, when combined with the former identity, shows that (2.1) can be secured under the present conditions if $\left(\mathrm{A}_{3}-\frac{\mathrm{I}}{2} a_{1} a_{2}\right)$ is sufficiently small.

In order to substantiate the claim above about A_{3} being a satisfactory replacement for a_{3} in the conversion of our methods in [I] to the present case, only two points need to be verified, namely (i) that a positive constant $b_{5}>0$ can be chosen such that the equation

$$
x^{(5)}+a_{1} x^{(4)}+a_{2} \ddot{x}+\mathrm{A}_{3} \ddot{x}+a_{4} \dot{x}+b_{5} x=0
$$

is asymptotically stable, and (ii) that the function V defined by equation (27) of [I], with a_{3} replaced by A_{3}, retains the same basic Lyapunov properties as before. The first point here is easily disposed of using (2.1) and the positiveness of $a_{1}, a_{2}, \mathrm{~A}_{3}$ and a_{4} exactly as in [$\mathrm{I} ; \S 2.3$]. Coming to the second point it is useful to note that the function V, given in [$1 ; \S 2.5$], is a combination of three function $\mathrm{V}_{1}, \mathrm{~V}_{2}$ and V_{3} of which only one component, namely V_{1} involves a_{3}. Indeed, if $\mathrm{V}_{1, \mathrm{~A}}$ denotes V_{1} after a_{3} has been replaced by A_{3}, it can be checked readily that

$$
\begin{equation*}
\mathrm{V}_{1, \mathrm{~A}}=\mathrm{Q}+a_{1} \mathrm{R} \tag{2.2}
\end{equation*}
$$

where Q is the same quadratic positive definite form which we had in [r], and R is given by

$$
2 \mathrm{R}=2 \mu \int_{0}^{y}\left\{\Phi(s)-a_{1} a_{1}^{-2} a_{4} s\right\} \mathrm{d} s+(\mathrm{I}-\mu)\left(\mathrm{A}_{3}-a_{1} a_{2}^{-1} a_{3}\right) y^{2}
$$

where $\Phi(s) \equiv \int_{0}^{s} \varphi(t) \mathrm{d} t$. But, by [2; Lemma I (III)]

$$
\int_{0}^{y}\left\{\Phi(s)-a_{1} a_{2}^{-1} a_{4} s\right\} \mathrm{d} s \geq-\delta_{0}
$$

for some finite constant $\delta_{0}>0$, and also, quite clearly, $\left(\mathrm{A}_{3}-a_{1} a_{2}^{-1} a_{4}\right) y^{2} \geq 0$ since $a_{2} \mathrm{~A}_{3}-a_{1} a_{4}>0$, by (2.1). Hence,

$$
\mathrm{V}_{1, \mathrm{~A}} \geq \mathrm{Q}-a_{1} \delta_{0} \quad(0 \leq \mu \leq \mathrm{I})
$$

just as in [I] so that one of the two Lyapunov properties used in [I] is also valid here for V when a_{3} is replaced by A_{3}.

The other Lyapunov property arises in connection with the solution of the system (23) of [I]. For ease of reference in what follows let (23) A denote the system (23) of [1] with a_{3} replaced by A_{3}. To establish the
remaining Lyapunov property it will clearly be enough to verify that there are constants $\delta_{1}>0, \delta_{2}>0, \delta_{3}>0$ such that

$$
\begin{equation*}
\dot{\mathrm{V}}_{1, \mathrm{~A}} \equiv \frac{\mathrm{~d}}{\mathrm{~d} t} \mathrm{~V}_{1, \mathrm{~A}}(y, z, u, v) \leq-\delta_{1}\left(y^{2}+u^{2}\right)+\delta_{2} \mathrm{M}\left(|y|+|z|+|v|+\delta_{3}\right) \tag{2.3}
\end{equation*}
$$

for all solutions (y, z, u, v) of $(23)_{\mathrm{A}}$, since the estimates of the derivatives (in the usual notation) $\dot{\mathrm{V}}_{2}^{*}, \dot{\mathrm{~V}}_{3}^{*}$ along solution paths of $(23)_{\mathrm{A}}$ are much the same as before. Now, if (y, z, u, v) is any solution of $(23)_{\mathrm{A}}$ we have by an elementary calculation from (2.2) that

$$
\begin{equation*}
\dot{\mathrm{V}}_{1, \mathrm{~A}}=-\mathrm{U}_{1}+\mathrm{U}_{2} \tag{2.4}
\end{equation*}
$$

where

$$
\begin{aligned}
& \mathrm{U}_{1}=a_{1} u^{2}+2 u \Phi_{\mu}(y)+a_{1} y \Phi_{\mu}(y)-a_{1} a_{4} y^{2} \\
& \mathrm{U}_{2}=\left\{a_{2} a_{4}^{-1} \mathrm{~V}+\left(a_{2}^{2} a_{4}^{-1}-2\right) z-a_{1} y\right\} \chi_{\mu}
\end{aligned}
$$

Here $\varphi_{\mu}(y) \equiv(\mathrm{I}-\mu) \mathrm{A}_{3} y+\mu \varphi(y)$ and χ_{μ}, as in $[\mathrm{I}]$, satisfies $\left|\chi_{\mu}\right| \leq M$ so that in particular

$$
\left|\mathrm{U}_{2}\right| \leq \delta(|v|+|z|+|y|) \mathrm{M}
$$

for some $\delta>0$. The function W_{1} can be reset thus:

$$
\begin{aligned}
\mathrm{U}_{1} & =\mu\left\{a_{1}^{-1}\left[a_{1} u+\Phi(y)\right]^{2}+a_{1}^{-1}\left[a_{1} a_{2} y \Phi(y)-\Phi^{2}(y)-a_{1}^{2} a_{4} y\right]^{2}\right\}+ \\
& +(\mathrm{I}-\mu)\left\{a_{1}^{-1}\left[a_{1} u+\mathrm{A}_{3} y\right]^{2}+a_{1}^{-1}\left[a_{1} a_{2} \mathrm{~A}_{3}-\mathrm{A}_{3}^{2}-a_{1}^{-1} a_{4}\right] y^{2}\right\}
\end{aligned}
$$

by use of the actual definition of $\Phi_{\mu}(y)$. The expression inside the first pair of brace brackets here is, except for an obvious difference in notation, the same as the expression W_{1} given by equation (6.5) of [2], and the estimates there in $[2 ; \S 6]$ show that here

$$
a_{1}^{-1}\left[a_{1} u+\Phi(y)\right]^{2}+a_{1}^{-1}\left[a_{1} a_{2} y \Phi(y)-\Phi^{2}(y)-a_{1}^{2} a_{4} y^{2}\right] \geq \delta_{3}\left(y^{2}+u^{2}\right)-\delta_{4}
$$

f or some constants $\delta_{3}>0, \delta_{4}>0$. Next, by (2.1), the expression inside the second pair of brace brackets satisfies

$$
a_{1}^{-1}\left[a_{1} u+\mathrm{A}_{3} y\right]^{2}+a_{1}^{-1}\left[a_{1} a_{2} \mathrm{~A}_{3}-\mathrm{A}_{3}^{2}-a_{1}^{2} a_{4}\right] y^{2} \geq \delta_{5}\left(y^{2}+u^{2}\right)
$$

for some $\delta_{5}>0$. Thus, for $0 \leq \mu \leq \mathrm{I}$,

$$
\mathrm{U}_{1} \geq \delta_{6}\left(y^{2}+u^{2}\right)-\delta_{4}
$$

where $\delta_{6}=\min \left(\delta_{3}, \delta_{5}\right)$, and (2.3) now follows on combining the estimates of $\mathrm{U}_{1}, \mathrm{U}_{2}$ with (2.4).

This concludes the verification of the essential properties of the constant A_{3} defined by (2.I), and the existence of an ω-periodic solution of (I.I) with φ subject to (I.5) can then follow as before.
3. We consider next the equation (I.2) with f now subject to (I.6). The procedure is essentially as in [I] and we shall thus sketch only the outlines here. The starting point, then, is the special parameter dependent equation:

$$
\begin{equation*}
x^{(5)}+f_{\mu}(\ddot{x}) x^{(4)}+a_{2} \ddot{x}+a_{3} \ddot{x}+a_{2} \dot{x}+h_{\mu}^{*}=\mu p \quad(\mathrm{o} \leq \mu \leq \mathrm{I}) \tag{3.1}
\end{equation*}
$$

with h_{μ}^{*} as before (see (II) of [I]) and f_{μ} defined by

$$
f_{\mu}=(\mathrm{I}-\mu) \mathrm{A}_{1}+\mu f(\ddot{x})
$$

where $\mathrm{A}_{1}>0$ is a constant fixed such that

$$
\begin{equation*}
\left(\mathrm{A}_{1} a_{2}-a_{3}\right) a_{3}-\mathrm{A}_{1}^{2} a_{4}>\mathrm{o} \tag{3.2}
\end{equation*}
$$

That such a constant can be determined follows in the same way as before from (1.6). Because of (3.2) the linear system corresponding to $\mu=0$ in (3.1) is asymptotically stable if $b_{5}>0$ is sufficiently small and it remains then to establish the requisite boundedness results for (3.I).

The ultimate boundedness of $|\dot{x}(t)|,|\ddot{x}(t)|,|\ddot{x}(t)|$ and $\left|x^{(4)}(t)\right|$ for any solution $x(t)$ of (3.I) is again best tackled, separately, by considering fourth order equation.

$$
\begin{equation*}
y^{(4)}+f_{\mu}(\ddot{y}) \dddot{y}+a_{2} \ddot{y}+a_{3} y+a_{4} y=\chi_{\mu} \tag{3.3}
\end{equation*}
$$

obtainable from (3.1) on setting $y=\dot{x}$. The function χ_{μ} here is as in [1] and is bounded. Thus the boundedness techniques developed in [3] (see particularly $\S \S 9-1$ I) are applicable and can indeed be used in the same way as before to obtain the ultimate boundedness of $|y|,|\dot{y}|,|\ddot{y}|$ and $|\dddot{y}|$ for any solution y of (3.3) which is the same thing as the ultimate boundedness of $|\dot{x}(t)|,|\ddot{x}(t)|,|\ddot{x}(t)|$ and $\left|x^{(4)}(t)\right|$ for any solution $x(t)$ of (3.1)

Once the ultimate boundedness of $|\dot{x}(t)|,|\ddot{x}(t)|,|\ddot{x}(t)|$ and $\left|x^{(t)}(t)\right|$ has been established that of $|x(t)|$ can be derived exactly as prescribed in $[\mathrm{I}, \S 3 . \mathrm{I}]$. The required existence result for (I.2) subject to the restriction (1.6) on f then follows.

References

[i] J. O. C. Ezeilo and H. O. Tejumpla (1973) - "Non-linear Vibration Problems", I4, 75-84.
[2] J. O. C. Ezeilo and H. O. Tejumola (i97i) - «Ann Mat. Pura Appl.», 88, 207216.
[3] J. O. C. Ezeilo and H. O. Tejumola (i97I) - «Ann. Mat. Pura Appl.», 89, 259275.

[^0]: (*) Nella seduta dell'8 marzo 1975.

