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Equazioni differenziali ordinarie. — Further remarks on the exis
tence of periodic solutions of certain fifth order non-linear differential 
equations. Nota di James O. C. E zeilo e H aroon O. T ejum çla , 
presentata (,) dal Socio G. S a n so n e .

R iassunto. — Si danno condizioni più generali di quelle contenute in una ricerca 
precedente per resistenza di almeno una soluzione periodica delle due equazioni:

x(5) - f  a1 x (4) +  ^2 'x +  O (x ) x  - f  x  +  h (x , x  , x  , "x , x (4)) =  fi (t)

x ^  x^  +  a2'x  +  x  +  h (x , x , x  , ‘x  , x (4)) =  fi (t) ,

fi (t -f- co) =  fi (t) , co >  o .

I. In a previous paper [1] we examined the two fifth order differential 
equations:

( I . I ) x (5) +  ax x (4) +  a2 x  +  9 (x) x +  ^4 % +  h (x  , x  , x , x  , x (4)) =  p  (t)

(1.2) X5) + /  (X) X4)+  a2 x +  a3 x +  a4 x  +  h (x  , % , x , x , X4)) =  (/)

in which ax , a2 , a3 , are positive constants and f  , 9  , A , p  are continuous
functions of the argum ents shown, with h bounded and p  (t) co-periodic in t
(that is p  (t -|- co) — p  (t)) for some co >  o. We showed there, subject to the 
further conditions:

t
r

h (x  , y  , 2 , u  , v) sgn x  >  o (| x  I >  x 0) and | | p  (s) di* | <  B
0

(B constant) on h and p , that

(I) i f  there exist positive constants a3 , ß0 > To such that

(1.3) <p (y )  >  a% and {a1 a2 <p (y)} a3 —  a\ >  ß0 ,

fo r  \ y \  >  y0 then (1.1) 

has at least one co-periodic soluti on, and that

(II) i f  there exist positive constants ax , ßx , Ç0 such that

(1.4) f  iß) >  ax and  (a1 a2 —  a3) a3 —■ aL ax f  (ß) >  ßj

f o r  1 z  I >  Ç0 .

then (1.2) also has at least one tù-periodic solution. O ur object in the present 
note is to further im prove these results (I) and (II) by relaxing the condit-

(*) Nella seduta dell’8 marzo 1975.
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ions (1.3) and (1.4) to the following:

C1 -5) ?  (y ) >  o and {a-y a2 —  cp (y)}  9 (y ) —  a? a4 >  ß0 for \ y \  >  y0 

(1.6) f  (z) > 0  and (a2 f  (z) —  a3) a3 — ai f i (z) >  ßj for | z  | >  Ç0 

respectively.
It is readily  checked, by taking the difference between

{(ay a2 —  9) a3 —  a\ a4} and {(ax a2 —  9) 9 — a\ a4} 

and between

{(ay a2 —  a3) a3 —  ay a4 / }  and {(a2f  —  ax) a3—  a4 f 2}

that (1.3) and (1.4) im ply (1.5) and (1.6) respectively. T hat (1.5) does not, 
however, im ply (1.3) is best illustrated by considering the equation

#(5)+  *(4)+  \  x  (2 —  sin (x f ) x +  2 x  +  h =  p  .

H ere ax =  1 , a2 =  4 , <z4 =  2 and 9 (y ) — 2 ■—• sin ( y 3) so th a t a3 =  in f 9 (y )  =  1
|r| > Yo

(any y0 >  o). Thus (ax a2 — 9) a3 —  aya4 =  sin (y s) so th a t the second 
condition cannot be satisfied for any ß0 >  o, whereas, at the same time

(ay a2 —  9) 9 -— ay a4 =  2 —  sin2 ( y s) >  1

for all y ,  so th a t (1.5) holds. By considering the equation

x^ (2 — sin 3c) x ^  -j- 4 x - \ - x - \ - x ~ \ - h  =  p

it can be verified also th a t (1.6) does not in general im ply (1.4).

2. W e first tackle equation (1.1), with 9 now subject to (1.5).
The proof is by the Leray-Schauder fixed point technique as outlined 

in [i: § 2.1]. Indeed we found that the rest o f our previous treatm ent of (1.1) 
in [1] (that is after a m isprint which occurs in each o f the results (23),
(2S)> (28), (43) and (48) o f [1] has been rectified by replacing 9 ^ (y )  by the

y
capital j  cp̂  (s) ds) still holds good under the new hypothesis (1.5)

0
if the constant as which is used in defining the param eter dependent equat
ion (7) of [1] is replaced by a constant A3 >  o fixed such that

(2 .1 ) Ç&1 ' A3) A3 ai a  ̂ o .

T hat such an A3 can be fixed is easily seen from the two identities:

(ai a% A3) A3 a-jy a± ==  ̂A3 -y  a± a^j -j- ci\ (a^ —  4 <%) >

\a\ a2 9) 9 ai =  " ^9 1 ■ ~y al #1 (^2 —  4 >
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the latter of which shows, by (1.5), tha t a\ — 4^4 >  o which, when combined 
with the form er identity, shows th a t (2.1) can be secured under the present 
conditions if ^A3 ------~  ax is sufficiently small.

In  order to substantiate the claim above about A 3 being a satisfactory 
replacem ent for a3 in the conversion of our methods in [1] to the present 
case, only two points need to be verified, nam ely (i) th a t a positive constant 
b5 >  0 can be chosen such th a t the equation

x ^  A  a4 -f- æ2 x  +  A 3 x -f- aé x  -f- b5 #  =  o

is asym ptotically stable, and (ii) that the function V defined by equation (27) 
of [1], with as replaced by A 3, retains the same basic L yapunov properties 
as before. The first point here is easily disposed of using (2.1) and the 
positiveness of a1 y a2 , A3 and a,4 exactly as in [1; §2.3]. Coming to the 
second point it is useful to note tha t the function V, given in [1; § 2.5], is 
a com bination of three function V 1 , V 2 and V3 of which only one component, 
nam ely V! involves a3. Indeed, if V ljA denotes V 1 after a3 has been replaced by 
A 3, it can be checked readily that

(2.2) V 1}a — Q +  R

where Q is the same quadratic positive definite form which we had in [1], 
and R is given by

y

2 R — 2 [L J {O (s) — ax a ï 2 a± s} d^ +  (1 ■— (x) (A3 — ax a ^ 1 a3) y 2
./
0

where 0 (i-)  =  9 (t) dt. But, by [2; Lem m a 1 (III)]
0

y
j~ {O is) — a1 a2 l s} ds >  — S0

0

for some fiqite constant §0 >  o, and also, quite clearly, (A3 — ax aé) y 2 >  o
since a2A 3 — a1 a4k>  o, by (2.1). Hence,

V 1}a >  Q — &i S0 (o <  |X <  i).

just as in |ji] so th a t one of the two Lyapunov properties used in [1] is also 
valid here |for V when as is replaced by A3.

T he other L yapunov property  arises in connection with the solution 
of the system (23) of [1 ]. For ease of reference in what follows let (23)A 
denote the system  (23) of [1] with a3 replaced by A 3. To establish the
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rem aining L yapunov property  it will clearly be enough to verify th a t there 
are constants 8X >  o , 82 >  o , §3 >  o such tha t

* d.
(2-3) V i}a =  V x>a ( y , z , u , v) <  —  (v 2+  u2) +  S2M (! y  I -f- I z  | +  | v | -f- S3)

for all solutions ( y , z , u , v) of (23)A, since the estimates of the derivatives 
(in the usual notation) V2,V3 along- solution paths of (23)a are m uch the 
same as before. Now, if (y , z , u  , v) is any solution of (23)A we have by 
an elem entary calculation from (2.2) tha t

(2-4) V 1jA =  — U 1 +  U 2

where
U x =  ax u2 +  2 u %  (y)  +  (y)  —  ax axy 2

U 2 =  {a2 1 V +  (#2 a4 1 — 2) 2 — ax y )

Here ?tx(r) =  (I — tO A3v  +  [xcp (y)  and Xu, as in [1], satisfies | y^ | <  M 
so th a t in particular

I U 2 I <  S (I ^ I +  I ^ 1 +  I _y I) M

for some 8 >  o. The function W x can be reset thus:

Ul =  [X { a ï 1 K  U +  <D (y )]2 +  a ï 1 [a4 a2y <D (y)  — €>2 (y)  — a\ a4y ] 2} +

+  C1 ' p) {ax \a\ u  -f- A 3 y f  +  a4 1 [a4 a2 A 3 —  A 3 — a ï 1 a4] y 2}

by use o f the actual definition of <1?̂  (y). The expression inside the first pair 
of brace brackets here is, except for an obvious difference in notation, the 
same as the expression W 4 given by equation (6.5) of [2], and the estimates 
there in [2; § 6] show tha t here

a ï 1 [at u  +  O 0 )]2+  a ï 1 [ax a2y<I> (y)  —  <D2 (y )  —  a\ a4y 2] >  8S (y 2+  u 2) — S4

/ o r  some constants S3 >  o , S4 >  o. Next, by (2.1), the expression inside 
the second pair of brace brackets satisfies

a ï 1 [ax u +  A s y f  +  a ï 1 [ai a2 A 3 —  A 23 — a\ a4] y 2 > 85 ( y 2 +  u2)

for some S5 >  o. Thus, for o <  pi <  i ,

U i >  S6 ( y 2 +  m2) — S4

where §6 =  m in (S3 , §5), and (2.3) now follows on com bining the estimates 
of U i , U 2 with (2.4).

This concludes the verification of the essential properties of the const
ant A 3 defined by (2.1), and the existence of an co-periodic solution of (1.1) 
with (p subject to (1.5) can then  follow as before.
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3. We consider next the equation (1.2) with /  now subject to (1.6). 
The procedure is essentially as in [1] and we shall thus sketch only 

the outlines here. The starting point, then, is the special param eter depend
ent equation:

(3-1) *(5)+ A  (*) ^<4)+  «2 X +  a3 X +  a2x  +  h* =  \xp (o <  (x <  i)

with as before (see ( u )  of [i]) and /„, defined by

A  =  ( 1 — A  Ai +  [x/(x) 

where Ai >  o is a constant fixed such that 

(3*2) (A4 ^2 ^3) ^3 Ai <̂4 O

T hat such a constant can be determ ined follows in the same way as before 
from (1.6). Because of (3*2) the linear system corresponding to p, =  o 
in (3.1) is asym ptotically stable if bh >  o is sufficiently small and it remains 
then to establish the requisite boundedness results for (3.1).

The ultim ate boundedness of I *  (?) I > I * (?) I , I x (t) I and I x (4) (t) | for 
any solution x  (t) of (3-0  is again best tackled, separately, by considering 
fourth order equation.

(3-3) y 4)+fu. Çy) y  +  #2 ?  +  a&y +  ^ y  — Xu

obtainable from (3.1) on setting y  =  x. The function ^  here is as in [1] 
and is bounded. Thus the boundedness techniques developed in [3] (see 
particularly  §§9-11) are applicable and can indeed be used in the same 
way as before to obtain the ultim ate boundedness o f | y  | , | y | , | y  | and | y  | 
for any solution y  of .(3.3) which is the same thing as the ultim ate bound
edness of I x  if) I , I x (t) I , I x (f) I and | x (4) (t) | for any solution x  (t) of (3.1) 

Once the ultim ate boundedness of I % (t) | , | 'x (t) | , | x (t) | and | x (4) (t) | 
has been established tha t of \ x  (t) \ can be derived exactly as prescribed 
in [b  § 3*1 ]• The required existence result for (1.2) subject to the restrict
ion (1.6) on /  then follows.
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