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Analisi funzionale. — On boundary conditions and fixed points
Jor a-nonexpansive multivalued mappings . Nota di EspEDpITO
DE PascALE e RexaTo GUzzARDI, presentata ®? dal Socio G. SANSONE.

RIASSUNTO. — Si dimostra un teorema di punto fisso per mappe multivoche a—non-
espansive con condizioni sulla frontiera che generalizzano la ben nota condizione al contorno
di Leray-Schauder.

1. INTRODUCTION

The main purpose of this paper is to prove that a «-nonexpansive upper-
semicontinuous multivalued map f: B—o X, where X is a Banach space and
B=B(o,n)={x€X:|x| <r}, has a fixed point if the following three
conditions hold:

i) f(x) is convex for every x € B.

ii) if Ax €f(x) for some x €9B, then there exists B < 1 such that
Bx €f(x) (condition G).

iii) (I—/f) (B) is closed.
We shall employ the following three main theorems.

THEOREM A (L. Vietoris [1]). Zet f: X =Y be a continuous map such
that f(X) =Y and f~*(y) is acyclic for every y € Y. If X and Y are compact
metric spaces then fo: H, (X) —H, (Y) is an isomorphism.

We remark that Theorem A can be formulated in a more general setting.
However the statement we have adopted is sufficient for our purposes.

THEOREM B (J. Dugundji [2]). Any convex subset of a locally convex
metrizable linear space is an absolute retract.

THEOREM C (S. Eilenberg and D. Montgomery [3]). Zet X be a compact,
acyclic absolute neighborhood retract and f: X—o X an wppersemicontinuous
multivalued map. Assume that f(x) is acyclic for every x € X. Then f has a
JSixed point.

As particular cases of our theorem we obtain several well known fixed
point theorems for multivalued and singlevalued maps.

(*) Work performed under the auspices of « Consiglio Nazionale delle Ricerche » and
of «Istituto per lo sviluppo delle attivita e delle ricerche smentlﬁche in Calabria ».
(*¥*) Nella seduta dell’8 marzo 1975. :
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2. NOTATIONS AND DEFINITIONS

2.1 Multivalued maps.

We recall that a multivalued map f of a set X into a set Y is a triple
(G, X,Y), where G, the graph of f, is a subset of XXV such that f(x) =
={y€Y:(x,y) €G}is nonempty for eachx € X. f(X)=0U {f(x):x €X}
is the range of f, while X is its domain.

We shall use the symbol f:X —oY to indicate a multivalued map
and f:X —Y for the single-valued maps. If ACX and BCY then
SA)Y=uU{f(x):x€A} while fF(B)={x€e€X:f(®)CB} and f (B) =
={zeX:f®WOB=Fo}. If /: XY we have ¥ (B) =/ (B) =/ *(B).

Let X and Y be topological spaces and f: X—0Y. We say that f is upper-
semicontinuous at x, € X if for any open set O containing f(x,) there exists
a neighborhood U of x, such that x € U (x,) implies f (x) CO. If f is upper-
semicontinuous at each point x € X and f(x) is compact for every x € X
then f is said to be uppersemicontinuous on X.

The following conditions are equivalent to uppersemicontinuity on X:

a) For any open set OCY, the set /' (O) is open;
b) For any closed set CCY, / (C) is closed.

We say that a multivalued map f: X-—0Y is proper if for any compact
set K contained in Y, /7 (K) is compact. It is easy to see that a proper upper-
semicontinuous multivalued map is closed. A fixed point of a multivalued
map f: X —0X is a point x € X such that x €/ (x).

2.2 Kuratowski measure of noncompactness.

Let X be a metric space. For any bounded set ACX we define «(A)
(C. Kuratowski [7]) as the infimum of all » > o such that A can be covered
by a finite number of subsets with diameter less than . Let us recall here
some properties of this number, called “ measure of noncompactness .

a) oc(A) = o if and only if A is precompact. If X is a Banach space;

6) a(coA) = a (A) where coA indicates the closure of the convex
hull of A;

) a(A+B)<a(A)+a(B) where A+B={x+y:x€A and
y €B }; o

d) For every positive real number 7, (#A) = fo (A) where ?A =
={tw:x €A}

Let f: X—0 Y be an uppersemicontinuous map. The map £ is said to
be a-Lipschitz with constant K > o, if for any bounded set A C X

«(f(A) < Ka(A).
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If K <1, then f is called a-contraction; if K = 1, then f is called a-nonex-
pansive. If for any bounded subset A C X such that «(A)==o0, we have
a (f(A)) <a(A), then f is called condensing. The class of condensing maps
is wider than the class of a-contractions as shown by Furi-Vignoli [4]-

The map f is said to be completely continuous if it sends bounded sets
into precompact sets.

2.3. Homology, AR and ANR spaces.

LetJ be the category of topological spaces, # be the category of graded
vector spaces over a field F. By H; (X), where X € 7, we denote the K-th
Vietoris homology vector space associated to X and by H, (X) the graded
vector space associated to X. Given a continuous map f: X — Y we denote
by fx : Hx (X) — Hx (Y) the induced homomorphism.

A nonempty topological space X is said to the be acyclic if H;, X)=o0
for 7==0 and H, (X) ~ F.

A nonempty topological space is said to be an absolute retract if for
each homeomorphism % mapping X onto a closed subset of a metric space Y,
the set 2 (X) is a retract of Y. Similarly, a space X is said to be an absolute
neighborhood retract, provided that for each homeomorphism % mapping X
onto a closed subset of a metric space Y, /% (X) is a neighborhood retract
in Y.

2.4. Further notations.

In what follows, unless otherwise stated, X will stand for a Banach
Space, B(o,7”) ={xreX:|lx| <7}, B={reX:||x]| <7}, 3B — B\B and
IT: X — B (0,7) will be the radial retraction of X onto B (0, 7).

We shall say that a map f: B (0,7)—0 X satisfies condition *“ P if
“Ax €/ (x) for some x € 9B implies A < 1’ and we shall say that f satisfies
the weaker boundary condition “ G ” if “Ax €f(x) for some x € 3B implies
that there exists B <1 such that Bx €f(x) .

In the following I denotes the identity map.

3. RESULTS

LEMMA 3.1 (Martelli [8]). Zet f:B (0,7)—0 X be a condensing map
with convex values.

Then 11of (x) is acyclic for every x € B (o, 7).

Proof.  Since f(x) is compact and II is continuous, Ilof (x) is compact.
It is easy to see that IT™' (Y) is acyclic for every y €Ilof (x). Applying
theorem A we obtain that

ILe : Hy (f () — Hy (T1of (2))

is an isomorphism. Since f(x) is convex, ITof (x) is acyclic.



E. DE PASCALE e R. GUZZARDI, On boundary conditions, ecc. 303

LEMMA 3.2 (Kuratowski [7]). Let X a complete metric space and let
AyDAyD- -+ be a decreasing sequence of nonempty closed subsets of X. Assume

that o« (An) converges to o. Then Ax = N A, is nonempty and compact.
neN

LEMMA 3.3. The radial retraction is a-nonexpansive.

Progf. Let A be a bounded subset of X. Then II(A)Cco (AU {0}).
Since o (co (AU {0})) = a (A), it follows that « M A) <a(A).

THEOREM 3.1. Let f:B—0E be an a-contraction with convex values.
Let us assume that [ satisfies the boundary condition “G”. Then f has a
Jixed point.

Proof. Since II is a-nonexpansive, Ilof: B—o0 B is an a-contraction.
Moreover by Lemma 3.1, II (/(x)) is acyclic for every x € B.

We define inductively a sequence of sets: By, = B, B,,; = co Ilof (Bp)
for every » € N. Tt is easily seen that B,D B, for every # € N and « (B,) —o
as 7 — oco.

Let us put B, = N B,. Then, because of Lemma 3.2, one has that B
neN

is nonempty and compact. Since ITof(B,) C By, because of theorem B and
theorem C, Ilof has a fixed point in By. Let x € B such that x € II (f(x) =
= @ABUT(f\B).

If||x||<7 then x €f(x) N B. Thus x €f (x) and the statement is proved.
Suppose || x| =7. We have x € Il (f (x))\B) It follows that there exists
A =1 such that Ax €f(x). Because of condition “ G there exists B < I
such that fx €f (x). By the convexity of f(x), we have that the segment
joining Ax with fx is entirely contained in f(x), thus x €f (x).

Now let us turn to the main result.

THEOREM 3.2. Let f:B—0FE be an a-nonexpansive map with convex
values, such that (1 —f) (B) is closed. Let us assume that f satisfies condition G.
Then f has fixed point.

Proof For each 7 €N let us cons1der the map f, :B—0E defined by

Ju () = p + - Jf(x). We have:
“(fu@) = o (A /W) = a (FA) < -7 a (@) <a(A).
This 1mplles that f, is a a-contraction with constant Furthermore

/o satisfies condition G. In fact
Ax €f, (x) and xeaB=><”+ xef(x) e *€B=>IWP <1
(Bx€f(x)=

x€f,(x)  with B+1<I

pr
7+ 1
By Theorem' 3 I there exists an element x, € B such that x, €, (x,). Consequ-
ently x, — +I 2, €(1—f)(B) and since x, s bounded and m -1,
as 7 —oco we have 0 € (I —f) (B) and the statement follows.

21, — RENDICONTI 1975, Vol. LVIII, fasc. 3.
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Remark 3.1. A careful inspection and suitable modifications of our
proofs of Theorems 3.1 and 3.2 show that they hold also when f is acyclic-
valued and the condition “ G’ is replaced by the condition ““ix €f(x)
and x €9B implies f (x) convex and there exists § << 1 such that Bx €f(x)”.

Remartk 3.2. Theorems 3.1 and 3.2 fail to be valid if one replaces the
assumption 7 (x) convex for every x € B” with the assumption “f(x)
acyclic for every x € B”. This is easily seen from the following simple
counterexample, where f (x) is contractible for every x € B. Let us consider
B (0,7) in R%plane and the constant multivalued map f: B —o R? defined
by f(x) = I', where I' is the locus of points of R? satysfiyng the equations

0 = 79 S <s<onp O

in the standard polar coordinates. Clearly the map f is a completely
continuous map, that satisfies condition “ G ”” and does not have fixed points.
But the map f fails to be convex valued.

Remark 3.3. A subset A of a Banach space X is said to be star-shaped
if there exists ¥ € A such that the line segment joning y with every point
of A is entirely contained in A.

We may leave open the following question: do Theorem 3.1 and 3.2
hold if the assumption ““f(x) convex for every x € B” is replaced by
“f(x) star-shaped for every x € B”’?

It is known that if f is a single-valued condensing map then I—f is

closed. We generalize and extend this result to the context of condensing
multivalued maps.

PROPOSITION 3.1. Let E be a closed bounded subset of a Banach space X
and f: E—0 X be a condensing map. Then 1—f is proper.

Proof. Let KCE be compact and set A = (I —f) (K). Since I —f
is upper semicontinuous, A is closed in E. We also have ACK + f(A).

Let us suppose that « (A) > o.

Then a(A) < a (K) + « (f(A)) < a(A) which is impossible.

Hence « (A) = 0 and A is compact.

COROLLARY 3.1 (Martelli [8]). Let f: B—0 X be a condensing map with
conyex values. Let us assume that f satisfies condition P. Then [ has a
fixed point.

' Proof. Follows from Proposition 3.1.

COROLLARY 3.2 (A. Granas [5]). Let f:B(o,7r)—0 X be an uppersemi-
- continuous map with closed and convex values. Let us assume that f is compact
and f(x)CB (0,7) for every x €9B. Then f has a fixed point.

Theorem 2 contains also, as a particular case, the well known result
of Rothe [10]. It contains also several other theorems which would be too
long to mention here. As examples we will give only the following two.
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COROLLARY 3.3 (M. Krasnoselskij [6]). Zet f:B(o,») -H ée a
continuous compact map, where H is a Hilbert space. If for every x €3B

(f @), x) <=,
then [ has a fixed point.

COROLLARY 3.4 (W. V. Petryshyn [9]). Lezf: B(o,#) — X be a condens-
ing map which satisfies condition P. Then f has a fixed point.
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