Atti Accademia Nazionale dei Lincei

Classe Scienze Fisiche Matematiche Naturali RENDICONTI

Esayas George Kundert

Linear operators on certain completions of the s-d-ring over the integers. Nota I

Atti della Accademia Nazionale dei Lincei. Classe di Scienze Fisiche, Matematiche e Naturali. Rendiconti, Serie 8, Vol. 58 (1975), n.3, p. 271-276.
Accademia Nazionale dei Lincei
http://www.bdim.eu/item?id=RLINA_1975_8_58_3_271_0

L'utilizzo e la stampa di questo documento digitale è consentito liberamente per motivi di ricerca e studio. Non è consentito l'utilizzo dello stesso per motivi commerciali. Tutte le copie di questo documento devono riportare questo avvertimento.

> Articolo digitalizzato nel quadro del programma
> bdim (Biblioteca Digitale Italiana di Matematica)
> SIMAI \& UMI
> $\mathrm{http}: / / \mathrm{www}$. bdim.eu/

RENDICONTI

DELLE SEDUTE

DELLA ACCADEMIA NAZIONALE DEI LINCEI
 Classe di Scienze fisiche, matematiche e naturali

Seduta dell'8 marzo 1975
Presiede il Presidente della Classe Beniamino Segre

SEZIONE I
(Matematica, meccanica, astronomia, geodesia e geofisica)

Abstract

Algebra. - Linear operators on certain completions of the s - d-ring over the integers. Nota I di Esayas George Kundert, presentata (*) dal Socio B. Segre.

Riassunto. - Questa Nota I determina le varie possibilità di automorfismi, semiderivazioni e semi-integrazioni nell' s-d-anello sopra gli interi, e costituisce una preparazione per una successiva Nota II.

Introduction

The following paper studies linear operators on certain s - d-rings. Special attention is devoted to semi-derivations, semi-integrations and natural generalizations of these operators. They are intimately connected with other linear operators, namely algebra automorphisms and certain algebra homorphisms.

Part I (Nota I) deals with the study of linear operators on the s - d-ring \mathfrak{A} over the ring of integers \mathbf{Z}. All \mathbf{Z}-algebra homomorphisms from \mathfrak{A} into \mathbf{Z} and all \mathbf{Z}-algebra automorphisms of \mathfrak{A} are first enumerated. From these, we are then able to construct all possible semi-derivations and semi-integrations on \mathfrak{U}. Their mutual interdependence is obtained by the process of conjugation.

It is remarkable that one is able to find to each semi-integration S on \mathfrak{A} a completion $\hat{\mathscr{U}}$ to which S may be extended and on which S has an inverse S^{-1}. This inverse is almost a semi-derivation, indeed it satisfies the product rule.

Linear operators on $\hat{\mathfrak{A}}$ are studied in Part II (Nota II). We show there that an automorphism of \mathfrak{A} extends always to a certain homomorphism on $\hat{\mathfrak{Y}}$, which however, in the nontrivial case, is never an automorphism on $\hat{\mathfrak{Q}}$.

[^0]With help of these extensions, we can construct semi-derivations and then semi-integrations on $\hat{\mathfrak{U}}$. The ring of constants, however, will in general be a subring \mathbf{Z}_{m} if $\hat{\mathfrak{Q}}$, which is larger than \mathbf{Z}, so that $\hat{\mathfrak{A}}$ must be regarded as a \mathbf{Z}_{m}-algebra.

In another paper, we will show that an analysis may be developed on $\hat{\mathfrak{V}}$, which is much richer than expected. We have already made use of it in the present paper, when we determined the kernels of the above mentioned homorphisms and semi-derivations on $\hat{\mathfrak{A}}$ by solving certain differential equations. The element $x_{-1}=S^{-1}(\mathrm{I})$ plays two roles in our analysis. On one hand it takes over the role of the Dirac δ-function which is important in ordinary analysis. On the other hand, there exists a semi-derivation $\overline{\mathrm{D}}$ on $\hat{\mathfrak{A}}$ for which $\overline{\mathrm{D}} x_{-1}=x_{-1}$, so that x_{-1} has the differential equation of the exponential function with respect to $\overline{\mathrm{D}}$. Algebraically, however, x_{-1} does not act like the exponential function at all. The product of x_{-1} with any element of $\hat{\mathfrak{Q}}$ is again x_{-1}, which shows-by the way-that $\hat{\mathfrak{U}}$ is not an integral domain.

Part I

Let \mathfrak{N} be the S-D-ring over the integers \mathbf{Z} (see [r]). We study first the linear operators on \mathfrak{A}. Since \mathfrak{A} is an algebra these operators form also an algebra 2 . Operators which will be of special interest to us are the two operators occurring in the definition of \mathfrak{V}, namely the semi-derivation D which must satisfy the following 5 conditions: (I) Linearity (2) D is onto (3) Product formula: $\mathrm{D}(a b)=a \mathrm{D} b+b \mathrm{D} a-\mathrm{D} a \mathrm{D} b$ (4) $\mathrm{D}(\mathrm{I})=0$ and (5) $\mathrm{D}^{(m)} a=0$ for some $m<\infty$ for all $a \in \mathfrak{Z}$ and the algebra homomorphism σ. From these two operators we constructed the linear operator S , which we called semiintegration, by defining: $\mathrm{S}(a)=a^{\prime}-\sigma\left(a^{\prime}\right)$ where a^{\prime} is any element of \mathfrak{A} such that $\mathrm{D} a^{\prime}=a$. S satisfies the following properties: (6) $\mathrm{DS}=\mathrm{I}$ (identity) and (7) $\mathrm{SD}=\mathrm{I}-\sigma$. Other operators which we used before are the algebra homomorphism τ introduced in [1] and Giebutowski used in his thesis [2] the automorphism I - D which turned out to be very helpful for studying p-adic completions of \mathfrak{A}. We also need the algebra basis $\left\{x_{i}=\mathrm{S}^{(i)}(\mathrm{I})\right\}$, $i=\mathrm{o}, \mathrm{I}, 2,3, \cdots$. It is clear that L is uniquely determined if we know $\mathrm{L}\left(x_{i}\right)$. For example for σ we have

$$
\sigma\left(x_{i}\right)=\left\{\begin{array}{l}
\mathrm{I} \text { for } i=0 \\
\mathrm{o} \text { for } i>0,
\end{array}\right.
$$

for D we have $\mathrm{D}\left(x_{i}\right)=x_{i-1}$ and for S we have $\mathrm{S}\left(x_{i}\right)=x_{i+1}$. A linear operator H which is also an algebra homomorphism is already determined by knowing $\mathrm{H}\left(x_{1}\right)$ because:

$$
\begin{align*}
\mathrm{H}\left(x_{1} x_{i-1}\right) & =\mathrm{H}\left[i x_{i}-(i-\mathrm{I}) x_{i-1}\right]=i \mathrm{H}\left(x_{i}\right)-(i-\mathrm{I}) \mathrm{H}\left(x_{i-1}\right) \\
& =\mathrm{H}\left(x_{1}\right) \mathrm{H}\left(x_{i-1}\right) \quad \text { so that } \\
i \mathrm{H}\left(x_{i}\right) & =\left[i-\mathrm{I}+\mathrm{H}\left(x_{1}\right)\right] \mathrm{H}\left(x_{i-1}\right) \tag{I}
\end{align*}
$$

provides a recursion formula for $\mathrm{H}\left(x_{i}\right)$. It is easy to prove that $\mathrm{H}\left(x_{1}\right)$ may be arbitrarily prescribed. In this paper we will need this only for two important subcases:
(I) Let σ_{m} be the algebra homomorphism determined by $\sigma_{m}\left(x_{1}\right)=-m$. In this case formula (I) provides at once $\sigma_{m}\left(x_{i}\right)=\binom{i-m-1}{i}$. As special cases we have: σ_{0} is the-a priori given-operator σ and σ_{-1} is the operator τ mentioned above. (2) We compute the automorphism group A of \mathfrak{A}. Let $\mathrm{T} \in \mathrm{A}$. Suppose deg $\mathrm{T}\left(x_{1}\right)=r$. From (I) it follows that $\operatorname{deg} \mathrm{T}\left(x_{i}\right)=i \cdot r$ and if $a \in \mathfrak{A}$ is of degree t it follows that $\operatorname{deg} \mathrm{T}(a)=t \cdot r$. Since there exists $a \in \mathfrak{A}$ such that $\mathrm{T}(a)=x_{1}$ it follows that $r \cdot t=\mathrm{I}$ and therefore $r=t=\mathrm{I}$. Let $\mathrm{T}\left(x_{1}\right)=\beta_{0}+\beta_{1} x_{1}$ and $a=\alpha_{0}+\alpha_{1} x_{1}$ then $\mathrm{T}(a)=\left(\alpha_{0}+\alpha_{1} \beta_{0}\right)+\alpha_{1} \beta_{1} x_{1}=x_{1}$ and we must have: $\alpha_{1}=\beta_{1}=$ I or $\alpha_{1}=\beta_{1}=-\mathrm{I}$. In the first case $\alpha_{0}=-\beta_{0}$ and in the second case $\alpha_{0}=\beta_{0}$. There are, therefore, exactly two one-parametric families of automorphisms possible which we denote by K^{m} and ${ }^{m} \mathrm{~J}$ respectively. They are determined by:

$$
\begin{align*}
& \mathrm{K}^{m}\left(x_{1}\right)=m+x_{1} \quad \text { so that by (I) } \mathrm{K}^{m}\left(x_{i}\right)=\sum_{k=0}^{i}\binom{m+i-\mathrm{I}-k}{i-k} x_{k} \tag{II}\\
& { }^{m} \mathrm{~J}\left(x_{1}\right)=m-x_{1} \quad \text { so that by } \quad \text { (I) }{ }^{m} \mathrm{~J}\left(x_{i}\right)=\sum_{k=0}^{i}\left(\begin{array}{c}
\mathrm{I})^{k}\binom{m+i-\mathrm{I}}{i-k} x_{k}
\end{array} .\right. \tag{III}
\end{align*}
$$

The automorphisms K^{m} form an infinite cyclic subgroup K of A with index 2. Clearly $\mathrm{K}=\mathrm{K}^{1}$ is a generator and $(\mathrm{K})^{m}=\mathrm{K}^{m} . \mathrm{J}=\left\{{ }^{m} \mathrm{~J}\right\}$ is the coset of K . From the definition it follows at once that ${ }^{m} \mathrm{~J}={ }^{0} \mathrm{JK}^{m}$ and these automorphisms are involutions: $\left({ }^{m} \mathrm{~J}\right)^{2}=\mathrm{I}$. If we put ${ }^{0} \mathrm{~J}=\mathrm{J}$ we can also say that A is generated by the two elements K and J with the relations: $\mathrm{J}^{2}=\mathrm{I}$ and $\mathrm{JK}=\mathrm{K}^{-1} \mathrm{~J}$.

Let us return to the algebra of linear operators $\mathfrak{\Omega}$. On \mathbb{Z} we have the similarity transformations

$$
\begin{aligned}
s_{\mathrm{A}}: & \mathbb{R} \rightarrow \mathbb{R} \\
& \mathrm{L} \rightarrow \mathrm{~L}_{\mathrm{A}}=\mathrm{ALA}^{-1} \quad \text { with } \quad \mathrm{A} \in \mathrm{~A} .
\end{aligned}
$$

If $\mathrm{A}=\mathrm{K}^{m}$ we denote L_{A} also by L_{m} (m-translations) and if $\mathrm{A}=\mathrm{JK}^{m}$ we denote L_{A} also by L_{m}^{-}. In particular $\mathrm{L}_{0}=\mathrm{L}$ and $\mathrm{L}^{-}=\mathrm{JLJ}$ (reflection). Note that: $\mathrm{L}^{--}=\mathrm{L}$ and $\left(\mathrm{L}_{m}\right)^{-}=\mathrm{L}_{m}^{-}=\left(\mathrm{L}^{-}\right)_{-m}$. Let $\mathrm{S}_{\mathrm{A}}=\left\{s_{\mathrm{A}}\right\}$. It is the group of similarities on \mathfrak{Z} with the multiplication: $s_{A} \cdot s_{\mathrm{B}}=s_{\mathrm{AB}}$. There is a natural group homomorphism from A onto S_{A} the kernel of which consists of all $A \in A$ which commute with all $L \in \mathbb{R}$. For $A=K^{m}$ we have $\mathrm{K}^{m} \mathrm{~J}=\mathrm{JK}^{-m} \neq \mathrm{JK}^{m}$ unless $m=\mathrm{o}$ and for $\mathrm{A}=\mathrm{JK}^{m}$ we have $\mathrm{JK}^{m} \cdot \mathrm{~J}=\mathrm{K}^{-m} \neq$ $\neq \mathrm{J} \cdot \mathrm{JK}^{m}=\mathrm{K}^{m}$. It follows that $\mathrm{A} \approx \mathrm{S}_{\mathrm{A}}$.

Furthermore we need on \mathbb{Z} the mapping $L^{\prime}=I-L$. Note that: $\mathrm{L}^{\prime \prime}=\mathrm{L}$ and $\left(\mathrm{L}_{\mathrm{A}}\right)^{\prime}=\left(\mathrm{L}^{\prime}\right)_{\mathrm{A}}$.

Let us compute the conjugate classes for some important linear operators:
(I) $\mathrm{L}=\mathrm{K}^{m}$. In that case: $\mathrm{L}_{n}=\mathrm{K}^{n} \mathrm{~K}^{m} \mathrm{~K}^{-n}=\mathrm{L}$ and $\mathrm{L}_{n}^{-}=\mathrm{JK}^{m} \mathrm{~J}=\mathrm{K}^{-m}$.

The conjugate class of K^{m} consists therefore of two elements only: $\left\{\mathrm{K}^{m}, \mathrm{~K}^{-m}\right\}$ for $m \neq 0$.
(2) $\mathrm{L}=\mathrm{JK}^{m}$. In that case: $\mathrm{L}_{n}=\mathrm{K}^{n} \mathrm{JK}^{m} \mathrm{~K}^{-n}=\mathrm{JK}^{m-2 n}$ and $\mathrm{L}_{n}^{-}=\left(\mathrm{L}_{n}\right)^{-}=\mathrm{JJK}^{m-2 n} \mathrm{~J}=\mathrm{JK}^{-m+2 n}$.

The conjugate class of JK^{m} consists therefore of infinitely many elements: $\left\{\mathrm{JK}^{s}\right\}_{s=m \bmod 2}$.
(3) $\mathrm{L}=\sigma$. In this case, it is first clear, that L_{n} and L_{n}^{-}are also algebra homomorphisms. Since $\mathrm{L}_{n}\left(x_{1}\right)=\mathrm{K}^{n} \sigma \mathrm{~K}^{-n}\left(x_{1}\right)=\mathrm{K}^{n} \sigma\left(-n+x_{1}\right)=$ $=\mathrm{K}^{n}(-n)=-n$ so that $\mathrm{L}_{n}=\sigma_{n}$ and $\mathrm{L}_{n}^{-}\left(x_{1}\right)=\mathrm{J} \sigma_{n} \mathrm{~J}\left(x_{1}\right)=n$ so that $\mathrm{L}_{n}^{-}=\sigma_{-n}$.

The conjugate class of σ consists therefore exactly of all algebra homomorphisms σ_{n}.
(4) $\mathrm{L}=\mathrm{D}$. In this case, we have first by Giebutowski [2] $\mathrm{D}=\left(\mathrm{K}^{-1}\right)^{\prime}$ so that $\mathrm{D}_{n}=\left(\mathrm{K}^{-1}\right)^{\prime}=\mathrm{D}$ and $\mathrm{D}_{n}^{-}=\mathrm{D}^{-}$. Since $\mathrm{D}\left(x_{1}\right)=1$ and $\mathrm{D}^{-}\left(x_{1}\right)=$ $\mathrm{JDJ}\left(x_{1}\right)=-\mathrm{I}$ it follows that $\mathrm{D} \neq \mathrm{D}^{-}$. One checks easily that all five conditions for a semi-derivation are satisfied by the operator D^{-}, so that D^{-}is another semi-derivation on \mathfrak{N}.

The conjugate class of D consists of the two semi-derivations $\left\{\mathrm{D}, \mathrm{D}^{-}\right\}$.
Now let T be an arbitrary semi-derivation on $\mathfrak{A} . \mathrm{T}^{\prime}(a b)=a b-a \mathrm{~T}(b)-$ $-b \mathrm{~T}(a)+\mathrm{T}(a) \mathrm{T}(b)=(a-\mathrm{T}(a))(b-\mathrm{T}(b))=\mathrm{T}^{\prime}(a) \cdot \mathrm{T}^{\prime}(b)$. It follows that T^{\prime} is an algebra homomorphism on \mathfrak{A}. Note that $\mathrm{T}(\alpha)=\alpha \cdot \mathrm{T}(\mathrm{I})=0$ for $\alpha \in \mathbf{Z}$. We have shown before that if $\operatorname{deg} \mathrm{T}^{\prime}\left(x_{1}\right)=n$ then $\operatorname{deg} \mathrm{T}^{\prime}\left(x_{i}\right)=n \cdot i$ and therefore $\operatorname{deg} \mathrm{T}\left(x_{i}\right)=i \cdot n$ if $n>\mathrm{I}$. It follows that if m increases deg $\mathrm{T}^{(m)}\left(x_{1}\right)$ increases too and condition 5 for a semi-derivative could not hold. If $\mathrm{T}\left(x_{1}\right)=\alpha_{0}+\alpha_{1} x_{1}$ then obviously $\operatorname{deg} \mathrm{T}^{(m)}\left(x_{1}\right)=\mathrm{I}$ for all m and again condition 5 is violated. We must therefore have that $\mathrm{T}\left(x_{1}\right)=\alpha \in \mathbf{Z}$.

Now by condition 2 there exists $b \in \mathfrak{A}$ such that $\mathrm{T}(b)=\mathrm{I}$. Deg $b=\mathrm{I}$ otherwise $\operatorname{deg} \mathrm{T}(b) \neq 0$. Let $b=\beta_{0}+\beta_{1} x_{1}$. Since $\mathrm{T}(b)=\beta_{1} \cdot \alpha=\mathrm{I}$ it follows that $\beta_{1}=\alpha=\mathrm{I}$ or $\beta_{1}=\alpha=-\mathrm{I}$ so that $\mathrm{T}^{\prime}\left(x_{1}\right)= \pm \mathrm{I}+x_{1}$. Conclusion: $\mathrm{T}^{\prime}=\mathrm{K}$ or K^{-1} which means $\mathrm{T}=\mathrm{D}^{-}$or D . We have therefore the following

Theorem i. The only possible semi-derivations on $\mathfrak{A t}$ are the semi-derivations D and D^{-}and they are conjugates: $\mathrm{D}^{-}=\mathrm{JDJ}$.

Let $x_{m i}=\mathrm{K}^{m} x_{i}$ and $x_{m i}^{-}=\mathrm{JK}^{m} x_{i}=\mathrm{J} x_{m i}$. It is clear that $\left\{x_{m i}\right\}_{m \text { fixed }}$ and $\left\{x_{m i}^{-}\right\}_{m \text { fixed }}$ form two families of new algebra basis for \mathfrak{A}. The actual transformation formulae, we will not explicitly state here, but they can easily be obtained from (II) and (III). We have the following corollary to Theorem I:

Corollary. $\left\{x_{m i}\right\}_{m \text { fixed }}$ is a D-basis for \mathfrak{A}.

$$
\left\{x_{m i}^{-}\right\}_{m \text { fixed }} \text { is a } \mathrm{D}^{-} \text {-basis for } \mathfrak{N}
$$

Proof. A D-basis (see [2]) is a basis such that $\mathrm{D} x_{m i}=x_{m i-1} . \mathrm{D} x_{m i}=$ $=\mathrm{D}_{m} \mathrm{~K}^{m} x_{i}=\mathrm{K}^{m} \mathrm{D} x_{i}=\mathrm{K}^{m} x_{i-1}=x_{m i-1} \quad$ and $\mathrm{D}^{-} x_{m i}^{-}=\mathrm{JDJJ} x_{i}=\mathrm{JD} x_{i}=$ $=\mathrm{J} x_{i-1}=x_{m i-1}^{-}$which is the condition for a D^{-}-basis.
(5) $\mathrm{L}=\mathrm{S}$. In this case we have the following properties:
(a) $\mathrm{S}_{m}(\mathrm{I})=\mathrm{K}^{m} \mathrm{SK}^{-m}(\mathrm{I})=m+x_{1}$ and $\mathrm{S}_{m}^{-}(\mathrm{I})=\mathrm{JS}_{m} \mathrm{~J}(\mathrm{I})=m-x_{1}$. It follows that $\mathrm{S}_{m} \neq \mathrm{S}_{n}, \mathrm{~S}_{m}^{-} \neq \mathrm{S}_{n}^{-}$if $m \neq n$ and $\mathrm{S}_{m} \neq \mathrm{S}_{m}^{-}$.
(b) $\mathrm{DS}_{m}=\mathrm{D}_{m} \mathrm{~S}_{m}=(\mathrm{DS})_{m}=\mathrm{I}$ since $\mathrm{DS}=\mathrm{I}$ and $\mathrm{S}_{m} \mathrm{D}=\mathrm{S}_{m} \mathrm{D}_{m}=$ $=(\mathrm{SD})_{m}=\left(\sigma^{\prime}\right)_{m}=\sigma_{m}^{\prime}$ since $\mathrm{SD}=\sigma^{\prime}, \mathrm{D}^{-} \mathrm{S}_{m}^{-}=\left(\mathrm{DS}_{m}\right)^{-}=\mathrm{I}$ and $\mathrm{S}_{m}^{-} \mathrm{D}^{-}=$ $=\left(\sigma_{m}^{\prime}\right)^{-}=\sigma_{-m}^{\prime}$.
(c) Let b be any element of \mathfrak{H} such that $\mathrm{D} b=a$ then $\mathrm{S}_{m}(a)=$ $=\mathrm{S}_{m} \mathrm{D} b=\sigma_{m}^{\prime}(b)=b-\sigma_{m}(b)$ and similarly if b^{-}is such that $\mathrm{D}^{-} b^{-}=a$ then $\mathrm{S}_{m}^{-}(a)=b^{-}-\sigma_{m}^{-}(b)$.
(d) From (c) follows at once that $\mathrm{S}_{m}(a)$ and $\mathrm{S}_{n}(a)$ differ at most by an integer for any m and n. This integer however does depend on the choice of a. A similar statement holds for $\mathrm{S}_{m}^{-}(a)$ and $\mathrm{S}_{n}^{-}(a)$.
(e) Let R be any semi-integration on \mathfrak{N}, that is, a linear operator such that there exists a semi-derivation T and an algebra homorphism $\rho: \mathfrak{N} \rightarrow \mathbf{Z}$ such that $\mathrm{R}(a)=b-\rho(b)$ for any b for which $\mathrm{T} b=a$. From our preceding investigations it follows at once that $\mathrm{T}=\mathrm{D}$ or D^{-}and $\rho=\sigma_{m}$ for some m. From our definition it follows at once that-if T equals to, say, D -we have: $\mathrm{RD}=\mathrm{I}-\sigma_{m}$. Multiplying from the right by $\mathrm{S}_{m^{\prime}}$ we get $\mathrm{R}=\mathrm{S}_{m}-\sigma_{m} \mathrm{~S}_{m}=\mathrm{S}_{m}-(\sigma \mathrm{S})_{m}=\mathrm{S}_{m}$ since $\sigma \mathrm{S}=\mathrm{o}$. We collect this information in the following theorem:

THEOREM 2. The only possible semi-integrations on \mathfrak{N} are S_{m} and S_{m}^{-}which are all different from each other and conjugates of S . They have the following properties:

$$
\mathrm{DS}_{m}=\mathrm{I} \quad, \quad \mathrm{~S}_{m} \mathrm{D}=\sigma_{m}^{\prime} \quad \text { and } \quad \mathrm{D}^{-} \mathrm{S}_{m}^{-}=\mathrm{I} \quad, \quad \mathrm{~S}_{m}^{-} \mathrm{D}^{-}=\sigma_{-m}^{\prime}
$$

$\mathrm{S}_{m}(a)$ and $\mathrm{S}_{n}(a)$ differ at most by an integer which does not depend on the choice of m and n, but does depend on the argument a. The same statement holds for $\mathrm{S}_{m}^{-}(a)$ and $\mathrm{S}_{n}^{-}(a)$.

Definition. $\left\{z_{m i}\right\}$ is called $a \mathrm{~S}_{m}$-D-basis of \mathfrak{A}, if it is a D -basis and if for each i we have $\mathrm{S}_{m} z_{m i}=z_{m i+1}$. A $\mathrm{S}_{m}^{-}-\mathrm{D}^{-}$-basis is defined analogeously.

Corollary. The basis $\left\{x_{m i}\right\}$ are the only possible $\mathrm{S}_{m}-\mathrm{D}$-basis. The basis $\left\{x_{m i}^{-}\right\}$are the only possible $\mathrm{S}_{m}^{-}-\mathrm{D}^{-}$-basis.

Proof. $\mathrm{S}_{m} x_{m i}=\mathrm{K}^{m} \mathrm{~S} x_{i}=\mathrm{K}^{m} x_{i+1}=x_{m i+1}$ and if $z_{m i}$ is any $\mathrm{S}^{m}-\mathrm{D}$-basis then $z_{m i}=\mathrm{S}_{m}^{(i)}(\mathrm{I})=x_{m i}$ and a similar proof for the second statement in the corollary.

The following lemma is crucial for our further development of the theory. It shows that there is a natural pairing between the operators $\left\{\mathrm{S}_{m}\right\}$ and the operators $\left\{\mathrm{S}_{m}^{-}\right\}$which will ultimately allow us to find the inverse operator of S_{m} on a suitable extension ring of \mathfrak{A} and this inverse will satisfy the product rule of a semi-derivation.

Definition. Let $\bar{S}_{m}=\mathrm{S}_{1-m}^{-}$and $\mathrm{D}=\mathrm{D}^{-}$.
Lemma. $\overline{\mathrm{S}}_{m}=\mathrm{S}_{m}^{\prime}$.
Proof. If $m=0$ then $\overline{\mathrm{S}}\left(x_{i}\right)=\mathrm{S}_{1}^{-}\left(x_{i}\right)=\left({ }^{1} \mathrm{~J}\right) \mathrm{S}\left({ }^{1} \mathrm{~J}\right)\left(x_{i}\right)=x_{i}-x_{i+1}$ by formula (III). On the other hand:

$$
\mathrm{S}^{\prime}\left(x_{i}\right)=x_{i}-x_{i+1} \quad \text { so that } \quad \overline{\mathrm{S}}=\mathrm{S}^{\prime} .
$$

Now $\overline{\mathrm{S}}_{m}=\mathrm{S}_{1-m}^{-}=\left[\left(\mathrm{S}_{1}\right)_{-m}\right]^{-}=\left(\mathrm{S}_{1}^{-}\right)_{m}=(\overline{\mathrm{S}})_{m}=\left(\mathrm{S}^{\prime}\right)_{m}=\mathrm{S}_{m}^{\prime}$.
Given the basis $\left\{x_{m i}\right\}$ we associate with it the basis $\left\{\bar{x}_{m i}\right\}$ where $\bar{x}_{m i}=$ $=\overline{x_{1-m i}}$ and call it its dual basis. Note that:

$$
\overline{\bar{x}}_{m i}=x_{m i} \quad \text { and } \quad \overline{\mathrm{S}}_{m} \bar{x}_{m i}=\bar{x}_{m i+1} \quad \text { and } \quad \overline{\mathrm{D}} \bar{x}_{m i}=\bar{x}_{m i-1} .
$$

Literature

[I] E. G. Kundert (1966) - Structure Theory in s-d-Rings. Nota I, «Acc. Naz. Lincei», ser. VIII, $4 I$.
[2] T. Giebutowski (1971) - Ph. D. Thesis, Univ. of Mass.

[^0]: (*) Nella seduta dell'8 febbraio 1975.

