ATTI ACCADEMIA NAZIONALE DEI LINCEI

CLASSE SCIENZE FISICHE MATEMATICHE NATURALI

Rendiconti

ESAYAS GEORGE KUNDERT

Linear operators on certain completions of the s-d-ring over the integers. Nota I

Atti della Accademia Nazionale dei Lincei. Classe di Scienze Fisiche, Matematiche e Naturali. Rendiconti, Serie 8, Vol. **58** (1975), n.3, p. 271–276. Accademia Nazionale dei Lincei

<http://www.bdim.eu/item?id=RLINA_1975_8_58_3_271_0>

L'utilizzo e la stampa di questo documento digitale è consentito liberamente per motivi di ricerca e studio. Non è consentito l'utilizzo dello stesso per motivi commerciali. Tutte le copie di questo documento devono riportare questo avvertimento.

Articolo digitalizzato nel quadro del programma bdim (Biblioteca Digitale Italiana di Matematica) SIMAI & UMI http://www.bdim.eu/

Atti della Accademia Nazionale dei Lincei. Classe di Scienze Fisiche, Matematiche e Naturali. Rendiconti, Accademia Nazionale dei Lincei, 1975.

RENDICONTI

DELLE SEDUTE

DELLA ACCADEMIA NAZIONALE DEI LINCEI

Classe di Scienze fisiche, matematiche e naturali

Seduta dell'8 marzo 1975 Presiede il Presidente della Classe Beniamino Segre

SEZIONE I

(Matematica, meccanica, astronomia, geodesia e geofisica)

Algebra. — Linear operators on certain completions of the s-d-ring over the integers. Nota I di ESAYAS GEORGE KUNDERT, presentata^(*) dal Socio B. SEGRE.

RIASSUNTO. — Questa Nota I determina le varie possibilità di automorfismi, semiderivazioni e semi-integrazioni nell'*s*-d-anello sopra gli interi, e costituisce una preparazione per una successiva Nota II.

INTRODUCTION

The following paper studies linear operators on certain s-d-rings. Special attention is devoted to semi-derivations, semi-integrations and natural generalizations of these operators. They are intimately connected with other linear operators, namely algebra automorphisms and certain algebra homorphisms.

Part I (Nota I) deals with the study of linear operators on the *s*-*d*-ring \mathfrak{A} over the ring of integers **Z**. All **Z**-algebra homomorphisms from \mathfrak{A} into **Z** and all **Z**-algebra automorphisms of \mathfrak{A} are first enumerated. From these, we are then able to construct all possible semi-derivations and semi-integrations on \mathfrak{A} . Their mutual interdependence is obtained by the process of conjugation.

It is remarkable that one is able to find to each semi-integration S on \mathfrak{A} a completion $\hat{\mathfrak{A}}$ to which S may be extended and on which S has an inverse S⁻¹. This inverse is almost a semi-derivation, indeed it satisfies the product rule.

Linear operators on $\hat{\mathfrak{A}}$ are studied in Part II (Nota II). We show there that an automorphism of \mathfrak{A} extends always to a certain homomorphism on $\hat{\mathfrak{A}}$, which however, in the nontrivial case, is never an automorphism on $\hat{\mathfrak{A}}$.

(*) Nella seduta dell'8 febbraio 1975.

19. - RENDICONTI 1975, Vol. LVIII, fasc. 3.

With help of these extensions, we can construct semi-derivations and then semi-integrations on $\hat{\mathfrak{A}}$. The ring of constants, however, will in general be a subring \mathbf{Z}_m if $\hat{\mathfrak{A}}$, which is larger than \mathbf{Z} , so that $\hat{\mathfrak{A}}$ must be regarded as a \mathbf{Z}_m -algebra.

In another paper, we will show that an *analysis* may be developed on $\hat{\mathfrak{A}}$, which is much richer than expected. We have already made use of it in the present paper, when we determined the kernels of the above mentioned homorphisms and semi-derivations on $\hat{\mathfrak{A}}$ by solving certain differential equations. The element $x_{-1} = S^{-1}(I)$ plays two roles in our analysis. On one hand it takes over the role of the Dirac δ -function which is important in ordinary analysis. On the other hand, there exists a semi-derivation \overline{D} on $\hat{\mathfrak{A}}$ for which $\overline{D}x_{-1} = x_{-1}$, so that x_{-1} has the differential equation of the exponential function with respect to \overline{D} . Algebraically, however, x_{-1} does not act like the exponential function at all. The product of x_{-1} with any element of $\hat{\mathfrak{A}}$ is again x_{-1} , which shows—by the way—that $\hat{\mathfrak{A}}$ is not an integral domain.

Part I

Let \mathfrak{A} be the S–D–ring over the integers **Z** (see [1]). We study first the linear operators on \mathfrak{A} . Since \mathfrak{A} is an algebra these operators form also an algebra 2. Operators which will be of special interest to us are the two operators occurring in the definition of \mathfrak{A} , namely the semi-derivation D which must satisfy the following 5 conditions: (1) Linearity (2) D is onto (3) Product formula: D(ab) = aDb + bDa - DaDb (4) D(I) = 0 and (5) $D^{(m)}a = 0$ for some $m < \infty$ for all $a \in \mathfrak{A}$ and the algebra homomorphism σ . From these two operators we constructed the linear operator S, which we called semiintegration, by defining: $S(a) = a' - \sigma(a')$ where a' is any element of \mathfrak{A} such that Da' = a. S satisfies the following properties: (6) DS = I (identity) and (7) $SD = I - \sigma$. Other operators which we used before are the algebra homomorphism τ introduced in [I] and Giebutowski used in his thesis [2] the automorphism I-D which turned out to be very helpful for studying p-adic completions of \mathfrak{A} . We also need the algebra basis $\{x_i = S^{(i)}(I)\},\$ $i = 0, 1, 2, 3, \cdots$. It is clear that L is uniquely determined if we know L (x_i) . For example for σ we have

$$\sigma(x_i) = \begin{cases} 1 & \text{for } i = 0 \\ 0 & \text{for } i > 0 \end{cases},$$

for D we have $D(x_i) = x_{i-1}$ and for S we have $S(x_i) = x_{i+1}$. A linear operator H which is also an algebra homomorphism is already determined by knowing $H(x_1)$ because:

$$H(x_{1}x_{i-1}) = H[ix_{i} - (i - 1)x_{i-1}] = iH(x_{i}) - (i - 1)H(x_{i-1})$$

= H(x_{1})H(x_{i-1}) so that
$$iH(x_{i}) = [i - 1 + H(x_{1})]H(x_{i-1})$$

272

(I)

provides a recursion formula for $H(x_i)$. It is easy to prove that $H(x_1)$ may be arbitrarily prescribed. In this paper we will need this only for two important subcases:

(1) Let σ_m be the algebra homomorphism determined by $\sigma_m(x_1) = -m$. In this case formula (I) provides at once $\sigma_m(x_i) = \binom{i-m-1}{i}$. As special cases we have: σ_0 is the—a priori given-operator σ and σ_{-1} is the operator τ mentioned above. (2) We compute the automorphism group A of \mathfrak{A} . Let $T \in A$. Suppose deg $T(x_1) = r$. From (I) it follows that deg $T(x_i) = i \cdot r$ and if $a \in \mathfrak{A}$ is of degree t it follows that deg $T(a) = t \cdot r$. Since there exists $a \in \mathfrak{A}$ such that $T(a) = x_1$ it follows that $r \cdot t = I$ and therefore r = t = I. Let $T(x_1) = \beta_0 + \beta_1 x_1$ and $a = \alpha_0 + \alpha_1 x_1$ then $T(a) = (\alpha_0 + \alpha_1 \beta_0) + \alpha_1 \beta_1 x_1 = x_1$ and we must have: $\alpha_1 = \beta_1 = I$ or $\alpha_1 = \beta_1 = -I$. In the first case $\alpha_0 = -\beta_0$ and in the second case $\alpha_0 = \beta_0$. There are, therefore, exactly *two* one-parametric families of automorphisms possible which we denote by K^m and ^m J respectively. They are determined by:

(II)
$$K^{m}(x_{1}) = m + x_{1}$$
 so that by (I) $K^{m}(x_{i}) = \sum_{k=0}^{i} {m+i-1-k \choose i-k} x_{k}$
(III) ${}^{m}J(x_{1}) = m - x_{1}$ so that by (I) ${}^{m}J(x_{i}) = \sum_{k=0}^{i} (-1)^{k} {m+i-1 \choose i-k} x_{k}$.

The automorphisms K^m form an infinite cyclic subgroup K of A with index 2. Clearly $K = K^1$ is a generator and $(K)^m = K^m$. $J = \{{}^mJ \}$ is the coset of K. From the definition it follows at once that ${}^mJ = {}^0JK^m$ and these automorphisms are involutions: $({}^mJ)^2 = I$. If we put ${}^0J = J$ we can also say that A is generated by the two elements K and J with the relations: $J^2 = I$ and $JK = K^{-1}J$.

Let us return to the algebra of linear operators &. On & we have the similarity transformations

$$\begin{aligned} s_{A}: & \mathfrak{L} \to \mathfrak{L} \\ & L \to L_{A} = ALA^{-1} & \text{ with } A \in A \,. \end{aligned}$$

If $A = K^m$ we denote L_A also by L_m (*m*-translations) and if $A = JK^m$ we denote L_A also by L_m^- . In particular $L_0 = L$ and $L^- = JLJ$ (reflection). Note that: $L^{--} = L$ and $(L_m)^- = L_m^- = (L^-)_{-m}$. Let $S_A = \{s_A\}$. It is the group of similarities on & with the multiplication: $s_A \cdot s_B = s_{AB}$. There is a natural group homomorphism from A onto S_A the kernel of which consists of all $A \in A$ which commute with all $L \in \&$. For $A = K^m$ we have $K^m J = JK^{-m} \neq JK^m$ unless m = o and for $A = JK^m$ we have $JK^m \cdot J = K^{-m} \neq J \cdot JK^m = K^m$. It follows that $A \approx S_A$.

Furthermore we need on \mathfrak{L} the mapping L' = I - L. Note that: L'' = L and $(L_A)' = (L')_A$.

Let us compute the conjugate classes for some important linear operators:

(1) $L = K^m$. In that case: $L_n = K^n K^m K^{-n} = L$ and $L_n^- = J K^m J = K^{-m}$.

The conjugate class of K^m consists therefore of two elements only: $\{K^m, K^{-m}\}$ for $m \neq 0$.

(2) $L = JK^{m}$. In that case: $L_{n} = K^{n}JK^{m}K^{-n} = JK^{m-2n}$ and $L_{n}^{-} = (L_{n})^{-} = JJK^{m-2n}J = JK^{-m+2n}$.

The conjugate class of JK^m consists therefore of infinitely many elements: $\{ JK^s \}_{s \equiv m \mod 2}$.

(3) $L = \sigma$. In this case, it is first clear, that L_n and L_n^- are also algebra homomorphisms. Since $L_n(x_1) = K^n \sigma K^{-n}(x_1) = K^n \sigma (-n + x_1) = K^n (-n) = -n$ so that $L_n = \sigma_n$ and $L_n^-(x_1) = J\sigma_n J(x_1) = n$ so that $L_n^- = \sigma_{-n}$.

The conjugate class of σ consists therefore exactly of all algebra homomorphisms $\sigma_n.$

(4) L = D. In this case, we have first by Giebutowski [2] $D = (K^{-1})'$ so that $D_n = (K^{-1})' = D$ and $D_n^- = D^-$. Since $D(x_1) = 1$ and $D^-(x_1) = JDJ(x_1) = -1$ it follows that $D \neq D^-$. One checks easily that all five conditions for a semi-derivation are satisfied by the operator D^- , so that D^- is another semi-derivation on \mathfrak{A} .

The conjugate class of D consists of the two semi-derivations {D, D⁻}. Now let T be an arbitrary semi-derivation on \mathfrak{A} . $T'(ab) = ab - aT(b) - bT(a) + T(a)T(b) = (a - T(a))(b - T(b)) = T'(a) \cdot T'(b)$. It follows that T' is an algebra homomorphism on \mathfrak{A} . Note that $T(\alpha) = \alpha \cdot T(I) = 0$ for $\alpha \in \mathbb{Z}$. We have shown before that if deg T'(x_1) = n then deg T'(x_i) = $n \cdot i$ and therefore deg T(x_i) = $i \cdot n$ if n > I. It follows that if m increases deg $T^{(m)}(x_1)$ increases too and condition 5 for a semi-derivative could not hold. If T(x_1) = $\alpha_0 + \alpha_1 x_1$ then obviously deg $T^{(m)}(x_1) = I$ for all m and again condition 5 is violated. We must therefore have that T(x_1) = $\alpha \in \mathbb{Z}$.

Now by condition 2 there exists $b \in \mathfrak{A}$ such that T(b) = I. Deg b = Iotherwise deg $T(b) \neq 0$. Let $b = \beta_0 + \beta_1 x_1$. Since $T(b) = \beta_1 \cdot \alpha = I$ it follows that $\beta_I = \alpha = I$ or $\beta_I = \alpha = -I$ so that $T'(x_1) = \pm I + x_1$. Conclusion: T' = K or K^{-1} which means $T = D^-$ or D. We have therefore the following

THEOREM 1. The only possible semi-derivations on \mathfrak{A} are the semi-derivations D and D⁻ and they are conjugates: D⁻ = JDJ.

Let $x_{mi} = K^m x_i$ and $x_{mi}^- = JK^m x_i = Jx_{mi}$. It is clear that $\{x_{mi}\}_m$ fixed and $\{x_{mi}^-\}_m$ fixed form two families of new algebra basis for \mathfrak{A} . The actual transformation formulae, we will not explicitly state here, but they can easily be obtained from (II) and (III). We have the following corollary to Theorem I:

COROLLARY. $\{x_{mi}\}_{m \text{ fixed}}$ is a D-basis for \mathfrak{A} .

 $\{x_{mi}^{-}\}_{m \text{ fixed}}$ is a D⁻-basis for \mathfrak{A} .

Proof. A D-basis (see [2]) is a basis such that $Dx_{mi} = x_{mi-1}$. $Dx_{mi} = D_m K^m x_i = K^m Dx_i = K^m x_{i-1} = x_{mi-1}$ and $D^- x_{mi}^- = JDJJx_i = JDx_i = Jx_{i-1} = x_{mi-1}$ which is the condition for a D⁻-basis.

(5) L = S. In this case we have the following properties:

(a) $S_m(I) = K^m S K^{-m}(I) = m + x_1$ and $S_m(I) = J S_m J(I) = m - x_1$. It follows that $S_m \neq S_n$, $S_m^- \neq S_n^-$ if $m \neq n$ and $S_m \neq S_m^-$.

(b) $DS_m = D_m S_m = (DS)_m = I$ since DS = I and $S_m D = S_m D_m = (SD)_m = (\sigma')_m = \sigma'_m$ since $SD = \sigma'$, $D^-S_m^- = (DS_m)^- = I$ and $S_m^- D^- = (\sigma'_m)^- = \sigma'_{-m}$.

(c) Let b be any element of \mathfrak{A} such that $\mathbf{D}b = a$ then $\mathbf{S}_m(a) = \mathbf{S}_m \mathbf{D}b = \sigma'_m(b) = b - \sigma_m(b)$ and similarly if b^- is such that $\mathbf{D}^-b^- = a$ then $\mathbf{S}_m^-(a) = b^- - \sigma_m^-(b)$.

(d) From (c) follows at once that $S_m(a)$ and $S_n(a)$ differ at most by an integer for any *m* and *n*. This integer however does depend on the choice of *a*. A similar statement holds for $S_m^-(a)$ and $S_n^-(a)$.

(e) Let R be any semi-integration on \mathfrak{A} , that is, a linear operator such that there exists a semi-derivation T and an algebra homorphism $\rho: \mathfrak{A} \to \mathbf{Z}$ such that $R(a) = b - \rho(b)$ for any b for which Tb = a. From our preceding investigations it follows at once that T = D or D^- and $\rho = \sigma_m$ for some m. From our definition it follows at once that—if T equals to, say, D—we have: $RD = I - \sigma_m$. Multiplying from the right by $S_{m'}$ we get $R = S_m - \sigma_m S_m = S_m - (\sigma S)_m = S_m$ since $\sigma S = o$. We collect this information in the following theorem:

THEOREM 2. The only possible semi-integrations on \mathfrak{A} are S_m and S_m^- which are all different from each other and conjugates of S. They have the following properties:

 $DS_m = I$, $S_m D = \sigma'_m$ and $D^-S_m^- = I$, $S_m^- D^- = \sigma'_{-m}$

 $S_m(a)$ and $S_n(a)$ differ at most by an integer which does not depend on the choice of m and n, but does depend on the argument a. The same statement holds for $S_m^-(a)$ and $S_n^-(a)$.

DEFINITION. $\{z_{mi}\}$ is called a S_m -D-basis of \mathfrak{A} , if it is a D-basis and if for each *i* we have $S_m z_{mi} = z_{mi+1}$. A S_m^- -D-basis is defined analogeously.

COROLLARY. The basis $\{x_{mi}\}$ are the only possible S_m -D-basis. The basis $\{x_{mi}\}$ are the only possible S_m -D-basis.

Proof. $S_m x_{mi} = K^m S x_i = K^m x_{i+1} = x_{mi+1}$ and if z_{mi} is any S^m -D-basis then $z_{mi} = S_m^{(i)}(I) = x_{mi}$ and a similar proof for the second statement in the corollary.

The following lemma is crucial for our further development of the theory. It shows that there is a natural pairing between the operators $\{S_m\}$ and the operators $\{S_m^-\}$ which will ultimately allow us to find the inverse operator of S_m on a suitable extension ring of \mathfrak{A} and this inverse will satisfy the product rule of a semi-derivation.

Definition. Let $\overline{S}_m = \overline{S}_{1-m}$ and $D = D^-$.

Lemma. $\overline{S}_m = S'_m$.

Proof. If m = 0 then $\overline{S}(x_i) = S_1^-(x_i) = (^1J) S(^1J)(x_i) = x_i - x_{i+1}$ by formula (III). On the other hand:

 $\mathbf{S}'\left(x_{i}\right)=x_{i}-x_{i+1} \qquad \text{so that} \quad \overline{\mathbf{S}}=\mathbf{S}'.$

Now $\overline{S}_m = \overline{S_{1-m}} = [(S_1)_{-m}]^- = (\overline{S_1})_m = (\overline{S})_m = (\overline{S}')_m = S'_m$. Given the basis $\{x_{mi}\}$ we associate with it the basis $\{\overline{x}_{mi}\}$ where $\overline{x}_{mi} = \overline{x}_{mi}$

 $=x_{1-mi}^{-}$ and call it its dual basis. Note that:

 $\overline{\overline{x}}_{mi} = x_{mi}$ and $\overline{S}_m \, \overline{x}_{mi} = \overline{x}_{mi+1}$ and $\overline{D} \, \overline{x}_{mi} = \overline{x}_{mi-1}$.

LITERATURE

[I] E. G. KUNDERT (1966) – Structure Theory in s-d-Rings. Nota I, «Acc. Naz. Lincei», ser. VIII, 41.

[2] T. GIEBUTOWSKI (1971) - Ph. D. Thesis, Univ. of Mass.