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Teoria dei numeri. — Distribution modulo p h of the generai linear 
second order recurrence. Nota di W illia m  A . W ebb  e C a lv in  T . 
L ong , p r e s e n t a t a d a l  Socio B. S e g r e .

R iassunto. —• Interessanti risultati di altri Autori, sull’argomento specificato nel titolo, 
vengono completati in modo esauriente.

i. I n tro d u c tio n  

Let {un}n>0 be the linear second order recurrence defined by 

(0  uo =  c , ui =  d  , un+1 =  au„ +  bn_] (V ».>  i)

where a , b , c, and d  are integers. Let

(2) p =  « +  +  and ^  a - U *  + 4b _
2 2

Then it is easily shown that

(3) un =  Pn — (d — cp) <sn
p ~ a

for all ^ >  o. Also, it is easily shown that {un} is periodic modulo m  for 
any positive integer m. Let k(m ) be the (least) period of {un\  modulo m.

In [3], Kuipers and Shiue show that the Fibonacci sequence is uniformly 
distributed modulo 5, is not uniformly distributed modulo p  for any prime 
P ^ r  5> is not uniformly distributed modulo m  for any composite m=^= $k 
for k >  I, and conjecture that the sequence is uniformly distributed mo­
dulo 5̂  for all k  >  I. In [5], Niederreiter proves that the conjecture of 
Kuipers and Shiue is correct. In [1], Bundschuh obtains the result of Nie­
derreiter utilizing some well-known relationships between the Fibonacci and 
Lucas sequences. In [4], Kuipers and Shiue consider the general second 
ordei* recurrence defined above and give sufficient conditions that {un} be 
uniformly distributed modulo p h for all integers h >  1 where p  is an odd 
prirqe. However, the conditions of the Kuipers-Shiue result are unusually 
cumbersome; nothing is said about necessary conditions, and the case p  — 2 
is not discussed. In [2], Bundschuh and Shiue improve on the result of 
Kuipers and Shiue, but again give only sufficient conditions. In [6], Shiue 
and Hu show that if a and b have the same parity, then {un} is not uniformly 
distributed modulo 2h for any integer h >  1. Again, however, the result is 
incomplete in that the cases when a and b have opposite parity are not con­
sidered and no attempt is made to find necessary conditions. In the present

(*) Nella seduta dell’8 febbraio 1975.
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paper, we settle the issue for prime power moduli by giving necessary and 
sufficient conditions that {u„} be uniformly distributed modulo p h for any 
prime p  and for all integers h >  i.

2. Preliminary results

At the outset we observe that if p  | ab, then it is easily seen that {un} 
is uniformly distributed modulo p  if and only if p  =  2, a is even, b is odd, 
and c and d  are of opposite parity. Thus, except for Theorem 4, for the 
remainder of the paper we restrict our attention to the case (p  , ab) =  1.

If p  I c and p  I d , then un =  o (mod p) for all n and {unj is not uniformly 
distributed modulo p, thus we m ay exclude this case from consideration. 
If p \ d ,  then (J> , ui) =  1 since u\ =  d. If p  | d , then (p , ad  +  be) =  1. 
Hence, by renumbering so that uo =  d  and ui =  a d b e ,  we again have 
(J> , ui) =  I . Thus, we may henceforth assume that (J> , abd) =  1 since all 
other cases are essentially trivial or easily reduce to this case.

From (3) it is easy to derive the following

Lemma i. I f  p  is an odd prim e, (p , a2 -\-4. b) =  1, and p \ e ,  then
P I Up_ 1 Up+i .

T heorem  1. I f  p  is an odd prime and p  \ (a2 4 b), then {un} is not
uniformly distributed modulo p-

Proof Recall that we are assuming that (J> , ab) =  1 and assume that 
{un} is uniformly distributed modulo p: Since p \ b ,  it is easy to see that
{un} is purely periodic. Thus, u& =  o for some k and, without loss in gener­
ality, we may assume that uo — o =  c. But then un =  dun where is 
defined by

(4) uq =  o , ui =  I , un+1 =  aun +  bun- 1 (Vn >  1)

and {un} is uniformly distributed modulo p  if and only if {u*} is uniformly 
distributed modulo p. Hence, again without loss in generality, we may 
assume that ui — 1 =  d.

Let j  be the least positive integer such that p \ u j . Let t ^  buj-\ 
(mod p) and let t belong to modulo p. Then the sequence modulo p  becomes

0 ,1,* * * , Uj—\ ,j O , t , • • • , tUj-X y O y t , * * * , / Uj—\ , O , * * * ̂  O , t  , * • • , t U/j—\ , * *

with the sequence repeating after the element ts~l u j - \ .  It follows that j s  
is the length of the period of {un} modulo p  and hence that every residue 
modulo p  appears  ̂ times in the period since zero does. But since there 
are just p  residues modulo p, this implies that ps — js  and hence that p  — j .  
Therefore up ~  Uj — o (mod p) by definition of j .  But, by Lemma 1, 
p  I Up-iUp+i and so p  divides two consecutive terms in {un} and hence all 
terms from at least up on. Since this is a clear contradiction of the assump­
tion tha.t {uM} is uniformly distributed modulo p, the proof is complete.

8. — RENDICONTI 1975, Voi. LVIII, fase. 2.
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Lemma 2. Let p  I (#2 +  4 &)• Then p  | un for some n i f  and only i f  
(p , ad  +  2 bc) =  i .

Proof . Since we are assuming throughout that (j> , ab) =  1, the hypo­
thesis p  I (a2 +  4 b) clearly implies that p  is odd. Observing that pa — — b 
and p — a =  ]/#2 +  4 <5 > we have from (3) that

(5)

[(»—1)/2]

_ (d-— ca) pn — (d — rp) an __ d  (pw — a») , cb (p«“1 — a”- 1)'Un — — —   f- ------------
p — a p ■— a ' p — a

d V  / n \ «-2^-1 / 2 , . 7 y* ,
=  ! ^ r  2 i  (2* +  I) « (« + 4^) +k=0 

[(»—2)/2]
, ^  Vp / « — I \ n-2k-2 , 2  I  ̂ ,y&

+  ^  A  U  + I) «  (« + 4 ^ )  •

Since Æ2 +  4 <5 =  o (mod >̂), this implies that

2n~l un =  d n a ~ x +  2 bc(n — 1) =  an~2\(n —■ 1) (ad +  2 be) f -  ad\ =

=  o (mod

for some n y if and only if the congruence

(ad +  2 bc) x  =  — <2̂  (mod

is solvable; i.e., if and only if (p , ad  +  2 be) =  1 since we also have that 
(p , d) — I . Since p  is odd, this yields the desired conclusion.

LEMMA 3. Let p  be odd and p  | (a2 -f- 4 b), then {un} is periodic modulo ph 
and k (ph) I p h (p  — 1) fo r  h >  1.

Proof. Let m  and n be integers with o <  m < n and 

(6) n =  m  (mod p h (p — 1)) .

Then
n — m m —2k — l  n —2k—\  /  i  ,h \(7) 2 a =  a (mod p  )

since 9 (ph) I (n — m). Therefore,

(8) 2”- 1 (tin — um) = d  2  (2 / + ij a"-“ - 1 (a2 +  4 V  -

—  d z - m 2  ( J +  T) ( a 2 +  4  V  +Æ>0 \Zß ~T~ v

+ « * 5  ( .* + '. )

-  ^  j ;  ( r 4 + ',)  + * 4)' -

- ' £ ^ < ' + 4 * [ U . ) - U “ . ) ] +

(mod .
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At this point, let ord^ (n) denote the exponent to which p  appears in the 
canonical representation of n. Then

>  ordp [n(n —• i ) • • • (» —-2k)  — m ( m  — 1)• • • (m — 2 kf\ —

— ordp (2 k  +  1) ! +  k >

> h — 2  + k ^ h - k + k  =  k
j> 1 *- p J J

and, similarly,

| [ ( ; r + ', ) - ( r * ;■ ,) ]  »■-” -* ( « * + 40 *) : > * .

In view of (9) and (10) and since p  is odd, it follows from (8) that

un =  um (mod p h) .

Thus, {u„} is periodic modulo p h and k ( fiA) | ph (p — 1) by (6) as claimed.

3. The principal results

The following théorems give necessary and sufficient conditions that {u„} 
be uniformly distributed modulo p h for any prime p  and for all integers
h >  I.

Theorem 2. Let p  >  3 be an odd prime and let h >  1 be an integer. 
Then the sequence {u„} is uniformly distributed modulo p h i f  and only f  
p  I (a2 +  \b )  and (p , ad  +  2 be) =  1.

Proof. Suppose first that {un} is uniformly distributed modulo p h. 
Then {«„} is uniformly distributed modulo p  and we have from Theorem 1 
that \ (a2 +  4 b). Also, it is immediate from Lemma 2 that (p , ad  +  2 be) =  1 
since, otherwise, there does not exist n such that un =  o (mod p) as must 
be the case if {u„} is uniformly distributed modulo p.

Now suppose that p \ {a2 +  4 b) and {fi , ad  +  2 be) =  1. By Lemma 2, 
there exists n such that un =  o (mod p j . Hence, without loss in generality, 
we may take uo =  o. Now u\ =  d  and { d , p>) — 1 so that we m ay also
take d  =  1 without loss in generality. With these simplifications un =  u t  as 
defined in (4) and, by essentially the same argument as in the proof of 
Lemma 2,

(11) u„ s 2i 1 (®2+  4&Ÿ = n (sa)n x= n f  1 (m o d /)

where 2 s — 1 (mod p), and t is defined by 21 — a (mod p). Thus, it is clear 
that {un} is periodic modulo p  with period pe where t belongs to e modulo p
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and e \ {p — 1). Therefore, (p , e) =  1 so that for each h , o <  h <  e —■ 1, 
the elements

(h +  re +  1) th+re, r =  o f I • - , p —  1

constitute a complete residue system modulo p  since t ĥ re — th (mod />) and 
( p  , t) =  I- Thus, runs over each residue modulo p  precisely e
times and the same is true for {un}ÌL\ . Thus, {unj is uniformly distributed 
modulo p .

Now assume that {un} is uniformly distributed modulo p h~x for some 
h >  2 and note that we no longer assume c =  o, d  =  1 since these simplify­
ing assumptions were only valid for p  and not for p h with h >  1. By 
Lemma 3, {un} has period k (J>h *) where k ( p h x) | p h 1 (p  — 1) and it follows 
that the sequence runs over each residue modulo p h~x precisely p — 1 times 
for I <  n <  p h~X ( p —■ 1). That is to say, for a given g , the congruence

un =  g  (mod p h~l) 

is satisfied for precisely p  —■ 1 elements in the set

The desired result will follow if we can show that the congruence

(12) Un= g  (mod p h)

is also satisfied for precisely p  —■ 1 elements in the set

D =  {1 , 2 , . • . , / ( * — I)}'.

Let ci , C2 , • • - , be those elements of C such that

Mn =  g  (mod p h~ x) iff n ~  Ci (mod p h~x (p — 1)) .

Let m  and n  be in D with m  <  n and assume that

(13) u„ =  g  =  um (mod p h) , n =  c4 =  m  (mod p h~~x (J> — i)) .

If  we can show that n =  m, then the number of n in D satisfying (12) 
must be at most p  — 1 since there are only p  —• 1 elements Ci and a unique n 
for each C;. Since there are p h different values of^* modulo p h and p h (p — 1) 
elements in D, it then follows that the number of n in D satisfying (12) 
is precisely p  — 1 as desired.

From (13) and ($), we obtain

(H ) d

+  z c i  • §  [ " i  + 'i)  ‘ +  4 i f

— 2 cb2n j  am k 2 (a2 +  \ b f  — o (mod p) .
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Again,
n — m m — 2Æ—1 n —2Æ — 1 / j  , h \2 a =  a (mod p  )

since 9 (ph) | (n — ni) by (13). Therefore, from (14) we have

(,S) ,) -U .) ]  +

Then, for >  1, it follows from (13) that

>  ord^ [n {n —■ 1 )• • • (n —• 2 k) — m (m —■ 1 • - (m — 2 k)\ —

— ord^ (2 k T 1) ! +  k >

> h —  I y\  [ 2 i _ + l l  + k > h — I —  (k— \ ) + k  =  h
f>\ L i>} J

and the same thing would be true of

^ ' ( [ ( . i T . ) F ^ ^ + 4«*)-

Therefore, p h divides all terms in (15) with k j> 1 and this implies that

0 - [(”) -  (:)]+»^-[C 7 7 ■)]-.
=  dcT'^in — m) +  2 cba ~2 (n — ni) == an~2 (n —■ ni) (ad +. 2 cb) (mod p h)

and hence that
n — m

since (a , p) =  ( ^  +  2 cb , />) =  1.

^ ^
and so

n == m

(mod /*)

But (13) also gives 

(mod p —  1)

(mod p h (p — I )) .

But since m  and n are both in D, this implies that n — m and the proof is 
complete.

Theorem  3. The sequence {un} is uniformly distributed modulo 3* fo r  
all h >  I i f  and only i f  3 | (cfi +  4 b), ( 3 , ^  +  2 be) — 1 and (<a , $) 
dulo 9 is not one of the pairs ( 1,8), (8,8), (4,2), (5,2), (2,5), or (7,5).

Proof. It is easily seen that each of the pairs (1,8), (8,8), (4,2), (5,2), 
(2,5), and (7 ,5 )  modulo 9 leads to a sequence {un} that is uniformly distributed 
modulo 3 but not uniformly distributed modulo 9 and hence, a fortiori, not
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uniformly distributed modulo 3* for any h > 2 .  Now the remainder of the 
proof exactly follows that of Theorem 2 up to (15). Modulo 3*, (15) becomes

(.6) ' j g ^ ^  +  4 t f [ ( 1/ J - ( , - + I )] +

+ 2eÌM “"~a~1(a2 + 4>>‘ [(ì‘~+’)~("*~,j ì  “ °  ( m ° d  3 < ) '

Now if x  == _y (mod 3^~1) and k >  i,

° rd 3 ( [ P - f 2J' j ]  («2 +  4 ^ |  >

>  ord3 [x (x — i ) . . .(x — 2 k +  i ) - y ( y - i )  - ■ -(y — 2 k +  1)] — 

— ord3 (2 k) ! +  k >

Thus, it follows that

(l?) [(2^) “  ( i ) ]  ^  + 4V  = c (mod 3*)

for >  I and the result is trivially true for k =  o. Therefore, for any term 
in (16) we have

[(a A 1) ~ (a A 1) + 43/ =
- ([(."A'.) -  (."A'.)] + [(“A ') -  f A ')]) c-!+ 4*)'-

- [ ( ■ ■ T A af + , ) - e i : : ) ] ^ + 4 * ) * -

=[rTA+,2i)+ r - : ; !i-a )]^ + 4 ^ -  
"(”T;++A)('’a+2')' ^3)*'

Hence,

(18)

equation (16) reduces to 
1

j  V1 n—2k—l , 2 , , i\k In — m 2.k\ ,
(ö +  4 ^  ( 2 ^ + 1  ) +

+  2 ^ 2  a - « - 2 (Æ2+ 4*)*  ( * 7 / ^ )  +

=  ^ 2 ( ^  4~ 2 (n — m) -f- a ~ 4 (ad -f- 2 £<£) ^  ™ 2 j ^2 ^ ̂  =

=  ^  4( ^  +  2bc) (n— m) [a2+ (a 2 + 4Ò) (n— m-\- 2) (n — m  + i) /6 ]  — 

=  o (mod 3*) .
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Since 3 | (a2 +  4^), we may define t by

a1 -f- 4 b s= 6 t (mod 3*) .

Also, (n —  m - f  2) ( n — m -\- 1) — 2 (mod 3*) since n == m  (mod 3^”’1) and 
h >  2. Using this in (18) and observing that (a , 3) =  ( ^  +  2 ^ , 3 ) =  1, 
we obtain

(^ — w) (ä2 +  4 =  0 (mod 3*) .

This implies either n — m  == o (mod 3*) or

2 t — — Æ2 =  2 (mod 3)

so that t =  I (mod 3). But t == 1 (mod 3), implies

a1 +  4 b — 6 (mod 9)

and this is so if and only if (a , b) modulo 9 is one of the pairs (1,8), 
(8,8), (4,2), (5,2), (2,5), or (7,5) since (a , b) =  1. Thus

n — m  (mod 3*)

and the remainder of the proof is the same as for Theorem 2.

Theorem 4. The sequence {un} is uniformly distributed modulo 2 i f  
and only i f  a is even, b is odd and c and d  have opposite parity. The sequ­
ence {un} is uniformly distributed modulo 2h fo r  h > 2  i f  and only i f  a — 2 
{mod 4), b == 3 (mod 4), and c and d  have opposite parity.

Proof. The truth of the assertion modulo 2 is easily checked simply 
by considering the various cases. In a similar way, it is easy to see that 
{un} is uniformly distributed modulo 4 if and only if a = 2 (mod 4), 
b — ^ (mod 4) and c and d  have opposite parity. Since {un} is uniformly 
distributed modulo 4 if is uniformly distributed modulo 2h for any h >  2, 
it remains only to show that the given conditions are sufficient. The proof 
again proceeds as in Theorem 2 except that we cannot use Lemma 3 which 
presumes that p  is odd. Using induction, we assume that {un} is uniformly 
distributed modulo 2h~x for some h >  3 and is periodic of period 2*“ 1 
modulo 2 . As in the proof of Theorem 2, it will suffice to show that

O9) un =  um (mod 2Ä) and n — m  (mod 2Ä~’1)

together imply n =  m  (mod 2h).
Since a == 2i with t odd, p =  t -f- ]//2 -f- <5, or =  t — yt2 -fi <$, and equa­

tion (5) becomes

<” ) u- = J ' g t , U ,+ d ‘ +
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Thus, it follows from (19) that tm =  .ln (mod 2̂ ) and hence that

<»-> c - + » )  +

+ - g  [ ( ; r + ',)  -  ( ; , + ' , ) ]  + «  =  •  <"»<* «*> •

Since t2 — I (mod 4) and b =  3 (mod 4), 4 | (t2 -f- b). Thus, for k >  1,

>  ord2 \n (n — 1) • • • (n —-2 k) —■ m (m —• 1) • • • (m — 2 k)] —■ 

— ord2 (2 k +  1) ! +  2 k >  (h — 1) — 2 k +  2 k — h — 1 

and, similarly,

(=3) » * [ ( " - ■ , ) - ( — ■ _ ) ] < - -  ( / • + * > > * - . .

W ith (21), these results imply that

(^ — w) (dt -f- cb) =  o (mod 2A)

and hence that
n =  m  (m od 27*)

since (ä5,2 ) =  1 and c and d  are of opposite parity. This completes the 
induction and the proof.
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