ATTI ACCADEMIA NAZIONALE DEI LINCEI

CLASSE SCIENZE FISICHE MATEMATICHE NATURALI

RENDICONTI

FRANCO GHIONE, TOR H. GULLIKSEN

Some reduction formulas for the Poincaré series of modules

Atti della Accademia Nazionale dei Lincei. Classe di Scienze Fisiche, Matematiche e Naturali. Rendiconti, Serie 8, Vol. **58** (1975), n.2, p. 82–91. Accademia Nazionale dei Lincei

<http://www.bdim.eu/item?id=RLINA_1975_8_58_2_82_0>

L'utilizzo e la stampa di questo documento digitale è consentito liberamente per motivi di ricerca e studio. Non è consentito l'utilizzo dello stesso per motivi commerciali. Tutte le copie di questo documento devono riportare questo avvertimento.

Articolo digitalizzato nel quadro del programma bdim (Biblioteca Digitale Italiana di Matematica) SIMAI & UMI http://www.bdim.eu/ Algebra. — Some reduction formulas for the Poincaré series of modules. Nota di FRANCO GHIONE e TOR H. GULLIKSEN, presentata (*) dal Corrisp. G. ZAPPA.

RIASSUNTO. — Sia (R, III) un anello locale, e M un modulo di tipo finito su di esso. Si danno alcuni risultati sulla razionalità della serie di Poincaré di M : $P_{M}^{R}(t) = \sum_{p=0}^{\infty} \dim_{k} \operatorname{Tor}_{p}^{R}(k, M) t^{p}, k = R/III provando in casi particolari la verità di una congettura di Serre-Kaplanski.$

INTRODUCTION

In this paper we shall investigate the Poincaré series of a finitely generated module M over a local (noetherian) ring R, m, that is the power series

$$P_{M}^{R}(t) := \sum_{p>0} \dim_{k} \operatorname{Tor}_{p}^{R}(k, M) t^{p}$$

k being the residue field of R. $P_k^R(t)$ will be called the Poincaré series of the ring R. Although not much is known about $P_M^R(t)$ in general, there is evidence to believe that this power series always represents a rational function. This is of course the case if R is a regular local ring, in which case $P_M^R(t)$ is a polynomial of degree not exceeding the global dimension of R. Recently it has been shown that $P_M^R(t)$ is a rational function if R is a local complete intersection, Gulliksen [3].

In the present paper we shall establish the rationality of $P_M^R(t)$ also in the case where R is a Golod ring (see Section 2 for the definition). It is known that if R is a factor of a regular ring by two relations, or if R has imbedding dimension less than or equal to two, then R is either a complete intersection or a Golod ring. Hence the rationality of $P_M^R(t)$ is established in those cases. This generalizes results of Shamash [5] and Scheja [6] who worked with the case M = k.

In Theorem 5 in Section 3 we give the following reduction formula: Let y be a regular element in m. Let \mathfrak{a} be an ideal in R and put $R' := R/y\mathfrak{a}$. If $\mathfrak{a}M = \mathfrak{o}$ then

(i)
$$P_{M}^{R'}(t) = P_{M}^{R}(t) \left[I - t \left(\alpha \left(t\right) - I\right)\right]^{-1}$$

where $\alpha(t) = P_{R/a}^{R}(t)$.

In Section 4 we give applications of Theorem 5 and the results of Section 3. Several examples are worked out. In particular it is shown that

^(*) Nella seduta dell'8 febbraio 1975.

if k is a field and a is an ideal generated by monomials in the ring $A = k [[X_1, X_2, X_3]]$, then the Poincaré series of A/a is rational.

In the last section we remark that in order to prove the rationality of $P_{M}^{R}(t)$ for all R and M, it suffices to prove the rationality of $P_{R/m}^{R}(t)$ for all local rings R of dimension zero.

NOTATIONS

If $N = \prod_{p \ge 0} N_p$ is a graded R-module where each homogeneous component N_p is a free R-module of finite rank, we let $\chi_R(N)$ or simply $\chi(N)$ denote the power series

$$\Sigma_{p\leq 0} \operatorname{rank}(N_p) t^p$$
.

The term "R-algebra" will be used in the sense of Tate [7]. By an augmented R-algebra F we will mean an R-algebra F with a surjective augmentation map $F \rightarrow R/\mathfrak{m}$ which is a homomorphism of R-algebras. Recall that the Koszul complex generated over R by a minimal set of generators for \mathfrak{m} is an R-algebra which up to (a non-canonical) isomorphism depends only on the ring R. Thus we shall talk about the Koszul complex of R.

I. ON MASSEY OPERATIONS

Let F be an augmented R-algebra with a trivial Massey operation γ , and let S be the set of cycles associated with γ . For the definitions and details the reader is referred to Gulliksen [2]. Recall that S represents a minimal set of generators for the kernel of the map $H(F) \rightarrow R/m$ induced by the augmentation on F. γ is a function with values in F, defined on the set of finite sequences of elements in S such that $\gamma(z) = z$ for $z \in S$. By means of F and γ it is possible to construct an R-free resolution of R/m. We will briefly recall the construction.

To each cycle z in S select a symbol u of degree one more than the degree of z. Let $N = \prod_{q} N_{q}$ be the free graded R-module generated by the set of selected symbols u. Let $T = T_{R}(N)$ be the tensor algebra generated over R by N. Put

$$X:=F\otimes_{R}T$$

By means of the canonical map $F \to F \otimes T$, sending f to $f \otimes I$, F will be considered as a submodule of X. We will now extend the differential d on F to a differential on X (also denoted by d) in the following way: It suffices to define d on a set of generators for the R-module X. If f is a homogeneous element in F of degree deg f and if u_1, \dots, u_n $(n \ge I)$ are selected symbols corresponding to the cycles z_1, \dots, z_n in S we put

$$d(f \otimes u_1 \otimes \cdots \otimes u_n) = d(f \otimes u_1 \otimes \cdots \otimes u_{n-1}) \otimes u_n + (-1)^{\deg f} f_{\Upsilon}(z_1, \cdots, z_n).$$

One can show that $d^2 = o$ and that X is an R-free resolution of k. Cf. [2]. Moreover, if F is minimal in the sense that $dF \subseteq \mathfrak{m}F$, and if $\operatorname{Im} \gamma \subseteq \mathfrak{m}F$, then X is a minimal resolution.

DEFINITION. The resolution X constructed above will be called the Golod extension of the couple (F, γ) and will be denoted $X = (F, \gamma, N)$.

THEOREM 1. Let R be a local ring with residue field k and let a be an ideal in R. Let M be a finitely generated R-module of finite projective dimension such that aM = o. Let F be an augmented R-algebra which is an R-free resolution of k. Put R' := R/o, F' := F/aF and assume that F' has a trivial Massey operation γ . Then there exists a polynomial $\pi(t)$ with integral coefficients such that

$$\mathbf{P}_{\mathbf{M}}^{\mathbf{R}'}(t) = \pi(t) \left[\mathbf{I} - t \left(\mathbf{P}_{\mathbf{R}'}^{\mathbf{R}}(t) - \mathbf{I}\right)\right]^{-1}.$$

Proof. Let $X = (F', \gamma, N)$ be the Golod extension of (F', γ) . Then we have an identity of graded R-modules

$$(I) X = F' \oplus X \otimes N .$$

We let Y be the complex whose underlying graded module is $X \otimes N$, and whose differential is $d \otimes I_N$, d being the differential on X. (I) leads to an exact sequence of complexes

(2)
$$0 \longrightarrow F' \xrightarrow{\alpha} X \xrightarrow{\beta} Y \longrightarrow 0$$

where α is the canonical injection, and β is the canonical projection onto the second factor. Since $\mathfrak{a}M = o$ and M has finite projective dimension we have

$$\mathrm{H}_{p}(\mathrm{M} \otimes_{\mathsf{R}'} \mathrm{F}') = \mathrm{H}_{p}(\mathrm{M} \otimes_{\mathsf{R}} \mathrm{F}) = \mathrm{Tor}_{p}^{\mathsf{R}}(\mathrm{M} , \textit{k}) = \mathrm{o}$$

for all p sufficiently large. Hence from (2) we obtain

(3)
$$H_{\flat}(M \otimes X) \simeq H_{\flat}(M \otimes Y)$$

for all p sufficiently large. Hence we have

-

$$\operatorname{Tor}_{p}^{R'}(M, k) = \operatorname{H}_{p}(M \otimes X) \cong \operatorname{H}_{p}(M \otimes Y) = \prod_{q} \operatorname{H}_{p-q}(M \otimes X) \otimes \operatorname{N}_{q}$$

for all p sufficiently large. Thus there exists a polynomial $\pi(t)$ with integral coefficients such that

$$P_{M}^{R'}(t) = \chi \left(H\left(M \otimes X \right) \otimes N \right) + \pi \left(t \right) = P_{M}^{R'}(t) \chi \left(N \right) + \pi \left(t \right).$$

This yields the desired formula since

$$\chi$$
 (N) = t (χ (H (F')) - I) = t (P_{R'}^{R}(t) - I).

2. MODULES OVER GOLOD RINGS

We will first recall the definition of a Golod ring. Let R be a local ring with maximal ideal \mathfrak{m} , and let K be the Koszul complex of R. R is called a Golod ring if the canonically augmented R-algebra K has a trivial Massey operation in the sense of Gulliksen [2]. This is equivalent to saying that all Massey operations on H (K) vanish in the sense of Golod [1]. The following result shows that Golod rings can be characterized entirely in terms of the Poincaré series. The proposition is due to Golod, and the proof can be found in [1].

PROPOSITION 2. A local ring R, m is a Golod ring if and only if

$$P_{R/w}^{R}(t) = (1 + t)^{n} [1 - c_{1} t^{2} - c_{2} t^{3} - \cdots - c_{n} t^{n+1}]^{-1}$$

where $n = \dim \mathfrak{m}/\mathfrak{m}^2$ and $c_i = \dim H_i(K)$ for $1 \le i \le n$. Examples of Golod rings:

I) The rings of the form $k [[X_1, X_2]]/\mathfrak{a}$ (where k is a field), which are not complete intersections. That these rings are Golod rings follows from Satz 9 in Scheja [6] and Proposition 2 above.

II) The rings A/ya where A is a regular local ring and y is a non-unit in A. Cf. Schamash [5].

III) A/ (a_1, a_2) where A is regular, and a_1 and a_2 do not form a regular sequence. This is a special case of Example II.

IV) $k [X_1, \dots, X_n]/(X_1, \dots, X_n)^r$. (k is a field). Cf. Golod [1].

PROPOSITION 3. Let R, m be a local ring and let $y \in m - m^2$ be a regular element. Then R is a Golod ring if and only if R/yR is a Golod ring.

Proof. Let K be the Koszul complex of R. Put k = R/m. Since the k-algebra H (K) and the Poincaré series $P_{R/m}^{R}(t)$ are invariant under m-adic completion, Proposition 2 shows that there is no loss of generality in assuming that R is complete. Hence by the Cohen structure theorem we may assume that R = A/a where A is a regular ring and a is an ideal contained in the square of the maximal ideal of A. Let y' be an element of A that represents y in R. We have an isomorphism of k-vector spaces.

(I)
$$H_i(K) \simeq \operatorname{Tor}_i^A(R, k)$$
.

Similarly the homology of the Koszul complex of R/yR is isomorphic to $\operatorname{Tor}^{A/y'A}(R/yR, k)$. Since y' is regular on A and R, and since y'k = o we have a canonical isomorphism

(2)
$$\operatorname{Tor}^{A/y'A}(\mathbf{R}/y\mathbf{R}, k) \cong \operatorname{Tor}^{A}(\mathbf{R}, k)$$

It follows from Satz I in Scheja [6] that

(3)
$$P_k^R(t) = (1 + t) P_k^{R/vR}(t).$$

Let $\overline{\mathfrak{m}}$ denote the maximal in $\mathbb{R}/y\mathbb{R}$. We have

(4)
$$\dim \mathfrak{m}/\mathfrak{m}^2 = \dim \overline{\mathfrak{m}}/\overline{\mathfrak{m}}^2 + \mathfrak{l} .$$

The proposition now follows from Proposition 2 using (1), (2), (3) and (4).

THEOREM 4. Let R, in be a local Golod ring and let M be a finitely generated R-module. Then $P_M^R(t)$ is a rational function.

Proof. Let \hat{R} and \hat{M} be the m-adic completions of R and M. It can easily be shown that $P_M^R(t) = P_{\hat{M}}^{\hat{R}}(t)$, hence as in the Proof of Proposition 3 we may assume that $R = A/\mathfrak{a}$ where A is a regular local ring and \mathfrak{a} is an ideal which is contained in the square of the maximal ideal of A. Let K be the Koszul complex of A. Then $K' := K/\mathfrak{a}K$ is the Koszul complex of R. Since R is a Golod ring, K' has a trivial Massey operation. Since M has finite projective dimension over the regular ring A, Theorem 2 gives that $P_M^R(t)$ is a rational function.

3. REDUCTION FORMULAS FOR THE POINCARÉ SERIES

THEOREM 5. Let R, us be a local ring, let y be a regular element in us, and let a be an ideal in R. Put R' = R/ya and $\alpha(t) = P_{R/a}^{R}(t)$. Then

(i) If M is an R-module such that aM = o, then

$$\mathbf{P}_{\mathbf{M}}^{\mathbf{R}'}(t) = \mathbf{P}_{\mathbf{M}}^{\mathbf{R}}(t) \left[\mathbf{I} - t \left(\alpha\left(t\right) - \mathbf{I}\right)\right]^{-1}.$$

'(ii) If $a \neq R$ and if M is an R-module of finite projective dimension such that yaM = o, then

$$P_{\mathrm{M}}^{\mathrm{R}'}(t) = \pi(t) \left[\mathbf{I} - t \left(\alpha(t) - \mathbf{I} \right) \right]^{-1}$$

where $\pi(t)$ is a polynomial with integral coefficients.

Proof. Let $F \rightarrow k$ be an augmented R-algebra which is an R-free resolution of k = R/m. Put F' := F/yaF. We are going to construct a trivial Massey operation on F'. First we remark that there exists an element a' of

degree one in F' such that every cycle z' in F' is homologue with a cycle of the form a'x' where x' is in $\mathfrak{a}F'$. In fact let $z \in F$ represent a given cycle z' in F'. Then we may write dz = yx where $x \in \mathfrak{a}F$. Since

$$o = d^2 z = y dx$$

and since y is regular in R we have dx = 0. Let $a \in F_1$ be such that da = y. We have

$$d(z - ax) = o.$$

Since F is acyclic, z - ax is a boundary. Hence z' - a'x' is a boundary in F', where a'x' is the image of ax in F'.

Now choose a basis for the k-vector space Ker $(H(F') \rightarrow k)$. Let S be a set of cycles in F' representing that basis, and choose S such that the cycles z' in S have the form z' = a'x' where $x' \in \mathfrak{a}F'$. Since a' has degree I, we have $(a')^2 = 0$. Thus we can construct a trivial Massey operation γ on F' by putting

$$\gamma(z') = z'$$
 for $z' \in S$

$$\gamma(z'_1, \cdots, z'_n) = 0$$
 for $n \ge 2$; $z'_1, \cdots, z'_n \in S$.

Now (ii) follows from Theorem 2 since we have

(I)
$$P_{R'}^{R}(t) = P_{R/\mathfrak{a}}^{R}(t) = \alpha(t) \quad \text{for} \quad \mathfrak{a} \neq R.$$

We are now going to prove (i). Let $X = (F', \gamma, N)$ be the Golod extension of the couple (F', γ) . Assume that $\mathfrak{a}M = \mathfrak{o}$. Since Im $\gamma \subseteq \mathfrak{a}F'$ the following diagram is commutative

$$\begin{split} M \otimes X & \longrightarrow M \oplus F' \oplus (M \otimes X) \oplus N \\ & \downarrow I_M \otimes d \qquad \downarrow I_M \otimes d \oplus I_M \otimes d \otimes I_N \\ M \otimes X & \longrightarrow M \otimes F' \oplus (M \otimes X) \otimes N \end{split}$$

Here the horizontal isomorphisms are induced by the identity (I) in the Proof of Theorem 2. The diagram yields

(2)
$$H(M \otimes X) \simeq H(M \otimes F') \oplus H(M \otimes X) \otimes N$$
.

We have $M \otimes F' \cong M \otimes F$. Hence if $\mathfrak{a} \neq R$ the desired formula in (i) follows from (1) and (2). If $\mathfrak{a} = R$, then M = o and in this case the formula in (i) is trivial.

COROLLARY 6. Let $a_1 \subseteq \cdots \subseteq a_r$ be a chain of ideals in a local ring R, $m(r \ge 1)$. Let y_1, \cdots, y_r be a sequence of elements in m such that y_1 is regular in R, and for every i $(1 \le i \le r - 1)$ y_{i+1} is regular on

$$\mathbf{R}^{i} := \mathbf{R} / \sum_{h=1}^{i} y_{h} \mathfrak{a}_{h} \, .$$

Let M be an R-module such that $a_r M = o$. Then we have

$$P_{M}^{R^{r}}(t) = P_{M}^{R}(t) \left[(1+t)^{r} - t \sum_{0 \le p < r} (1+t)^{p} \alpha_{r-p}(t) \right]^{-1}$$

where $\alpha_q(t) = P^{R}_{R/a_q}(t)$ for $I \leq q \leq r$.

In particular, if R is a local complete intersection or a Golod ring, then $P_M^{Rr}(t)$ represents a rational function.

Proof. The formula will be proved by induction on r. For r = I the formula is valid by Theorem 5. Now let i be an integer such that $I \le i < r$. Put

$$\beta_{i}(t) = (\mathbf{I} + t)^{i} - t \sum_{p=0}^{i-1} (\mathbf{I} + t)^{p} \alpha_{i-p}(t).$$

By induction we may assume that we have

(I)
$$P_{Q}^{R^{i}}(t) = P_{Q}^{R}(t) \beta_{i}(t)^{-1}$$

for all R-modules Q such that $a_i Q = o$. Now let L be an R-module such that $a_{i+1} L = o$. We are going to show that (1) remains valid if *i* is replaced by i + 1, and Q is replaced by L. Since $a_i \subseteq a_{i+1}$, we have $a_i (R/a_{i+1}) = o = a_i L$, so (1) yields

(2)
$$P_{\mathbf{R}/\mathfrak{a}_{i+1}}^{\mathbf{R}^{i}}(t) = \alpha_{i+1}(t) \beta_{i}(t)^{-1}$$

and

(3)
$$P_{L}^{Ri}(t) = P_{L}^{R}(t) \beta_{i}(t)^{-1}.$$

Since y_{i+1} is regular in \mathbb{R}^i , Theorem 5 gives

(4)
$$P_{L}^{R^{i+1}}(t) = P_{L}^{R^{i}}(t) \left[I - t \left(P_{R/a_{i+1}}^{R^{i}}(t) - I\right)\right]^{-1}$$

Substituting (2) and (3) in (4) and using the identity

 $\beta_{i+1}(t) = (\mathbf{I} + t) \beta_i(t) - t\alpha_{i+1}(t)$

we obtain the desired result.

We shall now give a lemma which gives conditions implying the hypothesis in the previous corollary. With the notation of that corollary we have

LEMMA 7. Let $a_1 \subseteq \cdots \subseteq a_r$ be a sequence of ideals in R. Let y_1, \cdots, y_r be a regular sequence contained in the maximal ideal and assume that y_1, \cdots, y_{i+1} is a regular sequence for R/a_i for all $i (1 \le i \le r-1)$. Then y_{i+1} is R^i -regular for all i.

Proof. We will prove the proposition by induction on r, the number of ideals. For r = 1 there is nothing to prove. Now let $r \ge 2$ and

$$I \leq i \leq r - I$$
. Let λ be an element of R such that

(1)
$$\lambda y_{i+1} \in \sum_{k=1}^{i} y_k \mathfrak{a}_k.$$

It suffices to show that $\lambda \in \sum_{k=1}^{N} y_k \mathfrak{a}_k$. Reading (1) modulo $y_i R$, and using the induction hypothesis one obtains

$$\lambda \in \sum_{h=1}^{i-1} y_h \mathfrak{a}_h + y_i \mathbf{R} .$$

Hence we may write

$$\lambda = \sum_{h=1}^{i-1} y_h \, \mathfrak{a}_h + y_i \, a$$

where $a_{k} \in a_{k}$ and $a \in \mathbb{R}$. From (1) we obtain $\lambda y_{i+1} \in a_{i}$. Hence we have $\lambda \in a_{i}$. Now (2) yields

$$y_i a \in \mathfrak{a}_i$$

hence $a \in \mathfrak{a}_i$, so $\lambda \in \sum_{h=1}^i y_h \mathfrak{a}_h$.

We will end this section by giving an example where Lemma 7 can be applied.

Let S be a local ring, let $r \ge I$ be an integer and let $\mathfrak{a}'_1 \subseteq \cdots \subseteq \mathfrak{a}'_r$ be ideals in S. Put $R := S [[y_1, \cdots, y_r]]$ and put $\mathfrak{a}_i = \mathfrak{a}'_i R$ for $I \le i \le r$. Then the sequences y_1, \cdots, y_r and $\mathfrak{a}_1 \subseteq \cdots \subseteq \mathfrak{a}$, satisfy the hypothesis in Corollary 6.

4. EXAMPLES

I) Let R be a local ring and let a be an ideal in R. Let M be an R-module such that aM = o. Let y_1, \dots, y_r be a regular sequence in R which is contained in m, and assume that y_1, \dots, y_r is also regular sequence on R/a. Put $R' := R/(y_1, \dots, y_r)a$. Then Lemma 7 and Corollary 6 yields the formula

$$\mathbf{P}_{\mathbf{M}}^{\mathbf{K}'}(t) = \mathbf{P}_{\mathbf{M}}^{\mathbf{K}}(t) \left[\alpha(t) - \alpha(t) \beta(t) + \beta(t) \right]^{-1}$$

where $\alpha(t) = P_{R/a}^{R}(t)$ and $\beta(t) = P_{R/(y_1, \dots, y_r)}^{R}(t) = (I + t)^r$.

In particular if R is a local complete intersection or a Golod ring, then $R_{M}^{R'}(t)$ represents a rational function.

II) Let A be a regular local ring of dimension n. Let r and s be integers such that $0 \le s \le r \le n$. Let y_1, \dots, y_r be a regular sequence in m^2 and let u be an element in m such that y_1, \dots, y_s, u is a regular sequence. Put

$$\mathfrak{a} = (y_1, \cdots, y_s, uy_{s+1}, \cdots, uy_r).$$

Then considering A/a as a factor ring of the complete intersection $A/(y_1, \dots, y_s)$, one easily deduces the following formula from Theorem 5:

$$\mathbf{P}_{k}^{A/a}(t) = (\mathbf{I} + t)^{n-s-1} [(\mathbf{I} - t)_{s} (\mathbf{I} - t (\mathbf{I} + t)^{r-s-1})]^{-1}$$

III) Let k be a field and consider the following ring of formal power series $A = k [[X_1, \dots, X_n, Y_1, \dots, Y_r]]$. Let $\mathfrak{a}'_1 \subseteq \dots \subseteq \mathfrak{a}'_r$ be a chain of ideals in $A' = k [[X_1, \dots, X]]_n$.

Put $\mathfrak{o}_i = \mathfrak{o}'_i A$ for $1 \leq i \leq r$, and put

$$\mathfrak{a} = \sum_{i=1}^{r} \mathbf{Y}_{i} \, \mathfrak{a}_{i} \, .$$

Then for each A-module M such that $a_r M = o$ we have

$$\mathbf{P}_{\mathbf{M}}^{\mathbf{A}/a}(t) = \mathbf{P}_{\mathbf{M}}^{\mathbf{A}}(t) \left[(\mathbf{I} + t)^{r} \left(\mathbf{I} - t \sum_{0 \le p < r} (\mathbf{I} + t)^{p} \alpha_{r-p}'(t) \right) \right]^{-1}$$

where $\alpha'_q(t) = P^{A'}_{A'/a'_q}(t)$. Clearly $P^{A/a}_M(t)$ is a rational function. In particular, if k' denotes the residue field of A/a we get

$$\mathbf{P}_{k'}^{\mathbf{R}/a}(t) = (\mathbf{I}+t)^{n} \left[\mathbf{I}-t \sum_{0 \le p < r} (\mathbf{I}+t)^{p} \alpha_{r-p}'(t)\right]^{-1}.$$

IV) Let \mathfrak{a} be an ideal generated by monomials in the ring $A = k [[X_1, X_2, X_3]]$, where k is a field. We shall also let k denote the residue field of A/ \mathfrak{a} . We will show that $P_k^{A/\mathfrak{a}}(t)$ is rational.

We may write

$$\mathfrak{a} = \mathfrak{a}_1 \operatorname{X}_1 + \mathfrak{a}_2$$

where a_1 and a_2 are ideals in A and $k[[X_2, X_3]]$ respectively. Put $R = k[[X_2, X_3]]/a_2$. Then R is either a complete intersection or a Golod ring. See Example I in Section 2. By Proposition 3 we see that the same holds for $R[[X_1]]$. Hence $P_M^{R[[X_1]]}(t)$ is a rational function for every $R[[X_1]]$ -module M. Since

$$A/\mathfrak{a} \cong \langle k \ [[X_2, X_3]]/\mathfrak{a}_2 \rangle \ [[X_1]]/\mathfrak{a}_1 \ X_1 = R \ [[X_1]]/\mathfrak{a}_1 \ X_1$$

it follows from Theorem 5 that $P_{M}^{A/a}(t)$ is rational for every module M such that $a_{1}M = o$. In particular $P_{k}^{A/a}(t)$ is rational.

Using Theorem 5 it is also possible to prove that the ring $k[[X_1, \dots, X_n]]/(m_1, m_2, m_3)$ has rational Poincaré series, m_1, m_2, m_3 being monomials.

5. REDUCTION TO THE CASE OF DIMENSION ZERO

PROPOSITION 8. The following statements are equivalent:

- (i) $P_{R/m}^{R}(t)$ is rational for every local ring R, m of dimension zero.
- (ii) $P_{M}^{R}(t)$ is rational for every local ring R and every finitely generated R-module M.

Proof. It suffices to prove (i) \Rightarrow (ii). Suppose that $P_k^R(t)$ is rational for every local ring of dimension zero. From Theorem 3.17 in Levin [4] one deduces that $P_{R/m}^R$ is rational for every local ring R, m. By Theorem 2 in [2] it then follows that $P_M^R(t)$ is rational for all R and all M.

References

- [I] E.S. GOLOD (1962) On the homology of some local rings, «Soviet Math. Dokl.», 3.
- [2] T. H. GULLIKSEN (1972) Massey operations and the Poincaré series of certain local rings.
 « J. Algebra », 22.
- [3] T. H. GULLIKSEN A change of ring theorem with applications to Poincaré series and intersection multiplicity. To appear in «Math. Scand.».
- [4] G. LEVIN Local rings and Golod homomorphisms. To appear.
- [5] J. SHAMASH (1969) The Poincaré series of a local ring, « J. Algebra », 12.
- [6] G. SCHEJA (1964) Über die Bettizahlen lokaler Ringe, «Math. Ann.», 155.
- [7] J. TATE (1957) Homology of noetherian rings and local rings, «Illinois J. Math.», 1.